
1

1

Machine-Level Programming I: Basics

CSci 2021: Machine Architecture and Organization
Lectures #7-8, February 4th-6th, 2015

Your instructor: Stephen McCamant

Based on slides originally by:

Randy Bryant, Dave O’Hallaron, Antonia Zhai

2

Today: Machine Programming I: Basics

 History of Intel processors and architectures

 C, assembly, machine code

 Assembly Basics: Registers, operands, move

 Intro to x86-64

3

Intel x86 Processors

 Dominant in laptop/desktop/server market

 Second place: compatible designs from AMD

 Evolutionary design

 Backwards compatible through 8086, introduced in 1978

 Added more features as time goes on

 Complex instruction set computer (CISC)
 Many different instructions with many different formats

 But, only a subset encountered with Linux/GCC programs

 Alternative Reduced Instruction Set Computer (RISC) designs have 
theoretical advantages

 Intel borrows ideas from RISC while keeping CISC compatibility

 RISC-style ARM dominates lower-power (e.g. phone) market

4

Intel x86 Evolution: Milestones

Name Date Transistors MHz

 8086 1978 29K 5-10
 First 16-bit processor.  Basis for IBM PC & DOS

 1MB segmented address space (640KB program limit)

 (80)386 1985 275K 16-33

 First 32 bit processor , referred to as IA32

 Added “flat addressing”

 Capable of running Unix with virtual memory

 32-bit Linux/gcc uses no instructions introduced in later models

 Pentium 4F 2004 125M 2800-3800
 First 64-bit processor, referred to as x86-64

 Core i7 2008 731M 2667-3333
 Our xA-B machines are a similar-vintage “Xeon”

5

Intel x86 Processors: Overview

X86-64 / EM64t

X86-32/IA32

X86-16 8086

286

386
486
Pentium
Pentium MMX
Pentium Pro
Pentium III
Pentium 4

Pentium 4 “E”

AMD Opteron

Core 2 Duo
Core i7

IA: often redefined as latest Intel architecture

time

Architectures Processors

MMX

SSE

SSE2

SSE3

SSE4

AVX

6

Intel x86 Processors, contd.
 Machine Evolution

 386 1985 0.3M

 Pentium 1993 3.1M

 Pentium/MMX 1997 4.5M

 PentiumPro 1995 6.5M

 Pentium III 1999 8.2M

 Pentium 4 2001 42M

 Core 2 Duo 2006 291M

 Core i7 2008 731M

 Added Features
 Instructions to support multimedia operations

 Parallel operations on 1, 2, and 4-byte data, both integer & FP

 Instructions to enable more efficient conditional operations

 Linux/GCC Evolution
 Two major steps: 1) support 32-bit 386.  2) support 64-bit x86-64



2

7

New Species: IA64 aka IPF aka Itanium,… 

Name Date Transistors

 Itanium 2001 25M + cache?
 First shot at 64-bit architecture: first called IA64

 Radically new instruction set designed for high performance

 Can run existing IA32 programs

 On-board “x86 engine”

 Joint project with Hewlett-Packard

 Itanium 2 2002 221M
 Big performance boost

 Itanium 2 Dual-Core 2006 1.7B

 Itanium has not taken off in marketplace

 Lack of backward compatibility, no good compiler support, Pentium 
4 got too good

8

x86 Clones: Advanced Micro Devices (AMD)

 Historically

AMD has followed just behind Intel

A little bit slower, a lot cheaper

 Then

 Recruited top circuit designers from Digital Equipment Corp. and 
other downward trending companies

 Built Opteron: tough competitor to Pentium 4

Developed x86-64, their own extension to 64 bits

9

Intel’s 64-Bit
 Intel Attempted Radical Shift from IA32 to IA64

 Totally different architecture (Itanium)

 Executes IA32 code only as legacy

 Performance disappointing

 AMD Stepped in with Evolutionary Solution
 x86-64 (now also called “AMD64”)

 Intel Felt Obligated to Focus on IA64

 Hard to admit mistake or that AMD is better

 2004: Intel Announces EM64T extension to IA32

 Extended Memory 64-bit Technology (now “Intel 64”)

 Almost identical to x86-64!

