
2/4/2015

1

1

Floating Point

CSci 2021: Machine Architecture and Organization
Lectures #5-6, January 30th-February 2nd, 2015

Your instructor: Stephen McCamant

Based on slides originally by:

Randy Bryant, Dave O’Hallaron, Antonia Zhai

2

Today: Floating Point

 Background: Fractional binary numbers

 IEEE floating point standard: Definition

 Example and properties

 Rounding, addition, multiplication

 Floating point in C

 Summary

3

Fractional binary numbers

 What is 1011.1012?

4

2i

2i-1

4

2

1

1/2

1/4

1/8

2-j

bi bi-1 ••• b2 b1 b0 b-1 b-2 b-3 ••• b-j

• • •

Fractional Binary Numbers

 Representation
 Bits to right of “binary point” represent fractional powers of 2

 Represents rational number:

• • •

5

Fractional Binary Numbers: Examples

 Value Representation

5 3/4 101.112

2 7/8 010.1112

1 7/16 001.01112

 Observations
 Divide by 2 by shifting right

 Multiply by 2 by shifting left

 Numbers of form 0.111111…2 are just below 1.0

 1/2 + 1/4 + 1/8 + … + 1/2i + … ➙ 1.0

 Use notation 1.0 – ε

6

Representable Numbers

 Limitation
 Can only exactly represent numbers of the form x/2k

 Other rational numbers have repeating bit representations

 Value Representation
 1/3 0.0101010101[01]…2

 1/5 0.001100110011[0011]…2

 1/10 0.0001100110011[0011]…2

2/4/2015

2

7

Today: Floating Point

 Background: Fractional binary numbers

 IEEE floating point standard: Definition

 Example and properties

 Rounding, addition, multiplication

 Floating point in C

 Summary

8

IEEE Floating Point

 IEEE Standard 754
 Established in 1985 as uniform standard for floating point arithmetic

 Before that, many idiosyncratic formats

 Supported by all major CPUs

 Driven by numerical concerns
 Nice standards for rounding, overflow, underflow

 Hard to make fast in hardware

 Numerical analysts predominated over hardware designers in
defining standard

9

Floating Point Representation

 Numerical Form:
(–1)s M 2E

 Sign bit s determines whether number is negative or positive

 Significand M normally a fractional value in range [1.0,2.0).

 Exponent E weights value by power of two

 Encoding

 MSB s is sign bit s

 exp field encodes E (but is not equal to E)

 frac field encodes M (but is not equal to M)

s exp frac

10

Precisions

 Single precision: 32 bits

 Double precision: 64 bits

 Extended precision: 80 bits (Intel only)

s exp frac

1 8-bits 23-bits

s exp frac

1 11-bits 52-bits

s exp frac

1 15-bits 63 or 64-bits

11

Normalized (Normal) Values

 Condition: exp ≠ 000…0 and exp ≠ 111…1

 Exponent coded as biased value: E = Exp – Bias
 Exp: unsigned value exp

 Bias = 2k-1 - 1, where k is number of exponent bits

 Single precision: 127 (Exp: 1…254, E: -126…127)

 Double precision: 1023 (Exp: 1…2046, E: -1022…1023)

 Significand coded with implied leading 1: M = 1.xxx…x2

 xxx…x: bits of frac

 Minimum when 000…0 (M = 1.0)

 Maximum when 111…1 (M = 2.0 – ε)

 Get extra leading bit for “free”

12

Normalized Encoding Example

 Value: Float F = 15213.0;
 1521310 = 111011011011012

= 1.11011011011012 x 213

 Significand
M = 1.11011011011012

frac= 110110110110100000000002

 Exponent
E = 13

Bias = 127

Exp = 140 = 100011002

 Result:

0 10001100 11011011011010000000000

s exp frac

2/4/2015

3

13

Denormalized Values

 Condition: exp = 000…0

 Exponent value: E = –Bias + 1 (instead of E = 0 – Bias)

 Significand coded with implied leading 0: M = 0.xxx…x2

 xxx…x: bits of frac

 Cases
 exp = 000…0, frac = 000…0

 Represents zero value

 Note distinct values: +0 and –0 (why?)

