Pipelined Implementation of Y86 (1)

CSci 2021: Machine Architecture and Organization
Lecture #20, March 9th, 2015

Your instructor: Stephen McCamant

Based on slides originally by:
Randy Bryant, Dave O’Hallaron, Antonia Zhai

Exercise Break: Instruction Stages

Fetch

valA « R[%esp]
valM < M,[valA]
PC « valm
valB < R[%esp] What instruction
valE « valB + 4 is this?

valP < PC + 1 ret
icode:ifun < M;[PC]

pPC update R[%esp] < valE

Computational Example

300 ps 20 ps
Combinational Delay = 320 ps
logic Throughput = 3.12 GIPS
Clock

System
= Computation requires total of 300 picoseconds
= Additional 20 picoseconds to save result in register
= Must have clock cycle of at least 320 ps

Overview

General Principles of Pipelining

= Goal
= Difficulties

Creating a Pipelined Y86 Processor

= Rearranging SEQ

= Inserting pipeline registers
= Problems with data and control hazards

Real-World Pipel

Sequential

ines: Car Washes

Parallel

Idea

= Divide process into
independent stages

= Move objects through stages
in sequence

m At any given times, multiple
objects being processed

3-Way Pipelined Version

100 ps 20 ps 100 ps

20 ps 100 ps 20 ps

oo ot o B
A B c Throughput = 8.33 GIPS
|
Clock
System

= Divide combinational logic into 3 blocks of 100 ps each
= Can begin new operation as soon as previous one passes

through stage A.

® Begin new operation every 120 ps

= Overall latency increases

® 360 ps from start to finish

Pipeline Diagrams
Unpipelined

OP1

oP2 | |

OP3
Time

= Cannot start new operation until previous one completes
3-Way Pipelined

orr[A [B [
oP2 [alk[c]
opP3 Ale|c]

Time

—me

= Up to 3 operations in process simultaneously

Limitations: Nonuniform Delays

50ps 20 ps 150 ps 20 ps 100 ps 20 ps
2 robg Sotie Delay = 510 ps
A B c Throughput = 5.88 GIPS

opt[A] [B [c] Clock

oP2 [A] B c [|

oP3 Al B | cl]
Time

= Throughput limited by slowest stage
= Other stages sit idle for much of the time
= Challenging to partition system into balanced stages

Data Dependencies

Combinational

logic
Clock
OP1 b
oP2 < 5
OP3 q

Time

System
= Each operation depends on result from preceding one

—1n-

Operating a Pipeline

23311 300 359
Clock
OP1
oP2 A B c
OP3 A B C
f t t t t {
[120 240 360 480 640
Time

100 ps 20 ps 100 ps 20 ps 100 ps 20 ps

Comb. Comb.
§> logic logic
A B

Limitations: Register Overhead

50ps 20ps 50ps 20ps 50ps 20ps 50ps 20ps 50ps 20ps 50ps 20ps

IComb. IComb. IComb. |Comb. {Comb. IComb.
Togic Togic logic logic logic Togic

Clock Delay = 420 ps, Throughput = 14.29 GIPS

= As try to deepen pipeline, overhead of loading registers
becomes more significant

= Percentage of clock cycle spent loading register:
e 1-stage pipeline: 6.25%
® 3-stage pipeline: 16.67%
® 6-stage pipeline: 28.57%
= High speeds of modern processor designs obtained through
very deep pipelining

—10-

Data Hazards

Comb. Comb. R Comb.
logic logic e logic
A B g c
Cl ‘ Kk
ot [A]lB]CKN oc
OoP2 A B Cc
oP3 B | c|
oP4 N ale]|c]

Time

= Result does not feed back around in time for next operation
= Pipelining has changed behavior of system

—12-

Data Dependencies in Processors

1 irmovl $50,
3 oo 100(Gan)), see

= Result from one instruction used as operand for another
® Read-after-write (RAW) dependency

= Very common in actual programs

= Must make sure our pipeline handles these properly
® Get correct results
©® Minimize performance impact