 All but low-end x86 processors support x86-64
 But, lots of code still runs in 32-bit mode

10

Our Coverage

 x86-32/IA32

 The traditional x86

 x86-64/EM64T/AMD64/Intel 64/x64
 The emerging standard

 Presentation
 Book presents IA32 in Sections 3.1—3.12

 Covers x86-64 in 3.13

 We will cover both interleaved

 Labs will be mostly based on IA32

11

Today: Machine Programming I: Basics

 History of Intel processors and architectures

 C, assembly, machine code

 Assembly Basics: Registers, operands, move

 Intro to x86-64

12

Definitions

 Architecture: (also instruction set architecture: ISA) The 
parts of a processor design that one needs to understand 
to write assembly code. 
 Examples: instruction set specification, registers.

 Microarchitecture: Implementation of the architecture.
 Examples: cache sizes and core frequency.

 Example ISAs (Intel): x86, Itanium



3

13

CPU

Assembly Programmer’s View

 Programmer-Visible State

 PC: Program counter

 Address of next instruction

 Called “EIP” (IA32) or “RIP” (x86-64)

 Register file

 Heavily used program data

 Condition codes

 Store status information about most 
recent arithmetic operation

 Used for conditional branching

PC
Registers

Memory

Object Code
Program Data
OS Data

Addresses

Data

Instructions

Stack

Condition
Codes

 Memory
 Byte addressable array

 Code, user data, (some) OS data

 Includes stack used to support 
procedures

14

text

text

binary

binary

Compiler (gcc -S)  (includes preproc.)

Assembler (gcc or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries 
(.a)

Turning C into Object Code
 Code in files p1.c p2.c

 Compile with command: gcc –O1 p1.c p2.c -o p

 Use basic optimizations (-O1)

 Put resulting binary in file p

15

Compiling Into Assembly

C Code
int sum(int x, int y)

{

int t = x+y;

return t;

}

Generated IA32 Assembly

sum:

pushl %ebp

movl %esp,%ebp

movl 12(%ebp),%eax

addl 8(%ebp),%eax

popl %ebp

ret

Obtain with command

/usr/bin/gcc –O1 -S code.c

Produces file code.s

Some compilers use 
instruction “leave”

16

Assembly Characteristics: Data Types

 “Integer” data of 1, 2, or 4 bytes

 Data values

 Addresses (untyped pointers)

 Floating point data of 4, 8, or 10 bytes

 No aggregate types such as arrays or structures
 Just contiguously allocated bytes in memory

17

Assembly Characteristics: Operations

 Perform arithmetic function on register or memory data

 Transfer data between memory and register
 Load data from memory into register

 Store register data into memory

 Transfer control
 Unconditional jumps to/from procedures

 Conditional branches

18

Code for sum

0x401040 <sum>:     

0x55

0x89

0xe5

0x8b

0x45

0x0c

0x03

0x45

0x08

0x5d

0xc3

Object Code

 Assembler
 Translates .s into .o

 Binary encoding of each instruction

 Nearly-complete image of executable code

 Missing linkages between code in different 
files

 Linker

 Resolves references between files

 Combines with static run-time libraries

 E.g., code for malloc, printf

 Some libraries are dynamically linked

 Linking occurs when program begins 
execution

• Total of 11 bytes

• Each instruction 
1, 2, or 3 bytes

• Starts at address 
0x401040



4

19

Machine Instruction Example
 C Code

 Add two signed integers

 Assembly

 Add 2 4-byte integers

 “Long” words in GCC parlance

 Same instruction whether signed 
or unsigned

 Operands:

x: Register %eax

y: Memory M[%ebp+8]

t: Register %eax

– Return function value in %eax

 Object Code
 3-byte instruction

 Stored at address 0x80483ca

int t = x+y;

addl 8(%ebp),%eax

0x80483ca:  03 45 08

Similar to expression: 

x += y

More precisely:

int eax;

int *ebp;

eax += ebp[2]