 exp = 000…0, frac ≠ 000…0

 Numbers very close to 0.0

 Lose precision as get smaller

 Equispaced

14

Special Values

 Condition: exp = 111…1

 Case: exp = 111…1, frac = 000…0

 Represents value  (infinity)

 Operation that overflows

 Both positive and negative

 E.g., 1.0/0.0 = −1.0/−0.0 = +, 1.0/−0.0 = −

 Case: exp = 111…1, frac ≠ 000…0

 Not-a-Number (NaN)

 Represents case when no numeric value can be determined

 E.g., sqrt(–1),  − ,   0

15

Visualization: Floating Point Encodings

+−

0

+Denorm +Normalized−Denorm−Normalized

+0

NaN

16

Today: Floating Point

 Background: Fractional binary numbers

 IEEE floating point standard: Definition

 Example and properties

 Rounding, addition, multiplication

 Floating point in C

 Summary

17

Tiny Floating Point Example

 8-bit Floating Point Representation
 the sign bit is in the most significant bit

 the next four bits are the exponent, with a bias of 7

 the last three bits are the frac

 Same general form as IEEE Format
 normalized, denormalized

 representation of 0, NaN, infinity

s exp frac

1 4-bits 3-bits

18

s exp frac E Value

0 0000 000 -6 0

0 0000 001 -6 1/8*1/64 = 1/512

0 0000 010 -6 2/8*1/64 = 2/512

…

0 0000 110 -6 6/8*1/64 = 6/512

0 0000 111 -6 7/8*1/64 = 7/512

0 0001 000 -6 8/8*1/64 = 8/512

0 0001 001 -6 9/8*1/64 = 9/512

…

0 0110 110 -1 14/8*1/2 = 14/16

0 0110 111 -1 15/8*1/2 = 15/16

0 0111 000 0 8/8*1 = 1

0 0111 001 0 9/8*1 = 9/8

0 0111 010 0 10/8*1 = 10/8

…

0 1110 110 7 14/8*128 = 224

0 1110 111 7 15/8*128 = 240

0 1111 000 n/a inf

Dynamic Range (Positive Shown)

closest to zero

largest denorm

smallest norm

closest to 1 below

closest to 1 above

largest norm

Denormalized

numbers

Normalized

numbers

2/4/2015

4

19

-15 -10 -5 0 5 10 15

Denormalized Normalized Infinity

Distribution of Values

 6-bit IEEE-like format
 e = 3 exponent bits

 f = 2 fraction bits

 Bias is 23-1-1 = 3

 Notice how the distribution gets denser toward zero.

8 values

s exp frac

1 3-bits 2-bits

20

Distribution of Values (close-up view)

 6-bit IEEE-like format
 e = 3 exponent bits

 f = 2 fraction bits

 Bias is 3

s exp frac

1 3-bits 2-bits

-1 -0.5 0 0.5 1

Denormalized Normalized Infinity

21

Interesting Numbers
Description exp frac Numeric Value

 Zero 00…00 00…00 0.0

 Smallest Pos. Denorm. 00…00 00…01 2– {23,52} x 2– {126,1022}

 Single ≈ 1.4 x 10–45

 Double ≈ 4.9 x 10–324

 Largest Denormalized 00…00 11…11 (1.0 – ε) x 2– {126,1022}

 Single ≈ 1.18 x 10–38

 Double ≈ 2.2 x 10–308

 Smallest Pos. Normalized 00…01 00…00 1.0 x 2– {126,1022}

 Just larger than largest denormalized

 One 01…11 00…00 1.0

 Largest Normalized 11…10 11…11 (2.0 – ε) x 2{127,1023}

 Single ≈ 3.4 x 1038

 Double ≈ 1.8 x 10308

{single,double}

22

Special Properties of Encoding

 FP Zero Same as Integer Zero
 All bits = 0

 Can (Almost) Use Unsigned Integer Comparison
 Must first compare sign bits

 Must consider −0 = 0

 NaNs problematic

 Will be greater than any other values

 What should comparison yield?

 IEEE rule: any comparison with NaN is false!

