
High Performance Data Mining ?

Vipin Kumar, Mahesh V. Joshi, Eui-Hong (Sam) Han, Pang-Ning Tan, Michael
Steinbach

University of Minnesota,
4-192 EE/CSci Building,

200 Union Street SE,
Minneapolis, MN 55455, USA,

{kumar,mjoshi,han,ptan,steinbac}@cs.umn.edu

Abstract. Recent times have seen an explosive growth in the availabil-
ity of various kinds of data. It has resulted in an unprecedented oppor-
tunity to develop automated data-driven techniques of extracting useful
knowledge. Data mining, an important step in this process of knowledge
discovery, consists of methods that discover interesting, non-trivial, and
useful patterns hidden in the data [SAD+93, CHY96]. The field of data
mining builds upon the ideas from diverse fields such as machine learning,
pattern recognition, statistics, database systems, and data visualization.
But, techniques developed in these traditional disciplines are often un-
suitable due to some unique characteristics of today’s data-sets, such as
their enormous sizes, high-dimensionality, and heterogeneity. There is a
necessity to develop effective parallel algorithms for various data mining
techniques. However, designing such algorithms is challenging, and the
main focus of the paper is a description of the parallel formulations of
two important data mining algorithms: discovery of association rules,
and induction of decision trees for classification. We also briefly discuss
an application of data mining to the analysis of large data sets collected
by Earth observing satellites that need to be processed to better under-
stand global scale changes in biosphere processes and patterns.

1 Introduction

Recent times have seen an explosive growth in the availability of various kinds
of data. It has resulted in an unprecedented opportunity to develop automated
data-driven techniques of extracting useful knowledge. Data mining, an impor-
tant step in this process of knowledge discovery, consists of methods that discover
interesting, non-trivial, and useful patterns hidden in the data [SAD+93,CHY96].

? This work was supported by NSF CCR-9972519, by NASA grant # NCC 2 1231,
by Army Research Office contract DA/DAAG55-98-1-0441, by the DOE grant
LLNL/DOE B347714, and by Army High Performance Computing Research Center
cooperative agreement number DAAD19-01-2-0014. Access to computing facilities
was provided by AHPCRC and the Minnesota Supercomputer Institute. Related
papers are available via WWW at URL: http://www.cs.umn.edu/˜kumar

The field of data mining builds upon the ideas from diverse fields such as ma-
chine learning, pattern recognition, statistics, database systems, and data vi-
sualization. But, techniques developed in these traditional disciplines are often
unsuitable due to some unique characteristics of today’s data-sets, such as their
enormous sizes, high-dimensionality, and heterogeneity.

To date, the primary driving force behind the research in data mining has
been the development of algorithms for data-sets arising in various business,
information retrieval, and financial applications. Businesses can use data min-
ing to gain significant advantages in today’s competitive global marketplace.
For example, retail industry is using data mining techniques to analyze buying
patterns of customers, mail order business is using them for targeted market-
ing, telecommunication industry is using them for churn prediction and network
alarm analysis, and credit card industry is using them for fraud detection. Also,
recent growth of electronic commerce is generating wealths of online web data,
which needs sophisticated data mining techniques.

Due to the latest technological advances, very large data-sets are becoming
available in many scientific disciplines as well. The rate of production of such
data-sets far outstrips the ability to analyze them manually. For example, a com-
putational simulation running on the state-of-the-art high performance comput-
ers can generate tera-bytes of data within a few hours, whereas human analyst
may take several weeks or longer to analyze and discover useful information from
these data-sets. Data mining techniques hold great promises for developing new
sets of tools that can be used to automatically analyze the massive data-sets
resulting from such simulations, and thus help engineers and scientists unravel
the causal relationships in the underlying mechanisms of the dynamic physical
processes.

The huge size of the available data-sets and their high-dimensionality make
large-scale data mining applications computationally very demanding, to an ex-
tent that high-performance parallel computing is fast becoming an essential com-
ponent of the solution. Moreover, the quality of the data mining results often
depends directly on the amount of computing resources available. In fact, data
mining applications are poised to become the dominant consumers of supercom-
puting in the near future. There is a necessity to develop effective parallel algo-
rithms for various data mining techniques. However, designing such algorithms
is challenging.