—13-

SEQ Hardware n

= Stages occur in sequence

= One operation in process Homary
at a time

"

Execute

—15-

Adding Pipeline Registers

ot st e vt o

PC

Write back

Memory
Execute
Decode

Fetch | o

Quiz 1 Statistics

N = 211 (both sections)
Mean = 74.3

Median = 77

Standard deviation = 19.41

SEQ+ Hardware

= Still sequential
implementation

= Reorder PC stage to put at
beginning

PC Stage

= Task is to select PC for
current instruction

= Based on results
computed by previous Decode
instruction

Memary

Execue

Processor State
m PC is no longer stored in Fetch
register
= But, can determine PC
based on other stored -
information

Pipeline Stages o o

Fetch
= Select current PC
= Read instruction
= Compute incremented PC

Decode
= Read program registers

Execute
m Operate ALU

Decods.

Memory
= Read or write data memory s

Write Back o
= Update register file

—so—

PIPE- Hardware

= Pipeline registers hold
intermediate values
from instruction
execution

Forward (Upward) Paths
= Values passed from one
stage to next
= Cannot jump past
stages

® e.g., valC passes
through decode

—19-

Feedback Paths

Predicted PC
= Guess value of next PC

Branch information
= Jump taken/not-taken

= Fall-through or target
address

Return point
= Read from memory

Register updates

= To register file write
ports

—21-

Our Prediction Strategy

Instructions that Don’t Transfer Control
= Predict next PC to be valP
u Always reliable

Call and Unconditional Jumps
= Predict next PC to be valC (destination)
= Always reliable
Conditional Jumps
= Predict next PC to be valC (destination)
= Only correct if branch is taken
® Typically right 60% of time
Return Instruction
= Don’t try to predict

—23-

Signal Naming Conventions

(=)
S_Field
= Value of Field held in stage S pipeline
register
s_Field

= Value of Field computed in stage S

—20-

Predicting the
PC

m Start fetch of new instruction after current one has completed
fetch stage
® Not enough time to reliably determine next instruction

= Guess which instruction will follow
® Recover if prediction was incorrect

—22-

Recovering
from PC o |
Misprediction @ -

= Mispredicted Jump
® Will see branch condition flag once instruction reaches memory
stage
@ Can get fall-through PC from valA (value M_valA)
= Return Instruction
® Will get return PC when ret reaches write-back stage (W_valM)

—24-

Pipeline Demonstration

irmovl §1,%eax #I1
irmovl $2,%ecx #12
irmovl §$3,%edx #I3
irmovl $4,%ebx #14
halt #15

File: demo-basic.ys

1

2 3 4 s

>
-
©

[FIp]e[m][w
F[D[E[M[wW
FlD[E[mM[w
FID|E[m[w]
Flo|E[M[w]
Cycle 5

I1

12

TR

_25-
A 3
Data Dependencies: 2 Nop’s
demo-h2.ys 1 2 3 4 5 6 7 8 9 10
0x000: irmovl $10,%cax | F| D] E] M| W
0x006: irmovl $3,%eax ‘F D| E| M| W
0x00c: nop Fl o[E[M| w
0x00d: nop FI D] E| M| w]
0x00e: addl %edx,%eax F| D| E M‘ W‘
0x010: halt F| o] E[M] w]
Cycle 6
w
R[zeax] <3
D
Error
_o7-
Data Dependencies: No Nop
demo-h0.ys 1 2 3 4 5 6 7 8
0x000: irmovl $10,%edx | F| D] E] M| W
0x006: irmovl $3,%eax ‘F Dl E| M| W
0x00c: addl %edx, %eax F|D| E| M W‘
0x00e: halt F| D| E M‘ W‘
Cycle 4
M
M_valE = 10
M_GStE = secix
E
e vaE <0+3=3
E_dStE = 2eax
D
| Eror
_29-