20

Disassembled

Disassembling Object Code

 Disassembler
objdump -d p

 Useful tool for examining object code

 Analyzes bit pattern of series of instructions

 Produces approximate rendition of assembly code

 Can be run on either a.out (complete executable) or .o file

080483c4 <sum>:

80483c4:  55        push   %ebp

80483c5:  89 e5     mov %esp,%ebp

80483c7:  8b 45 0c  mov 0xc(%ebp),%eax

80483ca:  03 45 08  add    0x8(%ebp),%eax

80483cd:  5d        pop    %ebp

80483ce:  c3        ret 

21

Disassembled

Dump of assembler code for function sum:

0x080483c4 <sum+0>:     push   %ebp

0x080483c5 <sum+1>:     mov %esp,%ebp

0x080483c7 <sum+3>:     mov 0xc(%ebp),%eax

0x080483ca <sum+6>:     add    0x8(%ebp),%eax

0x080483cd <sum+9>:     pop    %ebp

0x080483ce <sum+10>:    ret

Alternate Disassembly

 Within gdb Debugger
gdb p

disassemble sum

 Disassemble procedure

x/11xb sum

 Examine the 11 bytes starting at sum

Object

0x401040: 

0x55

0x89

0xe5

0x8b

0x45

0x0c

0x03

0x45

0x08

0x5d

0xc3

22

What Can be Disassembled?

 Anything that can be interpreted as executable code

 Disassembler examines bytes and reconstructs assembly source

% objdump -d WINWORD.EXE

WINWORD.EXE:  file format pei-i386

No symbols in "WINWORD.EXE".

Disassembly of section .text:

30001000 <.text>:

30001000:  55             push   %ebp

30001001:  8b ec mov %esp,%ebp

30001003:  6a ff         push   $0xffffffff

30001005:  68 90 10 00 30 push   $0x30001090

3000100a:  68 91 dc 4c 30 push   $0x304cdc91

23

Aside: x86 Assembly Formats

 This class uses “AT&T” format, which is standard for 
Unix/Linux x86 systems
 Similar to historic Unix all the way back to PDP-11

 Intel’s own documentation, and Windows, use a different 
“Intel” syntax
 Many arbitrary differences, but more internally consistent

AT&T syntax Intel syntax

Destination is last operand Destination is first operand

Size suffixes like “l” in movl Size on memory operands (“DWORD PTR”)

“%” on register names Just letters in register names

“$” on immediate values Just digits in immediates

Addressing modes with (,) Addressing modes with [ + * ]

24

Today: Machine Programming I: Basics

 History of Intel processors and architectures

 C, assembly, machine code

 Assembly Basics: Registers, operands, move

 Intro to x86-64



5

25

Integer Registers (IA32)

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%ax

%cx

%dx

%bx

%si

%di

%sp

%bp

%ah

%ch

%dh

%bh

%al

%cl

%dl

%bl

8/16-bit virtual registers
(backwards compatibility)

ge
n

e
ra

l p
u

rp
o

se

accumulate

counter

data

base

source 

index

destination

index

stack 

pointer

base

pointer

Origin
(mostly obsolete)

26

Moving Data: IA32
 Moving Data

movl Source, Dest:

 Operand Types
 Immediate: Constant integer data

 Example: $0x400, $-533

 Like C constant, but prefixed with ‘$’

 Encoded with 1, 2, or 4 bytes

 Register: One of 8 integer registers

 Example: %eax, %edx

 But %esp and %ebp reserved for special use

 Others have special uses for particular instructions

 Memory: 4 consecutive bytes of memory at address given by register

 Simplest example: (%eax)

