
A New Shared Nearest Neighbor Clustering Algorithm and its Applications
Levent Ertöz, Michael Steinbach, Vipin Kumar

{ertoz, steinbac, kumar}@cs.umn.edu
University of Minnesota

Abstract

Clustering depends critically on density and distance (similarity), but these concepts become
increasingly more difficult to define as dimensionality increases. In this paper we offer
definitions of density and similarity that work well for high dimensional data (actually, for data
of any dimensionality). In particular, we use a similarity measure that is based on the number of
neighbors that two points share, and define the density of a point as the sum of the similarities of
a point’s nearest neighbors. We then present a new clustering algorithm that is based on these
ideas. This algorithm eliminates noise (low density points) and builds clusters by associating
non-noise points with representative or core points (high density points). This approach handles
many problems that traditionally plague clustering algorithms, e.g., finding clusters in the
presence of noise and outliers and finding clusters in data that has clusters of different shapes,
sizes, and density. We have used our clustering algorithm on a variety of high and low
dimensional data sets with good results, but in this paper, we present only a couple of examples
involving high dimensional data sets: word clustering and time series derived from NASA Earth
science data.

1 Introduction

Cluster analysis tries to divide a set of data points into useful or meaningful groups, and has long
been used in a wide variety of fields: psychology and other social sciences, biology, statistics,
pattern recognition, information retrieval, machine learning, and data mining. Cluster analysis is
a challenging task and there are a number of well-known issues associated with it, e.g., finding
clusters in data where there are clusters of different shapes, sizes, and density or where the data
has lots of noise and outliers. These issues become more important in the context of high
dimensionality data sets.

For high dimensional data, traditional clustering techniques have sometimes been used. For
example, the K-means algorithm and agglomerative hierarchical clustering techniques [DJ88],
have been used extensively for clustering document data. While K-means is efficient and often
produces “reasonable” results, in high dimensions, K-means still retains all of its low
dimensional limitations, i.e., it has difficulty with outliers and does not do a good job when the
clusters in the data are of different sizes, shapes, and densities. Agglomerative hierarchical
clustering schemes, which are often thought to be superior to K-means for low-dimensional data,
also have problems. For example, the single link approaches are very vulnerable to noise and
differences in density. While group average or complete link are not as vulnerable to noise, they
have trouble with differing densities and, unlike single link, cannot handle clusters of different
shapes and sizes.

Part of the problems with hierarchical clustering approaches arise because of problems with
distance in high dimensional space. It is well-known that Euclidean distance does not work well

 1

in high dimensions, and typically, clustering algorithms use distance or similarity measures that
work better for high dimensional data e.g., the cosine measure. However, even the use of
similarity measures such as the cosine measure does not eliminate all problems with similarity.
Specifically, points in high dimensional space often have low similarities and thus, points in
different clusters can be closer than points in the same clusters. To illustrate, in several TREC
datasets (which have class labels) that we investigated [SKK00], we found that 15-20% of a
points nearest neighbors were of a different class. Our approach to similarity in high dimensions
first uses a k nearest neighbor list computed using the original similarity measure, but then
defines a new similarity measure which is based on the number of nearest neighbors shared by
two points.

For low to medium dimensional data, density based algorithms such as DBSCAN [EKSX96],
CLIQUE [AGGR98], MAFIA [GHC99], and DENCLUE [HK98] have shown to find clusters of
different sizes and shapes, although not of different densities. However, in high dimensions, the
notion of density is perhaps even more troublesome than that of distance. In particular, the
traditional Euclidean notion of density, the number of points per unit volume, becomes
meaningless in high dimensions. In what follows, we will define the density at a data point as
the sum of the similarities of a point’s nearest neighbors. In some ways, this approach is similar
to the probability density approach taken by nearest neighbor multivariate density estimation
schemes, which are based on the idea that points in regions of high probability density tend to
have a lot of close neighbors.