Data Dependencies: 3 Nop’s

demo-h3.ys 1 2 3 4 5 6 7 8 9 10 1
0x000: irmovl $10,%edx FID[E[M[W
0x006: irmovl $3,%eax F|D| E| M| W
0x00c: nop F| D| E| M| W
0x00d: nop F|D|E| M| W
0x00e: nop F{D|E| M| W
0x00£: addl %edx,teax FI D] E| M| W]
0x011: halt F| D| E M‘ W‘
Cycle 6
w
R[teax] <3
Cycle 7
D
valA «R[%edx] = 10
valB «R[2eax] =3

Data Dependenc

demo-hl.ys 1
0x000:
0x006:
0x00c:
0x00d:
0x00f:

ies:

1 Nop

3 4 5 6 7 8 9

irmovl $10,%edx F‘ Dl E| M| W
irmovl $3,%eax FI|D|E| M| W
nop. F| D| E| M| W
addl $edx, $eax F| D| E| M W‘
halt F| D] E[M| W]
Cycle 5
w
Rltedx] <10
M
M_valE =3
M_GSIE = seax
D
+— Error
valA R[sedx] = 07]
valB «R[zeax] =0
—28-

Branch Misprediction Example

demo-j.ys

0x000: xorl %eax,%eax
0x002: jne t

0x007: irmovl $1, %eax
0x00d: nop

0x00e: nop

0x00f: nop

0x010: halt

0x011: t: irmovl $3, %edx
0x017: irmovl $4, 3%ecx
0x01d: irmovl $5, %edx

Not taken
Fall through

Target (Should not execute)
Should not execute
Should not execute

= Should only execute first 8 instructions

—30-

Branch Misprediction Trace

demo-j 1 2 3 4 5 6 7 8 9
0x000: xorl seax,%eax | F [D | E [M|W
jne t # Not taken FIp[E[M[wW
irmovl §3, %edx # Target | F |[D |E [M |W
irmovl $4, %ecx 4 Target+l F|lo|E[m|w]
irmovl §1, %eax # Fall Through Flo[e|[wm[w]
= Incorrectly execute two ™
instructions at branch target M_valA = 0x007
E
valE « 3
dstE = sedx
D
valC =4
OSE = fecx
F
vaiC « 1
1B « seax
_a1-
demo-ret
0%023: ret [F]o]E[M]w
0x024: irmovl $1,%ax # Oopsi F | D | E | M | W
0x02a: irmovl $2,%ecx # Oops! F D E M| W
0x030: irmovl $3,%edx # Oops! F|lo|E[m|w]
0x00e: irmovl $5,%esi # Return F D E M w
= Incorrectly execute 3
instructions following ret b
valM = 0x0e
M
dStE = teax
E
valE « 2
dStE = 3ecx
D
valC = 3
F
valC < 5
B« sesi _33-

Return Example

0x000:
0x006:
0x007:
0x008:
0x009:
0x00e:
0x014:
0x020:
0x020:
0x021:
0x022:
0x023:
0x024:
0x02a:
0x030:
0x036:
0x100:

0x100

nop
nop
nop
call p
irmovl
halt
.pos 0x20
p: nop
nop
nop
ret
irmovl
irmovl
irmovl
irmovl

: Stack:

.pos 0x100

$5,%esi

$1,%eax
$2,%ecx
$3,%edx
$4,%ebx

irmovl Stack,%esp #

demo-ret.ys

Initialize stack pointer

Avoid hazard on %esp

L

£

EE

stack:

Procedure call
Return point

procedure

Should not be
Should not be
Should not be
Should not be

executed
executed
executed
executed

Stack pointer

= Require lots of nops to avoid data hazards

Pipeline Summary

Concept
= Break instruction execution into 5 stages
= Run instructions through in pipelined mode

Limitations

= Can’t handle deg

d

cies

hety

instrt

when

instructions follow too closely

= Data dependencies
@ One instruction writes register, later one reads it
= Control dependency
® Instruction sets PC in way that pipeline did not predict correctly
@ Mispredicted branch and return

Fixing the Pipeline

= We'll do that next time

—32-

—34-