 Otherwise OK

 Denorm vs. normalized

 Normalized vs. infinity

23

Today: Floating Point

 Background: Fractional binary numbers

 IEEE floating point standard: Definition

 Example and properties

 Rounding, normalization, addition, multiplication

 Floating point in C

 Summary

24

Floating Point Operations: Basic Idea

 x +f y = Round(x + y)

 x f y = Round(x  y)

 Basic idea
 First compute exact result

 Make it fit into desired precision

 Possibly overflow if exponent too large

 Possibly round to fit into frac

2/4/2015

5

25

Rounding

 Rounding Modes (illustrate with $ rounding)

 $1.40 $1.60 $1.50 $2.50 –$1.50
 Towards zero $1 $1 $1 $2 –$1

 Round down (−) $1 $1 $1 $2 –$2

 Round up (+) $2 $2 $2 $3 –$1

 Nearest Even (default) $1 $2 $2 $2 –$2

 What are the different modes good for?
 Towards zero: compatible with C integer behavior

 Round down/up: maintain conservative intervals

 Nearest even: unbiased, minimal error

26

Closer Look at Round-To-Even

 Default Rounding Mode
 All you get in C without doing something special

 All others are statistically biased

 Sum of set of positive numbers will consistently be over- or under-
estimated

 Applying to Other Decimal Places / Bit Positions
 When exactly halfway between two possible values

 Round so that least significant remaining digit is even

 E.g., round to nearest hundredth

1.2349999 1.23 (Less than half way)

1.2350001 1.24 (Greater than half way)

1.2350000 1.24 (Half way—round up)

1.2450000 1.24 (Half way—round down)

27

Rounding Binary Numbers

 Binary Fractional Numbers
 “Even” when least significant bit is 0

 “Half way” when bits to right of rounding position = 100…2

 Examples
 Round to nearest 1/4 (2 bits right of binary point)

Value Binary Rounded Action Rounded
Value

2 3/32 10.000112 10.002 (<1/2—down) 2

2 3/16 10.001102 10.012 (>1/2—up) 2 1/4

2 7/8 10.111002 11.002 (1/2—up) 3

2 5/8 10.101002 10.102 (1/2—down) 2 1/2

28

Exercise break: FP and money?

 Your sandwich shop uses single-precision floating point
for sales amounts

 Need to apply a Minneapolis sales tax of 7.75%, rounded
up to the nearest cent

 On $4.00 purchase, compute:
 round_up(4.00 * 0.0775 * 100) = 32 cents

 Correct tax is 31 cents

 What went wrong?
 Note: 0.0775 = 31/400 exactly

29

FP and money: what went wrong?

 0.0775 = 31/400 cannot be represented exactly in binary
 400 is not a power of 2

 Actual representation with be like 0.0775 ± ϵ
 For single-precision, closest is 0.0775 + ϵ

 4.00 * (0.775 + ϵ) * 100 = 31 + ϵ

 round_up(31 + ϵ) = 32

 Similar problems can happen with double precision or
other rounding modes
 Real Minnesota law is a more complex rule