In the rest of this chapter, we present an overview of the parallel formula-
tions of two important data mining algorithms: discovery of association rules,
and induction of decision trees for classification. We also briefly discuss an ap-
plication of data mining [HK00,HMS01,GKK+01] to the analysis of large data
sets collected by Earth observing satellites that need to be processed to better
understand global scale changes in biosphere processes and patterns.

2 Parallel Algorithms for Discovering Associations

An important problem in data mining [CHY96] is discovery of associations
present in the data. Such problems arise in the data collected from scientific
experiments, or monitoring of physical systems such as telecommunications net-
works, or from transactions at a supermarket. The problem was formulated orig-
inally in the context of the transaction data at supermarket. This market basket

data, as it is popularly known, consists of transactions made by each customer.
Each transaction contains items bought by the customer (see Table 1). The goal
is to see if occurrence of certain items in a transaction can be used to deduce
occurrence of other items, or in other words, to find associative relationships be-
tween items. If indeed such interesting relationships are found, then they can be
put to various profitable uses such as shelf management, inventory management,
etc. Thus, association rules were born [AIS93b]. Simply put, given a set of items,
association rules predict the occurrence of some other set of items with certain
degree of confidence. The goal is to discover all such interesting rules. This prob-
lem is far from trivial because of the exponential number of ways in which items
can be grouped together and different ways in which one can define interesting-
ness of a rule. Hence, much research effort has been put into formulating efficient
solutions to the problem.

Let T be the set of transactions where each transaction is a subset of the
itemset I. Let C be a subset of I, then we define the support count of C with
respect to T to be:

σ(C) = |{t|t ∈ T,C ⊆ t}|.

Thus σ(C) is the number of transactions that contain C. An association rule is

an expression of the form X
s,α
=⇒ Y , where X ⊆ I and Y ⊆ I. The support s of

the rule X
s,α
=⇒ Y is defined as σ(X ∪ Y)/|T |, and the confidence α is defined as

σ(X ∪ Y)/σ(X). For example, for transactions in Table 1, the support of rule
{Diaper, Milk} =⇒ {Beer} is σ(Diaper,Milk,Beer)/5 = 2/5 = 40%, whereas
its confidence is. σ(Diaper,Milk,Beer)/σ(Diaper,Milk) = 2/3 = 66%.

Table 1. Transactions from supermarket.

TID Items

1 Bread, Coke, Milk
2 Beer, Bread
3 Beer, Coke, Diaper, Milk
4 Beer, Bread, Diaper, Milk
5 Coke, Diaper, Milk

The task of discovering an association rule is to find all rules X
s,α
=⇒ Y ,

such that s is greater than or equal to a given minimum support threshold
and α is greater than or equal to a given minimum confidence threshold. The

association rule discovery is usually done in two phases. First phase finds all
the frequent itemsets; i.e., sets satisfying the support threshold, and then they
are post-processed in the second phase to find the high confidence rules. The
former phase is computationally most expensive, and much research has been
done in developing efficient algorithms for it. A comparative survey of all the
existing techniques is given in [JHKK00]. A key feature of these algorithms lies
in their method of controlling the exponential complexity of the total number
of itemsets (2|I|). Briefly, they all use the anti-monotone property of an itemset
support, which states that an itemset is frequent only if all of its sub-itemsets
are frequent. Apriori algorithm [AS94] pioneered the use of this property to
systematically search the exponential space of itemsets. In an iteration k, it
generates all the candidate k-itemsets (of length k) such that all their (k − 1)-
subsets are frequent. The number of occurrences of these candidates are then
counted in the transaction database, to determine frequent k-itemsets. Efficient
data structures are used to perform fast counting.

Overall, the serial algorithms such as Apriori have been successful on a wide
variety of transaction databases. However, many practical applications of asso-
ciation rules involve huge transaction databases which contain a large number of
distinct items. In such situations, these algorithms running on single-processor
machines may take unacceptably large times. As an example, in the Apriori al-
gorithm, if the number of candidate itemsets becomes too large, then they might
not all fit in the main memory, and multiple database passes would be required
within each iteration, incurring expensive I/O cost. This implies that, even with
the highly effective pruning method of Apriori, the task of finding all association
rules can require a lot of computational and memory resources. This is true of
most of the other serial algorithms as well, and it motivates the development of
parallel formulations.