 Various other “address modes”

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

27

movl Operand Combinations

Cannot do memory-memory transfer with a single instruction

movl

Imm

Reg

Mem

Reg

Mem

Reg

Mem

Reg

Source Dest C Analog

movl $0x4,%eax temp = 0x4;

movl $-147,(%eax) *p = -147;

movl %eax,%edx temp2 = temp1;

movl %eax,(%edx) *p = temp;

movl (%eax),%edx temp = *p;

Src,Dest

28

Simple Memory Addressing Modes

 Normal (R) Mem[Reg[R]]

 Register R specifies memory address

movl (%ecx),%eax

 Displacement D(R) Mem[Reg[R]+D]

 Register R specifies start of memory region

 Constant displacement D specifies offset

movl 8(%ebp),%edx

29

Using Simple Addressing Modes

void swap(int *xp, int *yp) 

{

int t0 = *xp;

int t1 = *yp;

*xp = t1;

*yp = t0;

} Body

Set
Up

Finish

swap:

pushl %ebp

movl %esp,%ebp

pushl %ebx

movl 8(%ebp), %edx

movl 12(%ebp), %ecx

movl (%edx), %ebx

movl (%ecx), %eax

movl %eax, (%edx)

movl %ebx, (%ecx)

popl %ebx

popl %ebp

ret

30

Using Simple Addressing Modes

void swap(int *xp, int *yp) 

{

int t0 = *xp;

int t1 = *yp;

*xp = t1;

*yp = t0;

}

swap:

pushl %ebp

movl %esp,%ebp

pushl %ebx

movl 8(%ebp), %edx

movl 12(%ebp), %ecx

movl (%edx), %ebx

movl (%ecx), %eax

movl %eax, (%edx)

movl %ebx, (%ecx)

popl %ebx

popl %ebp

ret

Body

Set
Up

Finish



6

31

Understanding Swap

void swap(int *xp, int *yp) 

{

int t0 = *xp;

int t1 = *yp;

*xp = t1;

*yp = t0;

}

Stack
(in memory)

Register Value

%edx xp

%ecx yp

%ebx t0

%eax t1

yp

xp

Rtn adr

Old %ebp %ebp0 

4 

8 

12 

Offset

•
•
•

Old %ebx-4 %esp

movl 8(%ebp), %edx # edx = xp

movl 12(%ebp), %ecx # ecx = yp

movl (%edx), %ebx # ebx = *xp (t0)

movl (%ecx), %eax # eax = *yp (t1)

movl %eax, (%edx) # *xp = t1

movl %ebx, (%ecx) # *yp = t0
32

Understanding Swap

0x120

0x124

Rtn adr

%ebp 0 

4 

8 

12 

Offset

-4 

123

456

Address
0x124 

0x120 

0x11c 

0x118 

0x114 

0x110 

0x10c

0x108 

0x104 

0x100 

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp 0x104
movl 8(%ebp), %edx # edx = xp

movl 12(%ebp), %ecx # ecx = yp

movl (%edx), %ebx # ebx = *xp (t0)

movl (%ecx), %eax # eax = *yp (t1)

movl %eax, (%edx) # *xp = t1

movl %ebx, (%ecx) # *yp = t0

33

Understanding Swap

0x120

0x124

Rtn adr

%ebp 0 

4 

8 

12 

Offset

-4 

123

456

Address
0x124 

0x120 

0x11c 

0x118 

0x114 

0x110 

0x10c

0x108 

0x104 

0x100 

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

0x124

0x104

0x120

movl 8(%ebp), %edx # edx = xp

movl 12(%ebp), %ecx # ecx = yp

movl (%edx), %ebx # ebx = *xp (t0)

movl (%ecx), %eax # eax = *yp (t1)