 Better choices:
 Store cents or smaller fractions as an integer, or

 Special libraries for decimal arithmetic

30

Normalization Example: int to float

 Steps
 Normalize to have leading 1

 Round to fit within fraction

 Postnormalize to deal with effects of rounding

 Case Study
 Convert 8-bit unsigned numbers to tiny floating point format

Example Numbers

128 10000000

15 00001101

33 00010001

35 00010011

138 10001010

63 00111111

s exp frac

1 4-bits 3-bits

2/4/2015

6

31

Normalize

 Requirement
 Set binary point so that numbers of form 1.xxxxx

 Adjust all to have leading one

 Decrement exponent as shift left

Value Binary Fraction Exponent

128 10000000 1.0000000 7

15 00001101 1.1010000 3

17 00010001 1.0001000 4

19 00010011 1.0011000 4

138 10001010 1.0001010 7

63 00111111 1.1111100 5

s exp frac

1 4-bits 3-bits

32

Rounding

 Round up conditions
 Round = 1, Sticky = 1 ➙ > 0.5

 Guard = 1, Round = 1, Sticky = 0 ➙ Round to even

Value Fraction GRS Incr? Rounded

128 1.0000000 000 N 1.000

15 1.1010000 100 N 1.101

17 1.0001000 010 N 1.000

19 1.0011000 110 Y 1.010

138 1.0001010 011 Y 1.001

63 1.1111100 111 Y 10.000

1.BBGRXXX

Guard bit: LSB of result

Round bit: 1st bit removed
Sticky bit: OR of remaining bits

33

Postnormalize

 Issue
 Rounding may have caused overflow

 Handle by shifting right once & incrementing exponent

Value Rounded Exp Adjusted Result

128 1.000 7 128

15 1.101 3 15

17 1.000 4 16

19 1.010 4 20

138 1.001 7 134

63 10.000 5 1.000/6 64

34

FP Multiplication

 (–1)s1 M1 2E1 x (–1)s2 M2 2E2

 Exact Result: (–1)s M 2E

 Sign s: s1 ^ s2

 Significand M: M1 x M2

 Exponent E: E1 + E2

 Fixing
 If M ≥ 2, shift M right, increment E

 If E out of range, overflow

 Round M to fit frac precision

 Implementation
 Most expensive part is multiplying significands

35

Floating Point Addition

 (–1)s1 M1 2E1 + (-1)s2 M2 2E2

Assume E1 > E2

 Exact Result: (–1)s M 2E

Sign s, significand M:

 Result of signed align & add

Exponent E: E1

 Fixing
If M ≥ 2, shift M right, increment E

if M < 1, shift M left k positions, decrement E by k

Overflow if E out of range

Round M to fit frac precision

(–1)s1 M1

(–1)s2 M2

E1–E2

+

(–1)s M

36

Mathematical Properties of FP Add

 Compare to those of Abelian Group
 Closed under addition?

 But may generate infinity or NaN

 Commutative?

 Associative?

 Overflow and inexactness of rounding

 0 is additive identity?

 Every element has additive inverse

 Except for infinities & NaNs

 Monotonicity
 a ≥ b⇒ a+c ≥ b+c?

 Except for NaNs (can be produced by infinities)

Yes

Yes

Yes

No

Almost

Almost

2/4/2015

7

37

Mathematical Properties of FP Mult

 Compare to Commutative Ring
 Closed under multiplication?

 But may generate infinity or NaN

 Multiplication Commutative?

 Multiplication is Associative?

 Possibility of overflow, inexactness of rounding

 1 is multiplicative identity?

 Multiplication distributes over addition?

 Possibility of overflow, inexactness of rounding

 Monotonicity
 a ≥ b & c ≥ 0 ⇒ a * c ≥ b *c?

 Except for infinities & NaNs

Yes

Yes
No

Yes

No

Almost

38

Today: Floating Point

 Background: Fractional binary numbers

 IEEE floating point standard: Definition

 Example and properties

 Rounding, addition, multiplication

 Floating point in C

 Summary

39

Floating Point in C
 C Has Two Basic Sizes

float single precision

double double precision (less common: long double)

 Conversions/Casting
Casting between int, float, and double changes bit
representation

 double/float → int

 Truncates fractional part

 Like rounding toward zero

 Not defined when out of range or NaN: x86 sets to TMin

 int → double

 Exact conversion, as long as int has ≤ 53 bit word size

 int → float

 Will round according to rounding mode

40

Floating Point Puzzles

 For each of the following C expressions, either:
 Argue that it is true for all argument values

 Explain why not true
• x == (int)(float) x

• x == (int)(double) x

• f == (float)(double) f

• d == (float) d

• f == -(-f);

• 2/3 == 2/3.0

• d < 0.0 ⇒ ((d*2) < 0.0)

• d > f ⇒ -f > -d

• d * d >= 0.0

• (d+f)-d == f

int x = …;

float f = …;

double d = …;

Assume neither
d nor f is NaN

41

Today: Floating Point

 Background: Fractional binary numbers

 IEEE floating point standard: Definition

 Example and properties

 Rounding, addition, multiplication

 Floating point in C

 Summary

42

Summary

 IEEE Floating Point has clear mathematical properties

 Represents numbers of form M x 2E

 One can reason about operations independent of
implementation
 As if computed with perfect precision and then rounded

 Not the same as real arithmetic
 Violates associativity/distributivity

 Makes life difficult for compilers & serious numerical applications
programmers