Various parallel formulations have been developed so far. A comprehensive
survey can be found in [JHKK00,Zak99]. These formulations are designed to
effectively parallelize either or both of the computation phases: candidate gener-
ation and candidate counting. The candidate counting phase can be parallelized
relatively easily by distributing the transaction database, and gathering local
counts for the entire set of candidates stored on all the processors. The CD algo-
rithm [AS96] is an example of this simple approach. It scales linearly with respect
to the number of transactions; however, generation and storage of huge number
of candidates on all the processors becomes a bottleneck, especially when high-
dimensional problems are solved for low support thresholds using large number
of processors . Other parallel formulations, such as IDD [HKK97], have been de-
veloped to solve these problems. Their key feature is to distribute the candidate
itemsets to processors so as to extract the concurrency in candidate generation
as well as counting phases. Various ways are employed in IDD to reduce the
communication overhead, to exploit the total available memory, and to achieve
reasonable load balance. IDD algorithm exhibits better scalability with respect
to the number of candidates. Moreover, reduction of redundant work and ability
to overlap counting computation with communication of transactions, improves

its scalability with respect to number of transactions. However, it still faces prob-
lems when one desires to use large number of processors to solve the problem. As
more processors are used, the number of candidates assigned to each processor
decreases. This has two implications on IDD. First, with fewer number of candi-
dates per processor, it is much more difficult to achieve load balance. Second, it
results in less computation work per transaction at each processor. This reduces
the overall efficiency. Further lack of asynchronous communication ability may
worsen the situation.

Formulations that combine the approaches of replicating and distributing
candidates so as to reduce the problems of each one, have been developed. An
example is the HD algorithm of [HKK97]. Briefly, it works as follows. Con-
sider a P -processor system in which the processors are split into G equal size
groups, each containing P/G processors. In the HD algorithm, we execute the
CD algorithm as if there were only P/G processors. That is, we partition the
transactions of the database into P/G parts each of size N/(P/G), and assign
the task of computing the counts of the candidate set Ck for each subset of the
transactions to each one of these groups of processors. Within each group, these
counts are computed using the IDD algorithm. The HD algorithm inherits all
the good features of the IDD algorithm. It also provides good load balance and
enough computation work by maintaining minimum number of candidates per
processor. At the same time, the amount of data movement in this algorithm is
cut down to 1/G of that of IDD. A detailed parallel runtime analysis of HD is
given in [HKK00]. It shows that HD is scalable with respect to both number of
transactions and number of candidates. The analysis also proves the necessary
conditions under which HD can outperform CD.

Sequential Associations The concept of association rules can be generalized and
made more useful by observing another fact about transactions. All transactions
have a timestamp associated with them; i.e. the time at which the transaction
occurred. If this information can be put to use, one can find relationships such
as if a customer bought [The C Programming Language] book today, then he/she
is likely to buy a [Using Perl] book in a few days time. The usefulness of this kind
of rules gave birth to the problem of discovering sequential patterns or sequen-

tial associations. In general, a sequential pattern is a sequence of item-sets with
various timing constraints imposed on the occurrences of items appearing in the
pattern. For example, (A) (C,B) (D) encodes a relationship that event D occurs
after an event-set (C,B), which in turn occurs after event A. Prediction of events or
identification of sequential rules that characterize different parts of the data, are
some example applications of sequential patterns. Such patterns are not only
important because they represent more powerful and predictive relationships,
but they are also important from the algorithmic point of view. Bringing in the
sequential relationships increases the combinatorial complexity of the problem
enormously. The reason is that, the maximum number of sequences having k
events is O(mk2k−1), where m is the total number of distinct events in the input
data. In contrast, there are only (m

k) size-k item-sets possible while discovering
non-sequential associations from m distinct items. Designing parallel algorithms

for discovering sequential associations is equally important and challenging. In
many situations, the techniques used in parallel algorithms for discovering stan-
dard non-sequential associations can be extended easily. However, different issues
and challenges arise specifically due to the sequential nature and various ways
in which interesting sequential associations can be defined. Details of various
serial and parallel formulations and algorithms for finding such associations can
be found in [JKK99,JHKK00].

3 Parallel Algorithms for Induction of Decision Tree

Classifiers

Classification is an important data mining problem. The input to the problem
is a data-set called the training set, which consists of a number of examples
each having a number of attributes. The attributes are either continuous, when
the attribute values are ordered, or categorical, when the attribute values are
unordered. One of the categorical attributes is called the class label or the clas-

sifying attribute. The objective is to use the training set to build a model of
the class label based on the other attributes such that the model can be used to
classify new data not from the training data-set. Application domains include re-
tail target marketing, fraud detection, and design of telecommunication service
plans. Several classification models like neural networks [Lip87], genetic algo-
rithms [Gol89], and decision trees [Qui93] have been proposed. Decision trees
are probably the most popular since they obtain reasonable accuracy [DMT94]
and they are relatively inexpensive to compute.

