
CSci 5980/8980
Manual and Automated Binary Reverse Engineering

Day 1: Introduction and Logistics
Stephen McCamant

University of Minnesota

Outline

Big-Picture Introduction

Course Logistics

Starting with Compiler Explorer

Binaries

AKA executables, object code, machine code

Output of compilation, final form for execution

Designed for efficiency, not understanding or
modification

Why binaries are inconvenient

Fewer or no names (“symbols”), no comments

Control flow flattened into gotos

Types and structures no longer explicit

Source ! binary mapping is many-to-one

Numeric addresses make instructions hard to move

Why binary analysis is needed

Inter-operating with proprietary software

Investigating security vulnerabilities

Understanding malicious software

(Evil) Attacking vulnerable software

(Evil) Circumventing copy-protection or DRM

What is reverse engineering?

In general, artifact ! design

Binary reverse engineering is figuring things out from
a binary that you would normally figure out from
source code instead

Subtasks: recovering any kind of source-like
information from a binary

Inverse operations

Source to binary is compilation, binary to source is
decompilation

Very challenging to do well, but making slow progress

Subtask: assembly language to binary is assembly,
binary to assembly language is disassembly

Core operation is straightforward, but some complications

Manual binary R.E.

Emphasis for first third of class: human decompilation

Read what binary code does, imagine source code
that would do that

Recognize patterns in compiler-generated binary
code

Understanding code is always ultimately manual



Automating binary R.E.

Emphasis for second two-thirds of class

Towards the ideal of automatic decompilation

Understanding challenges and limitations

Isolating smaller subtasks

Tools that can assist human experts

Some related topics

Obfuscation: making binaries that are hard to
reverse engineer

Patching: changing the behavior of a binary without
having source

Outline

Big-Picture Introduction

Course Logistics

Starting with Compiler Explorer

Instructor information

Stephen McCamant

Office: 4-225E Keller

Office hours: TBA, also by appointment

Email: mccamant@cs.umn.edu

Course style

Manual phase is a skills class: lecture and demo,
practice with homework

Automatic phase is a seminar: read and discuss
research papers

A large final project turns your skills and knowledge
to a practical task

Textbooks

Reverse Engineering for Beginners, Yurichev (free,
http://beginners.re/)

Practical Binary Analysis, Andriesse (No Starch
Press)

Evaluation components (5980)

20% Manual R.E. homework (longer)

10% Reading questions

10% In-class paper presentation (less)

10% Hands-on demo assignment

50% Final project

Evaluation components (8980)

10% Manual R.E. homework (less)

10% Reading questions

20% In-class paper presentations (more)

10% Hands-on demo assignment

50% Final research project



Manual R.E. homework

Decompilation: given binary, you write the source
Sometimes with an automatic testing framework

Code cleanup: given ugly C code, rewrite it to be
understandable

Given a binary, find an input that makes it do
something special

Readings

Will be linked from the course web page

Usually one main paper per class

Most either public or UMN-licensed

Take notes while reading

Bring a copy (to refer to) to class

Also: optional and background

Reading questions

Goal: make sure you read and understand the
papers

Answer one: a general question selected from list on
next slide

Ask one: suggest a question for in-class discussion

General questions

What interesting new thing did you learn?

What question is raised but not answered?

Do you disagree with a claim?

Is something important left out or ambiguous?

In hindsight, what would you do differently?

Submission logistics

Email or Canvas?

Due the day before
9pm? midnight? 3am?

Late: 50% credit; after 9:45am: 0

In-class presentation

Scheduled in advance, more for 8980 students

Can also promote an optional or chosen-by-you
relevant paper

Prepare 25 minutes of slides, but expect questions

Hands-on demo assignment

Experience actually using an existing research tool

Done individually

Find existing software, and get it to do something
interesting

Preparation in advance, short writeup, brief in-class
demo

Final projects

Do something new using what you’ve learned

Do in groups of 2-3 students

Must have generalizable value, and be legal and
ethical to do and talk publicly about

For 8980, should be research; for 5980, can be
more applied



Project results

Report: in the format of a conference paper, 6 pages
for 5980, 10 pages for 8980

In-class presentation: 10-15 minutes in one of the
last lectures

Most 5980 projects should also have an electronic
deliverable

Collaboration and cheating

Principle: learn from each other, but don’t substitute
another’s understanding for your own

Cardinal sin: taking ideas without acknowledgment

Course web site

Watch my home page for a site with public
information (including these slides)

We’ll also use a Canvas page for homework
submissions and grades

Outline

Big-Picture Introduction

Course Logistics

Starting with Compiler Explorer