movl %eax, (%edx) # *xp = t1

movl %ebx, (%ecx) # *yp = t0

34

Understanding Swap

0x120

0x124

Rtn adr

%ebp 0 

4 

8 

12 

Offset

-4 

123

456

Address
0x124 

0x120 

0x11c 

0x118 

0x114 

0x110 

0x10c

0x108 

0x104 

0x100 

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

0x120

0x104

0x124

0x124

movl 8(%ebp), %edx # edx = xp

movl 12(%ebp), %ecx # ecx = yp

movl (%edx), %ebx # ebx = *xp (t0)

movl (%ecx), %eax # eax = *yp (t1)

movl %eax, (%edx) # *xp = t1

movl %ebx, (%ecx) # *yp = t0

35

456

Understanding Swap

0x120

0x124

Rtn adr

%ebp 0 

4 

8 

12 

Offset

-4 

123

456

Address
0x124 

0x120 

0x11c 

0x118 

0x114 

0x110 

0x10c

0x108 

0x104 

0x100 

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

0x124

0x120

123

0x104
movl 8(%ebp), %edx # edx = xp

movl 12(%ebp), %ecx # ecx = yp

movl (%edx), %ebx # ebx = *xp (t0)

movl (%ecx), %eax # eax = *yp (t1)

movl %eax, (%edx) # *xp = t1

movl %ebx, (%ecx) # *yp = t0

36

Understanding Swap

0x120

0x124

Rtn adr

%ebp 0 

4 

8 

12 

Offset

-4 

123

456

Address
0x124 

0x120 

0x11c 

0x118 

0x114 

0x110 

0x10c

0x108 

0x104 

0x100 

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

456

0x124

0x120

0x104

123

123

movl 8(%ebp), %edx # edx = xp

movl 12(%ebp), %ecx # ecx = yp

movl (%edx), %ebx # ebx = *xp (t0)

movl (%ecx), %eax # eax = *yp (t1)

movl %eax, (%edx) # *xp = t1

movl %ebx, (%ecx) # *yp = t0



7

37

456

456

Understanding Swap

0x120

0x124

Rtn adr

%ebp 0 

4 

8 

12 

Offset

-4 

Address
0x124 

0x120 

0x11c 

0x118 

0x114 

0x110 

0x10c

0x108 

0x104 

0x100 

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

456456

0x124

0x120

123

0x104

123

movl 8(%ebp), %edx # edx = xp

movl 12(%ebp), %ecx # ecx = yp

movl (%edx), %ebx # ebx = *xp (t0)

movl (%ecx), %eax # eax = *yp (t1)

movl %eax, (%edx) # *xp = t1

movl %ebx, (%ecx) # *yp = t0

38

Understanding Swap

0x120

0x124

Rtn adr

%ebp 0 

4 

8 

12 

Offset

-4 

456

123

Address
0x124 

0x120 

0x11c 

0x118 

0x114 

0x110 

0x10c

0x108 

0x104 

0x100 

yp

xp

%eax

%edx

%ecx

%ebx

%esi

%edi

%esp

%ebp

456

0x124

0x120

0x104

123123

movl 8(%ebp), %edx # edx = xp

movl 12(%ebp), %ecx # ecx = yp

movl (%edx), %ebx # ebx = *xp (t0)

movl (%ecx), %eax # eax = *yp (t1)

movl %eax, (%edx) # *xp = t1

movl %ebx, (%ecx) # *yp = t0

39

Complete Memory Addressing Modes

 Most General Form

D(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]+ D]
 D: Constant “displacement” 1, 2, or 4 bytes

 Rb: Base register: Any of 8 integer registers

 Ri: Index register: Any, except for %esp

 Unlikely you’d use %ebp, either

 S: Scale: 1, 2, 4, or 8 (why these numbers?)