Most of the existing induction–based algorithms like C4.5 [Qui93], CDP [AIS93a],
SLIQ [MAR96], and SPRINT [SAM96] use Hunt’s method [Qui93] as the basic
algorithm. Here is its recursive description for constructing a decision tree from
a set T of training cases with classes denoted {C1, C2, . . . , Ck}.

Case 1 T contains cases all belonging to a single class Cj . The decision tree for
T is a leaf identifying class Cj .

Case 2 T contains cases that belong to a mixture of classes. A test is chosen,
based on a single attribute, that has one or more mutually exclusive outcomes
{O1, O2, . . . , On}. Note that in many implementations, n is chosen to be
2 and this leads to a binary decision tree. T is partitioned into subsets
T1, T2, . . . , Tn, where Ti contains all the cases in T that have outcome Oi of
the chosen test. The decision tree for T consists of a decision node identifying
the test, and one branch for each possible outcome. The same tree building
machinery is applied recursively to each subset of training cases.

Case 3 T contains no cases. The decision tree for T is a leaf, but the class to be
associated with the leaf must be determined from information other than T .
For example, C4.5 chooses this to be the most frequent class at the parent
of this node.

Figure 1 shows a training data set with four data attributes and two classes
and its classification decision tree constructed using the Hunt’s method. In the

Outlook Temp(F) Humidity(%) Windy? Class
sunny 75 70 true Play
sunny 80 90 true Don’t Play
sunny 85 85 false Don’t Play
sunny 72 95 false Don’t Play
sunny 69 70 false Play

overcast 72 90 true Play
overcast 83 78 false Play
overcast 64 65 true Play
overcast 81 75 false Play

rain 71 80 true Don’t Play
rain 65 70 true Don’t Play
rain 75 80 false Play
rain 68 80 false Play
rain 70 96 false Play

Play Dont’ Play Dont’ Play Play

Windy

sunny
overcast

rain

<= 75 > 75 true false

Play

Outlook

Humidity

Fig. 1. A small training data set [Qui93] and its final classification decision tree.

case 2 of Hunt’s method, a test based on a single attribute is chosen for expanding
the current node. The choice of an attribute is normally based on the entropy
gains [Qui93] of the attributes. The entropy of an attribute, calculated from
class distribution information, depicts the classification power of the attribute
by itself. The best attribute is selected as a test for the node expansion.

Highly parallel algorithms for constructing classification decision trees are
desirable for dealing with large data sets in reasonable amount of time. Classi-
fication decision tree construction algorithms have natural concurrency, as once
a node is generated, all of its children in the classification tree can be generated
concurrently. Furthermore, the computation for generating successors of a classi-
fication tree node can also be decomposed by performing data decomposition on
the training data. Nevertheless, parallelization of the algorithms for construction
the classification tree is challenging for the following reasons. First, the shape of
the tree is highly irregular and is determined only at runtime. Furthermore, the
amount of work associated with each node also varies, and is data dependent.
Hence any static allocation scheme is likely to suffer from major load imbalance.
Second, even though the successors of a node can be processed concurrently,
they all use the training data associated with the parent node. If this data is
dynamically partitioned and allocated to different processors that perform com-
putation for different nodes, then there is a high cost for data movements. If the
data is not partitioned appropriately, then performance can be bad due to the
loss of locality.

Several parallel formulations of classification decision tree have been pro-
posed recently [Pea94,GAR96,SAM96,CDG+97,Kuf97,JKK98,SHKS99]. In this
section, we present two basic parallel formulations for the classification decision
tree construction and a hybrid scheme that combines good features of both of
these approaches described in [SHKS99]. Most of other parallel algorithms are
similar in nature to these two basic algorithms, and their characteristics can be
explained using these two basic algorithms. For these parallel formulations, we
focus our presentation for discrete attributes only. The handling of continuous
attributes is discussed separately. In all parallel formulations, we assume that N

training cases are randomly distributed to P processors initially such that each
processor has N/P cases.

