
1

1

Exceptional Control Flow

CSci 2021: Machine Architecture and Organization
Lecture #15, February 23rd, 2015

Your instructor: Stephen McCamant

Based on slides originally by:

Randy Bryant, Dave O’Hallaron, Antonia Zhai

2

Control Flow

<startup>
inst1

inst2

inst3

…
instn

<shutdown>

 Processors do only one thing:

 From startup to shutdown, a CPU simply reads and executes
(interprets) a sequence of instructions, one at a time

 This sequence is the CPU’s control flow (or flow of control)

Physical control flow

Time

3

Altering the Control Flow

 Up to now: two mechanisms for changing control flow:

 Jumps and branches

 Call and return

Both react to changes in program state

 Insufficient for a useful system:
Difficult to react to changes in system state
 data arrives from a disk or a network adapter

 instruction divides by zero

 user hits Ctrl-C at the keyboard

 System timer expires

 System needs mechanisms for “exceptional control flow”

4

Exceptional Control Flow

 Exists at all levels of a computer system

 Low level mechanisms
 Exceptions

 change in control flow in response to a system event
(i.e., change in system state)

 Combination of hardware and OS software

 Higher level mechanisms
 Process context switch

 Signals

 Nonlocal jumps: setjmp()/longjmp()

 Implemented by either:

 OS software (context switch and signals)

 C language runtime library (nonlocal jumps)

5

Today

 Non-local Jumps

 Hardware Exceptions

6

Nonlocal Jumps: setjmp/longjmp

 Powerful (but dangerous) user-level mechanism for
transferring control to an arbitrary location
 Controlled to way to break the procedure call / return discipline

 Useful for error recovery and signal handling

 int setjmp(jmp_buf j)

 Must be called before longjmp

 Identifies a return site for a subsequent longjmp

 Called once, returns one or more times

 Implementation:
 Remember where you are by storing the current register context,

stack pointer, and PC value in jmp_buf

 Return 0

2

7

setjmp/longjmp (cont)

 void longjmp(jmp_buf j, int i)

 Meaning:

 return from the setjmp remembered by jump buffer j again ...

 … this time returning i instead of 0

 Called after setjmp

 Called once, but never returns

 longjmp Implementation:

 Restore register context (stack pointer, base pointer, PC value) from
jump buffer j

 Set %eax (the return value) to i

 Jump to the location indicated by the PC stored in jump buf j

8

setjmp/longjmp Example

#include <setjmp.h>

jmp_buf buf;

main() {

if (setjmp(buf) != 0) {

printf("back in main due to an error\n");

else

printf("first time through\n");

p1(); /* p1 calls p2, which calls p3 */

}

...

p3() {

<error checking code>

if (error)

longjmp(buf, 1)

}

9

Limitations of Nonlocal Jumps
 Works within stack discipline

 Can only long jump to environment of function that has been called
but not yet completed

jmp_buf env;

P1()

{

if (setjmp(env)) {

/* Long Jump to here */

} else {

P2();

}

}

P2()

{ . . . P2(); . . . P3(); }

P3()

{

longjmp(env, 1);

}

P1

P2

P2

P2

P3

env

P1

Before longjmp After longjmp

10

Limitations of Long Jumps (cont.)
 Works within stack discipline

 Can only long jump to environment of function that has been called
but not yet completed

jmp_buf env;

P1()

{

P2(); P3();

}

P2()

{

if (setjmp(env)) {

/* Long Jump to here */

}

}

P3()

{

longjmp(env, 1);

}

env

P1

P2

At setjmp

P1

P3
env

At longjmp

X

P1

P2

P2 returns

env

X

11

Today

 Non-local Jumps

 Hardware Exceptions

12

Exceptions

 An exception is a transfer of control to the OS in response to
some event (i.e., change in processor state)

 Examples:
div by 0, arithmetic overflow, page fault, I/O request completes, Ctrl-C

User Process OS

exception
exception processing
by exception handler

• return to I_current
• return to I_next
•abort

event I_current
I_next

3

13

0
1

2
...

n-1

Interrupt Vectors

 Each type of event has a
unique exception number k

 k = index into exception table
(a.k.a. interrupt vector)

 Handler k is called each time
exception k occurs

Exception
Table

code for
exception handler 0

code for
exception handler 1

code for
exception handler 2

code for
exception handler n-1

...

Exception
numbers

14

Asynchronous Exceptions (Interrupts)

 Caused by events external to the processor

 Indicated by setting the processor’s interrupt pin

 Handler returns to “next” instruction

 Examples:

 I/O interrupts

 hitting Ctrl-C at the keyboard

 arrival of a packet from a network

 arrival of data from a disk

 Hard reset interrupt

 hitting the reset button

 Soft reset interrupt

 hitting Ctrl-Alt-Delete on a PC

15

Synchronous Exceptions
 Caused by events that occur as a result of executing an

instruction:
 Traps

 Intentional

 Examples: system calls, breakpoint traps, special instructions

 Returns control to “next” instruction

 Faults

 Unintentional but possibly recoverable

 Examples: page faults (recoverable), protection faults
(unrecoverable), floating point exceptions

 Either re-executes faulting (“current”) instruction or aborts

 Aborts

 unintentional and unrecoverable

 Examples: parity error, machine check

 Aborts current program
16

Trap Example: Opening File
 User calls: open(filename, options)

 Function open executes system call instruction int

 OS must find or create file, get it ready for reading or writing

 Returns integer file descriptor

0804d070 <__libc_open>:

. . .

804d082: cd 80 int $0x80

804d084: 5b pop %ebx

. . .

User Process OS

exception

open file

returns

int
pop

17

Fault Example: Page Fault
 User writes to memory location

 That portion (page) of user’s memory
is currently on disk

 Page handler must load page into physical memory

 Returns to faulting instruction

 Successful on second try

int a[1000];

main ()

{

a[500] = 13;

}

80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User Process OS

exception: page fault

Create page and
load into memoryreturns

movl

18

Fault Example: Invalid Memory Reference

 Page handler detects invalid address

 Sends SIGSEGV signal to user process

 User process exits with “segmentation fault”

int a[1000];

main ()

{

a[5000] = 13;

}

80483b7: c7 05 60 e3 04 08 0d movl $0xd,0x804e360

User Process OS

exception: page fault

detect invalid address

movl

signal process

4

19

Exception Table IA32 (Excerpt)

Exception Number Description Exception Class

0 Divide error Fault

13 General protection fault Fault

14 Page fault Fault

18 Machine check Abort

32-127 OS-defined Interrupt or trap

128 (0x80) System call Trap

129-255 OS-defined Interrupt or trap

Check Table 6-1:
http://download.intel.com/design/processor/manuals/253665.pdf

20

Putting It All Together: A Program
That Restarts Itself When ctrl-c’d
#include <stdio.h>

#include <signal.h>

#include <setjmp.h>

sigjmp_buf buf;

void handler(int sig) {

siglongjmp(buf, 1);

}

main() {

signal(SIGINT, handler);

if (!sigsetjmp(buf, 1))

printf("starting\n");

else

printf("restarting\n");

while(1) {

sleep(1);

printf("processing...\n");

}

} restart.c

greatwhite> ./restart

starting

processing...

processing...

processing...

restarting

processing...

processing...

restarting

processing...

processing...

processing...

Ctrl-c

Ctrl-c

21

Summary

 Nonlocal jumps provide exceptional control flow within
process
 Within constraints of stack discipline

 Exceptions

 Events that require nonstandard control flow

 Generated externally (interrupts) or internally (traps and faults)

http://download.intel.com/design/processor/manuals/253665.pdf