While “better” notions of distance and density are key ideas in our clustering algorithm, we will
also employ some additional concepts which were embodied in three recently proposed
clustering algorithms, i.e., CURE [GRS98], Chameleon [KHK99], and DBSCAN. Although, the
approaches of these algorithms do not extend easily to high dimensional data, they algorithms
outperform traditional clustering algorithms on low dimensional data, and have useful ideas to
offer. In particular, DBSCAN and CURE have the idea of “representative” or “core” points, and,
although our definition is somewhat different from both, growing clusters from representative
points is a key part of our approach. Chameleon relies on a graph based approach and the notion
that only some of the links between points are useful for forming clustering; we also take a graph
viewpoint and eliminate weak links. All three approaches emphasize the importance of dealing
with noise and outliers in an effective manner, and noise elimination is another key step in our
algorithm.

To give a quick preview, our clustering approach first redefines the similarity between points by
looking at the number of nearest neighbors that points share [JP73]. Using this similarity
measure, we then define the notion of density based on the sum of the similarities of a point’s
nearest neighbors. Points with high density become our representative or core points, while
points with low density represent noise or outliers and are eliminated. We then find our clusters
by finding all groups of points that are strongly similar to representative points.

Any new clustering algorithm must be evaluated with respect to its performance on various data
sets, and we present a couple of examples. For the first example, we find clusters in NASA
Earth science data, i.e., pressure time series. For this data, our shared nearest neighbor (SNN)
approach has found clusters that correspond to well-known climate phenomena, and thus we

 2

have confidence that the clusters we found are “good.” Using these clusters as a baseline, we
show that the clusters found by Jarvis-Patrick clustering [JP73], an earlier SNN clustering
approach, and K-means clustering are not as “good.” For the second example, we cluster
document terms, showing that our clustering algorithm produces highly coherent sets of terms.
We also show that a cluster consisting of a single word can be quite meaningful.

The basic outline of this paper is as follows. Section 2 describes the challenges of clustering high
dimensional data: the definition of density and similarity measures, and the problem of finding
non-globular clusters. Section 3 describes previous clustering work using the shared nearest
neighbor approach, while Section 4 introduces our new clustering algorithm. Section 5 presents a
couple of examples: the first example Section finds clusters in NASA Earth science data, i.e.,
pressure time series, while the second example describes the results of clustering document
terms.

2 Challenges of Clustering High Dimensional Data

The ideal input for a clustering algorithm is a dataset, without noise, that has a known number of
equal size, equal density, globular. When the data deviates from these properties, it poses
different problems for different types of algorithms. While these problems are important for
high dimensional data, we also need to be aware of problems which are not necessarily important
in two dimensions, such as the difficulties associated with density and measures of similarity and
distance. In this section, we take a look at these two problems and also consider the importance
of representative points for handling non-globular clusters.

2.1 Behavior of similarity and distance measures in high dimensions

The most common distance metric used in low dimensional datasets is Euclidean distance, or the
L2 norm. While Euclidean distance is useful in low dimensions, it doesn’t work as well in high
dimensions. Consider the pair of ten-dimensional data points, 1 and 2, shown below, which have
binary attributes.

Point Att1 Att2 Att3 Att4 Att5 Att6 Att7 Att8 Att9 Att10
1 1 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0 0 0 1

If we calculate the Euclidean distance between these two points, we get √2. Now, consider the
next pair of ten-dimensional points, 3 and 4.

Point Att1 Att2 Att3 Att4 Att5 Att6 Att7 Att8 Att9 Att10
3 1 1 1 1 1 1 1 1 1 0
4 0 1 1 1 1 1 1 1 1 1

If we calculate the distance between point 3 and 4, we again find out that it’s √2. Notice that
points 1 and 2 do not share any common attributes, while points 3 and 4 are almost identical.
Clearly Euclidean distance does not capture the similarity of points with binary attributes. The
problem with Euclidean distance is that missing attributes are as important as the present

 3

attributes. However, in high dimensions, the presence of an attribute is a lot more important
than the absence of an attribute, provided that most of the data points are sparse vectors (not
full), and in high dimensions, it is often the case that the data points will be sparse vectors, i.e.
they will only have a handful of non-zero attributes (binary or otherwise).