Synchronous Tree Construction Approach In this approach, all processors con-
struct a decision tree synchronously by sending and receiving class distribution
information of local data. Figure 2 (a) shows the overall picture. The root node
has already been expanded and the current node is the leftmost child of the root
(as shown in the top part of the figure). All the four processors cooperate to
expand this node to have two child nodes. Next, the leftmost node of these child
nodes is selected as the current node (in the bottom of the figure) and all four
processors again cooperate to expand the node.

(a) Synchronous Tree Construction (b) Partitioned Tree Construction

�� �� ���� ����

Proc 0

Proc 0 Proc 1 Proc 2 Proc 3

Proc 1 Proc 2 Proc 3

Class Distribution Information

Class Distribution Information

Proc 0 Proc 1 Proc 2 Proc 3

Proc 0 Proc 1 Proc 2 Proc 3

Data Item

Data Item

Proc 0 Proc 1 Proc 3Proc 2

Fig. 2. Synchronous Tree Construction Approach and Partitioned Tree Construction
Approach

Partitioned Tree Construction Approach In this approach, whenever feasible,
different processors work on different parts of the classification tree. In particular,
if more than one processors cooperate to expand a node, then these processors
are partitioned to expand the successors of this node. Figure 2 (b) shows an
example. First (at the top of the figure), all four processors cooperate to expand
the root node just like they do in the synchronous tree construction approach.
Next (in the middle of the figure), the set of four processors is partitioned in
three parts. The leftmost child is assigned to processors 0 and 1, while the
other nodes are assigned to processors 2 and 3, respectively. Now these sets of
processors proceed independently to expand these assigned nodes. In particular,
processors 2 and processor 3 proceed to expand their part of the tree using the

serial algorithm. The group containing processors 0 and 1 splits the leftmost
child node into three nodes. These three new nodes are partitioned in two parts
(shown in the bottom of the figure); the leftmost node is assigned to processor
0, while the other two are assigned to processor 1. From now on, processors 0
and 1 also independently work on their respective subtrees.

Partition 1 Partition 2

Computation Frontier at depth 3

Synchronous Tree

Construction Approach

Partitioned Tree

Construction Approach

Fig. 3. Hybrid Tree Construction Approach

Hybrid Parallel Formulation The hybrid parallel formulation has elements of
both schemes. The Synchronous Tree Construction Approach incurs high com-
munication overhead as the frontier gets larger. The Partitioned Tree Construc-

tion Approach incurs cost of load balancing after each step. The hybrid scheme
keeps continuing with the first approach as long as the communication cost in-
curred by the first formulation is not too high. Once this cost becomes high,
the processors as well as the current frontier of the classification tree are parti-
tioned into two parts. Figure 3 shows one example of this parallel formulation.
At the classification tree frontier at depth 3, no partitioning has been done and
all processors are working cooperatively on each node of the frontier. At the next
frontier at depth 4, partitioning is triggered, and the nodes and processors are
partitioned into two partitions.

A key element of the algorithm is the criterion that triggers the partitioning
of the current set of processors (and the corresponding frontier of the classifi-
cation tree). If partitioning is done too frequently, then the hybrid scheme will
approximate the partitioned tree construction approach, and thus will incur too
much data movement cost. If the partitioning is done too late, then it will suffer
from high cost for communicating statistics generated for each node of the fron-
tier, like the synchronized tree construction approach. In the hybrid algorithm,
the splitting is performed when the accumulated cost of communication becomes
equal to the cost of moving records and load balancing in the splitting phase.

The size and shape of the classification tree varies a lot depending on the
application domain and training data set. Some classification trees might be
shallow and the others might be deep. Some classification trees could be skinny
others could be bushy. Some classification trees might be uniform in depth while

other trees might be skewed in one part of the tree. The hybrid approach adapts
well to all types of classification trees. If the decision tree is skinny, the hybrid
approach will just stay with the Synchronous Tree Construction Approach. On
the other hand, it will shift to the Partitioned Tree Construction Approach as
soon as the tree becomes bushy. If the tree has a big variance in depth, the
hybrid approach will perform dynamic load balancing with processor groups to
reduce processor idling.