 Special Cases

(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]]

D(Rb,Ri) Mem[Reg[Rb]+Reg[Ri]+D]

(Rb,Ri,S) Mem[Reg[Rb]+S*Reg[Ri]]

40

Today: Machine Programming I: Basics

 History of Intel processors and architectures

 C, assembly, machine code

 Assembly Basics: Registers, operands, move

 Intro to x86-64

41

Logistics Break: Turning In

 Lab 1 is due tonight by 11:55pm

 (A few of you have already submitted it, congrats)

 Reminder: make sure driver.pl works!

 Homework assignment 1 is due at the beginning of class 
(3:35pm) Monday
 Only option for full credit is turning in on paper at beginning of 

class

 Late paper submissions accepted through end of lecture

 All other late submissions must be online on the Moodle

 Other homework notes:
 Only problems 3 and 4 need be submitted for grading

 A computer printout is strongly recommended/requested

42

Data Representations: IA32 + x86-64

 Sizes of C Objects (in Bytes)

 C Data Type Generic 32-bit Intel IA32 x86-64

 unsigned 4 4 4

 int 4 4 4

 long int 4 4 8

 char 1 1 1

 short 2 2 2

 float 4 4 4

 double 8 8 8

 long double 8 10/12 16

 char * 4 4 8

– Or any other pointer



8

43

%rsp

x86-64 Integer Registers

 Extend existing registers.  Add 8 new ones.

 Make %ebp/%rbp general purpose

%eax

%ebx

%ecx

%edx

%esi

%edi

%esp

%ebp

%r8d

%r9d

%r10d

%r11d

%r12d

%r13d

%r14d

%r15d

%r8

%r9

%r10

%r11

%r12

%r13

%r14

%r15

%rax

%rbx

%rcx

%rdx

%rsi

%rdi

%rbp

44

Instructions

 Long word l (4 Bytes) ↔ Quad word q (8 Bytes)

 New instructions:
 movl➙ movq

 addl➙ addq

 sall➙ salq

 etc.

 32-bit instructions that generate 32-bit results

 Set higher order bits of destination register to 0

 Example: addl

45

32-bit code for swap

void swap(int *xp, int *yp) 

{

int t0 = *xp;

int t1 = *yp;

*xp = t1;

*yp = t0;

}
Body

Set
Up

Finish

swap:

pushl %ebp

movl %esp,%ebp

pushl %ebx

movl 8(%ebp), %edx

movl 12(%ebp), %ecx

movl (%edx), %ebx

movl (%ecx), %eax

movl %eax, (%edx)

movl %ebx, (%ecx)

popl %ebx

popl %ebp

ret

46

64-bit code for swap

 Operands passed in registers (why useful?)
 First (xp) in %rdi, second (yp) in %rsi

 64-bit pointers

 No stack operations required

 32-bit data
 Data held in registers %eax and %edx

 movl operation

void swap(int *xp, int *yp) 

{

int t0 = *xp;

int t1 = *yp;

*xp = t1;

*yp = t0;

}

Body

Set
Up

Finish

swap:

movl (%rdi), %edx

movl (%rsi), %eax

movl %eax, (%rdi)

movl %edx, (%rsi)

ret

47

64-bit code for long int swap

 64-bit data
 Data held in registers %rax and %rdx

 movq operation

 “q” stands for quad-word

void swap(long *xp, long *yp) 

{

long t0 = *xp;

long t1 = *yp;

*xp = t1;

*yp = t0;

}

Body

Set
Up

Finish

swap_l:

movq (%rdi), %rdx

movq (%rsi), %rax

movq %rax, (%rdi)

movq %rdx, (%rsi)

ret

48

Machine Programming I: Summary

 History of Intel processors and architectures

 Evolutionary design leads to many quirks and artifacts

 C, assembly, machine code

 Compiler must transform statements, expressions, procedures into 
low-level instruction sequences

 Assembly Basics: Registers, operands, move
 The x86 move instructions cover wide range of data movement 

forms

 Intro to x86-64
 A major departure from the style of code seen in IA32