Different measures, such as the cosine measure and Jaccard coefficient, have been suggested to
address this problem. The cosine similarity between two data points is equal to the dot product
of the two vectors divided by the individual norms of the vectors. (If the vectors are already
normalized the cosine similarity simply becomes the dot product of the vectors.) The Jaccard
coefficient between two points is equal to the number of intersecting attributes divided by the
number of spanned attributes by the two vectors (if attributes are binary). There is also an
extension of Jacquards coefficient to handle non-binary attributes. If we calculate the cosine
similarity or Jaccard coefficient between data points 1 and 2, and 3 and 4, we’ll see that the
similarity between 1 and 2 is equal to zero, but is almost 1 between 3 and 4.

Nonetheless, even though we can clearly see that both of these measures give more importance
to the presence of a term than to its absence, there are cases where using such similarity
measures still does not eliminate all problems with similarity in high dimensions. We
investigated several TREC datasets (which have class labels), and found out that 15-20% of the
time, for a data point A, its most similar data point (according to the cosine measure) is of a
different class. This problem is also illustrated in [GRS99] using a synthetic market basket
dataset.

Note that this problem is not due to the lack of a good similarity measure. Instead, the problem
is that direct similarity in high dimensions cannot be trusted when the similarity between pairs of
points are low. In general, data in high dimensions is sparse and the similarity between data
points, on the average, is very low.

Another very important problem with similarity measures in high dimensions is that, the triangle
inequality doesn’t hold. Here’s an example:

Point Att1 Att2 Att3 Att4 Att5 Att6 Att7 Att8 Att9 Att10
A 1 1 1 1 1 0 0 0 0 0
B 0 0 1 1 1 1 1 1 0 0
C 0 0 0 0 0 1 1 1 1 1

Point A is close to point B, point B is close to point C, and yet, the points A and C are infinitely
far apart. The similarity between A and B and C and B comes from different sets of attributes.

2.2 Dealing with Non-globular Clusters using Representative Points

Non-globular cluster cannot be handled by centroid-based schemes, since, by definition, such
clusters are not represented by their centroid. Single link methods are most suitable for capturing
clusters with non-globular shapes, but these methods are very brittle and cannot handle noise
properly. However, representative points are a good way of finding clusters that are not

 4

characterized by their centroid and have been used in several recent clustering algorithms, e.g.,
CURE and DBSCAN.

In CURE, the concept of representative points is used to find non-globular clusters. The use of
representative points allows CURE to find many types of non-globular clusters. However, there
are still many types of globular shapes that CURE cannot handle. This is due to the way the
CURE algorithm finds representative points, i.e., it finds points along the boundary, and then
shrinks those points towards the center of the cluster.

The notion of a representative point is also used in DBSCAN, although the term “core point” is
used. In DBSCAN, the density associated with a point is obtained by counting the number of
points in a region of specified radius around the point. Points with a density above a specified
threshold are classified as core points, while noise points are defined as non-core points that
don’t have a core points within the specified radius. Noise points are discarded, while clusters
are formed around the core points. If two core points are neighbors of each other, then their
clusters are joined. Non-noise, non-border points, which are called boundary points, are
assigned to the clusters associated with any core point within their radius. Thus, core points
form the skeleton of the clusters, while border points flesh out this skeleton.

While DBSCAN can find clusters of arbitrary shapes, it cannot handle data containing clusters of
differing densities, since its density based definition of core points cannot identify the core
points of varying density clusters. Consider Figure 1. If the user defines the neighborhood of a
point by a certain radius and looks for core points that have a pre-defined number of points
within that radius, then either the tight left cluster will be picked up as one cluster and the rest
will be marked as noise, or else every point will belong to one cluster.

neighborhood
of a point

Figure 1. Density Based Neighborhoods

2.1.1 Density in High Dimensional Space

In high dimensional datasets, the traditional Euclidean notion of density, which is the number of
points per unit volume, is meaningless. To see this, consider that as the number of dimensions
increases, the volume increases rapidly, and unless the number of points grows exponentially
with the number of dimensions, the density tends to 0. Thus, in high dimensions, it is not

 5

possible to use a (traditional) density based method such as DBSCAN which identifies core
points as points in high density regions and noise points as points in low density regions.