Handling Continuous Attributes The approaches described above concentrated
primarily on how the tree is constructed in parallel with respect to the issues
of load balancing and reducing communication overhead. The discussion was
simplified by the assumption of absence of continuous-valued attributes. Pres-
ence of continuous attributes can be handled in two ways. One is to perform
intelligent discretization, either once in the beginning or at each node as the
tree is being induced, and treat them as categorical attributes. Another, more
popular approach is to use decisions of the form A < x and A ≥ x, directly
on the values x of continuous attribute A. The decision value of x needs to be
determined at each node. For efficient search of x, most algorithms require the
attributes to be sorted on values, such that one linear scan can be done over
all the values to evaluate the best decision. Among various different algorithms,
the approach taken by SPRINT algorithm[SAM96], which sorts each continuous
attribute only once in the beginning, is proven to be efficient for large datasets.
The sorted order is maintained throughout the induction process, thus avoiding
the possibly excessive costs of re-sorting at each node. A separate list is kept for
each of the attributes, in which the record identifier is associated with each sorted
value. The key step in handling continuous attributes is the proper assignment
of records to the children node after a splitting decision is made. Implementation
of this offers the design challenge. SPRINT builds a mapping between a record
identifier and the node to which it goes to based on the splitting decision. The
mapping is implemented as a hash table and is probed to split the attribute lists
in a consistent manner.

Parallel formulation of the SPRINT algorithm falls under the category of
synchronous tree construction design. The multiple sorted lists of continuous
attributes are split in parallel by building the entire hash table on all the proces-
sors. However, with this simple-minded way of achieving a consistent split, the
algorithm incurs a communication overhead of O(N) per processor. Since, the se-
rial runtime of the induction process is O(N), SPRINT becomes unscalable with
respect to runtime. It is unscalable in memory requirements also, because the to-
tal memory requirement per processor is O(N), as the size of the hash table is of
the same order as the size of the training dataset for the upper levels of the deci-
sion tree, and it resides on every processor. Another parallel algorithm, ScalParC
[JKK98], solves this scalability problem. It employs a distributed hash table to
achieve a consistent split. The communication structure, used to construct and
access this hash table, is motivated by the parallel sparse matrix-vector multipli-
cation algorithms. It is shown in [JKK98] that with the proper implementation
of the parallel hashing, the overall communication overhead does not exceed

O(N), and the memory required does not exceed O(N/p) per processor. Thus,
ScalParC is scalable in runtime as well as memory requirements.

4 Example Application: Data Mining for Earth Science

Data

Data mining techniques have recently been used to find interesting spatio-temporal
patterns from Earth Science data. This data consists of time series measurements
for various Earth science and climate variables (e.g. soil moisture, temperature,
and precipitation), along with additional data from existing ecosystem models
(e.g., Net Primary Production). See figures 4 and 5. The ecological patterns of
interest include associations, clusters, predictive models, and trends.

Fig. 4. Land and sea temperature.

To find association patterns we transformed these time series into transac-
tions and then applied existing algorithms traditionally used for market-basket
data. We found that association rules can uncover interesting patterns for Earth
Scientists to investigate. For example, we found that high temperature was well
correlated with high plant growth in the forest and cropland regions in the north-
ern hemisphere. However, significant challenges for association analysis arise due
to the spatio-temporal nature of the data and the need to incorporate domain
knowledge to prune out uninteresting patterns. For further detail on this work,
see [TSK+01].

SST

Precipitation

NPP

Pressure

SST

Precipitation

NPP

Pressure

Longitude

Latitude

Time
grid cell zone

.
.
.

Fig. 5. Illustration of Earth Science Data.

To predict the effect of the oceans on land climate, Earth Scientists have
developed ocean climate indices (OCIs), which are time series that summarize
the behavior of selected areas of the Earth’s oceans. For example, the Southern
Oscillation Index (SOI) is an OCI that is associated with El Nino. In the past,
Earth scientists have used observation and, more recently, eigenvalue analysis
techniques, such as principal components analysis (PCA) and singular value de-
composition (SVD), to discover ocean climate indices. However, these techniques
are only useful for finding a few of the strongest signals and, furthermore, im-
pose a condition that all discovered signals must be orthogonal to each other.
We have developed an alternative methodology for the discovery of OCIs that
overcomes these limitations and is based on clusters that represent ocean regions
with relatively homogeneous behavior [STK+01]. The centroids of these clusters
are time series that summarize the behavior of these ocean areas. We divide the
cluster centroids into several categories: those that correspond to known OCIs,
those that are variants of known OCIs, and those that represent potentially new
OCIs. The centroids that correspond to known OCIs provide a validation of our
methodology, while some variants of known OCIs may provide better predictive
power for some land areas. Also, we have shown that, in some sense, our cur-
rent cluster centroids are relatively complete, i.e., capture most of the possible
candidate OCIs. For further details, the reader is referred to [STK+01].

