CSci 5980/8980
Manual and Automated Binary Reverse Engineering
Day I Introduction and Logistics

Stephen McCamant
University of Minnesota

Outline

Big-Picture Introduction

Binaries

) AKA executables, object code, machine code
) Output of compilation, final form for execution

) Designed for efficiency, not understanding or
modification

Why binaries are inconvenient

£) Fewer or no names (“symbols”), no comments

£) Control flow flattened into gotos

£) Types and structures no longer explicit

£) Source — binary mapping is many-to-one

£) Numeric addresses make instructions hard to move

Why binary analysis is needed

©) Inter-operating with proprietary software

©) Investigating security vulnerabilities

£) Understanding malicious software

©) (Evil) Attacking vulnerable software

) (Evil) Circumventing copy-protection or DRM

What is reverse engineering?

©) In general, artifact — design

£) Binary reverse engineering is figuring things out from
a binary that you would normally figure out from
source code instead

£) Subtasks: recovering any kind of source-like
information from a binary

Inverse operations

£) Source to binary is compilation, binary to source is
decompilation
® Very challenging to do well, but making slow progress
©) Subtask: assembly language to binary is assembly,

binary to assembly language is disassembly
® Core operation is straightforward, but some complications

Manual binary RE.

©) Emphasis for first third of class: human decompilation

£) Read what binary code does, imagine source code
that would do that

£) Recognize patterns in compiler-generated binary
code

£) Understanding code is always ultimately manual




Automating binary RE.

©) Emphasis for second two-thirds of class

©) Towards the ideal of automatic decompilation
©) Understanding challenges and limitations

©) Isolating smaller subtasks

©) Tools that can assist human experts

Some related topics

£) Obfuscation: making binaries that are hard to
reverse engineer

£) Patching: changing the behavior of a binary without
having source

Outline

Course Logistics

Instructor information

£) Stephen McCamant
) Office; 4-225E Keller
£ Office hours: TBA, also by appointment

€) Email: mccamant@cs.umn.edu

Course style

©) Manual phase is a skills class: lecture and demo,
practice with homework

©) Automatic phase is a seminar: read and discuss
research papers

©) A large final project turns your skills and knowledge
to a practical task

Textbooks

£) Reverse Engineering for Beginners, Yurichev (free,
http://beginners.re/)

) Practical Binary Analysis, Andriesse (No Starch
Press)

Evaluation components (5980)

20% Manual RE. homework (longer)
10% Reading questions

10% In-class paper presentation (less)
10% Hands-on demo assignment
50% Final project

Evaluation components (8980)

10% Manual RE. homework (less)

10% Reading questions

20% In-class paper presentations (more)
10% Hands-on demo assignment

50% Final research project




Manual RE. homework

©) Decompilation: given binary, you write the source
® Sometimes with an automatic testing framework
) Code cleanup: given ugly C code, rewrite it to be
understandable
£) Given a binary, find an input that makes it do
something special

Readings

£) Will be linked from the course web page
£) Usually one main paper per class

£) Most either public or UMN-licensed

©) Take notes while reading

£) Bring a copy (to refer to) to class

£) Also: optional and background

Reading questions

©) Goal: make sure you read and understand the
papers

©) Answer one: a general question selected from list on

next slide
©) Ask one: suggest a question for in-class discussion

General questions

£) What interesting new thing did you learn?

£) What question is raised but not answered?

£) Do you disagree with a claim?

£) Is something important left out or ambiguous?
£ In hindsight, what would you do differently?

Submission logistics

©) Email or Canvas?

©) Due the day before
® 9pm? midnight? 3am?

©) Late: 50% credit; after 9:45am: O

In-class presentation

£) Scheduled in advance, more for 8980 students

£) Can also promote an optional or chosen-by-you
relevant paper

£) Prepare 25 minutes of slides, but expect questions

Hands-on demo assignment

£) Experience actually using an existing research tool

©) Done individually

©) Find existing software, and get it to do something
interesting

©) Preparation in advance, short writeup, brief in-class
demo

Final projects

£) Do something new using what you've learned

£) Do in groups of 2-3 students

£) Must have generalizable value, and be legal and
ethical to do and talk publicly about

£) For 8980, should be research; for 5980, can be
more applied




Project results

©) Report: in the format of a conference paper, 6 pages
for 5980, 10 pages for 8980

©) In-class presentation: 10-15 minutes in one of the
last lectures

£) Most 5980 projects should also have an electronic
deliverable

Collaboration and cheating

£) Principle: learn from each other, but don't substitute
another’s understanding for your own

©) Cardinal sin: taking ideas without acknowledgment

Course web site

£) Watch my home page for a site with public
information (including these slides)

©) We'll also use a Canvas page for homework
submissions and grades

Outline

Starting with Compiler Explorer