A number of aspects of Earth Science data and the previously described
analyses require the use of high-performance computing. First, satellites are pro-
viding measurements of finer granularity. For instance, a 1◦ by 1◦ grid produces
64,800 data points, while a 0.1◦ by 0.1◦ grid produces 6,480,000 data points. Sec-
ond, more frequent measurements, e.g., daily measurements, multiply monthly
data by a factor of 30. Also, looking at weather instead of climate requires finer
resolution to enable the detection of fast changing patterns, e.g., the movement
of fronts

Our current clustering analysis, while effective, requires O(n2) comparisons
since it needs to evaluate the correlation of every ocean point with every land
point. Furthermore, association rule algorithms can also be very compute inten-
sive. Indeed, the computational complexity of these algorithms is potentially very
much greater than O(n2). Finally, the amount of memory required for cluster-

ing and association rule algorithms can exceed the 4GB provided by traditional
sequential servers.

5 Conclusion

This paper presented an overview of parallel algorithms for two of the commonly
used data mining techniques: classification and associations. Key issues such as
load balancing, attention to locality, extracting maximal concurrency, avoiding
hot spots in contention, and minimizing parallelization overhead are just as
central to these parallel formulations as they are to the traditional scientific
parallel algorithms. In fact, in many cases, the underlying kernels are identical
to well known algorithms, such as sparse matrix-vector product.

To date, the parallel formulations of many decision-tree induction and asso-
ciation rule discovery algorithms are reasonably well-understood. Relatively less
work has been done on the parallel algorithms for other data mining techniques
such as clustering, rule-based classification algorithms, deviation detection, and
regression. Some possible areas of further research include parallelization of many
emerging new and improved serial data mining algorithms, further analysis and
refinements of existing algorithms for scalability and efficiency, designs targeted
for shared memory and distributed shared memory machines equipped with sym-
metric multiprocessors, and efficient integration of parallel algorithms with par-
allel database systems.

High-performance data mining algorithms and tools are needed for mining
large-scale data sets that arise in a variety of applications. This paper presented
a possible application, i.e., large data sets collected by Earth observing satellites
that need to be processed to better understand global scale changes in biosphere
processes and patterns. Other examples of important applications of data mining
include understanding gene functions in the field of genomics, the categorization
of stars and galaxies in the field of astrophysics, and using data obtained through
monitoring network traffic to detect illegal network activities. The key technical
challenges in mining these data sets include (i) high volume, dimensionality and
heterogeneity; (ii) the spatio-temporal aspects of the data; (iii) possibly skewed
class distributions; (iv) the distributed nature of the data; (v) the complexity
in converting raw collected data into high level features. High performance data
mining is essential to analyze the growing data and provide analysts with auto-
mated tools that facilitate some of the steps needed for hypothesis generation
and evaluation.

References

[AIS93a] R. Agrawal, T. Imielinski, and A. Swami. Database mining: A performance
perspective. IEEE Transactions on Knowledge and Data Eng., 5(6):914–
925, December 1993.

[AIS93b] R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between
sets of items in large databases. In Proc. of 1993 ACM-SIGMOD Int. Conf.
on Management of Data, Washington, D.C., 1993.

[AS94] R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In
Proc. of the 20th VLDB Conference, pages 487–499, Santiago, Chile, 1994.

[AS96] R. Agrawal and J.C. Shafer. Parallel mining of association rules. IEEE
Transactions on Knowledge and Data Eng., 8(6):962–969, December 1996.

[CDG+97] J. Chattratichat, J. Darlington, M. Ghanem, Y. Guo, H. Huning, M. Kohler,
J. Sutiwaraphun, H.W. To, and D. Yang. Large scale data mining: Chal-
lenges and responses. In Proc. of the Third Int’l Conference on Knowledge
Discovery and Data Mining, 1997.

[CHY96] M.S. Chen, J. Han, and P.S. Yu. Data mining: An overview from database
perspective. IEEE Transactions on Knowledge and Data Eng., 8(6):866–
883, December 1996.

[DMT94] D.J. Spiegelhalter D. Michie and C.C. Taylor. Machine Learning, Neural
and Statistical Classification. Ellis Horwood, 1994.

[GAR96] S. Goil, S. Aluru, and S. Ranka. Concatenated parallelism: A technique for
efficient parallel divide and conquer. In Proc. of the Symposium of Parallel
and Distributed Computing (SPDP’96), 1996.

[GKK+01] R. Grossman, C. Kamath, P. Kegelmeyer, V. Kumar, and R. Namburu.
Data Mining for Scientific and Engineering Applications. Kluwer Academic
Publishers, 2001.

[Gol89] D. E. Goldberg. Genetic Algorithms in Search, Optimizations and Machine
Learning. Morgan-Kaufman, 1989.

[HK00] J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan-
Kaufman, 2000.

[HKK97] E.-H. Han, G. Karypis, and V. Kumar. Scalable parallel data mining for as-
sociation rules. In Proc. of 1997 ACM-SIGMOD Int. Conf. on Management
of Data, Tucson, Arizona, 1997.

[HKK00] E.H. Han, G. Karypis, and V. Kumar. Scalable parallel data mining for
association rules. IEEE Transactions on Knowledge and Data Eng., 12(3),
May/June 2000.

[HMS01] D. Hand, H. Mannila, and P. Smyth. Principles of Data Mining. MIT Press,
2001.

[JHKK00] M. V. Joshi, E.-H. Han, G. Karypis, and V. Kumar. Efficient parallel
algorithms for mining associations. In M. J. Zaki and C.-T. Ho, editors,
Lecture Notes in Computer Science: Lecture Notes in Artificial Intelligence
(LNCS/LNAI), volume 1759. Springer-Verlag, 2000.

[JKK98] M. V. Joshi, G. Karypis, and V. Kumar. ScalParC: A new scalable and
efficient parallel classification algorithm for mining large datasets. In Proc.
of the International Parallel Processing Symposium, 1998.

[JKK99] M. V. Joshi, G. Karypis, and V. Kumar. Universal formulation of sequential
patterns. Technical Report TR 99-021, Department of Computer Science,
University of Minnesota, Minneapolis, 1999.

[Kuf97] R. Kufrin. Decision trees on parallel processors. In J. Geller, H. Kitano,
and C.B. Suttner, editors, Parallel Processing for Artificial Intelligence 3.
Elsevier Science, 1997.

[Lip87] R. Lippmann. An introduction to computing with neural nets. IEEE ASSP
Magazine, 4(22), April 1987.

[MAR96] M. Mehta, R. Agrawal, and J. Rissanen. SLIQ: A fast scalable classifier for
data mining. In Proc. of the Fifth Int’l Conference on Extending Database
Technology, Avignon, France, 1996.

[Pea94] R.A. Pearson. A coarse grained parallel induction heuristic. In H. Kitano,
V. Kumar, and C.B. Suttner, editors, Parallel Processing for Artificial In-
telligence 2, pages 207–226. Elsevier Science, 1994.

[Qui93] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,
San Mateo, CA, 1993.

[SAD+93] M. Stonebraker, R. Agrawal, U. Dayal, E. J. Neuhold, and A. Reuter. DBMS
research at a crossroads: The vienna update. In Proc. of the 19th VLDB
Conference, pages 688–692, Dublin, Ireland, 1993.

[SAM96] J. Shafer, R. Agrawal, and M. Mehta. SPRINT: A scalable parallel classifier
for data mining. In Proc. of the 22nd VLDB Conference, 1996.

[SHKS99] A. Srivastava, E.-H. Han, V. Kumar, and V. Singh. Parallel formulations
of decision-tree classification algorithms. Data Mining and Knowledge Dis-
covery: An International Journal, 3(3):237–261, September 1999.

[STK+01] M. Steinbach, P. Tan, V. Kumar, S. Klooster, and C. Potter. Tempo-
ral data mining for the discovery and analysis of ocean climate indices.
In KDD Workshop on Temporal Data Mining(KDD’2002), Edmonton, Al-
berta, Canada, 2001.

[TSK+01] P. Tan, M. Steinbach, V. Kumar, S. Klooster, C. Potter, and A. Torregrosa.
Finding spatio-temporal patterns in earth science data. In KDD Workshop
on Temporal Data Mining(KDD’2001), San Francisco, California, 2001.

[Zak99] M. J. Zaki. Parallel and distributed association mining: A survey. IEEE
Concurrency (Special Issue on Data Mining), December 1999.