However, there is another notion of density that does not have the same problem, i.e., the notion
of the probability density of a point. In the k-nearest neighbor approach to multivariate density
estimation [DHS01], if a point that has a lot of close near neighbors, then it is probably in a
region which has a relatively high probability density. Thus, when we look at the nearest
neighbors of a point, points with a large number of close (highly similar) neighbors are in more
“dense” regions than are points with distant (weakly similar) neighbors.

In practice, we take the sum of the similarities of a points nearest neighbors as a measure of this
density. The higher this density, the more likely it is that a point is a core or representative
points. The lower the density, the more likely, the point is a noise point or an outlier.

3. Shared Nearest Neighbor Based Algorithm

An alternative to a direct similarity is to define the similarity between a pair of points in terms of
their shared nearest neighbors. That is, the similarity between two points is “confirmed” by their
common (shared) near neighbors. If point A is close to point B and if they are both close to a set
of points C then we can say that A and B are close with greater confidence since their similarity
is “confirmed” by the points in set C. This idea of shared nearest neighbor was first introduced
by Jarvis and Patrick [JP73]. A similar idea was later presented in ROCK [GRS99].

In the Jarvis – Patrick scheme, a shared nearest neighbor graph is constructed from the proximity
matrix as follows. A link is created between a pair of points p and q if and only if p and q have
each other in their closest k nearest neighbor lists. This process is called k-nearest neighbor
sparsification. The weights of the links between two points in the snn graph can either be simply
the number of near neighbors the two points share, or one can use a weighted version that takes
the ordering of the near neighbors into account. Let i and j be two points. The strength of the
link between i and j is now defined as:

() () () nm jinkmkjistr =−+−+=∑ where,1*1,
In the equation above, k is the near neighbor list size, m and n are the positions of a shared near
neighbor in i and j’s lists. At this point, all edges with weights less than a user specified
threshold are removed and all the connected components in the resulting graph are our final
clusters [JP73].

Figures 2 and 3 illustrate two key properties of the shared nearest neighbor graph in the context
of a 2-D point data set. In Figure 2, links to 5 most similar neighbors are drawn for each point.
In Figure 3 shows unweighted shared nearest neighbor graph. In the graph, there is a link
between points A and B, only if A and B had each other in their near neighbor lists.

 6

Figure 2. Near Neighbor Graph

Figure 3. Unweighted Shared Near Neighbor
Graph

There are two important issues to note in this 2-D point set example.

First, noise points and outliers end up having most of their links broken if not all. The
point on the lower right corner ended up losing its entire links, because it wasn’t in the
nearest neighbor lists of its own near neighbors. By just looking at the number of
surviving links after constructing the snn graph, we can get rid of considerable amount of
noise.

Second, shared nearest neighbor graph is “density” independent, i.e. it will keep the links
in uniform regions and break the ones in the transition regions. This is an important
property, since widely varying tightness of clusters is one of the harder problems for
clustering.

A major drawback of the Jarvis – Patrick scheme is that, the threshold needs to be set
high enough since two distinct set of points can be merged into same cluster even if there
is only one link across them. On the other hand, if the threshold is too high, then a natural
cluster may be split into too many small clusters due to natural variations in the similarity
within the cluster. As a matter of fact, there may be no right threshold for some data sets.
This problem is illustrated in the following example that contains clusters of points
sampled from Gaussian distributions of two different means and variance.

In Figure 4, there are two Gaussian samples. (Note that these clusters cannot be correctly
separated by k-means due to the different sizes and densities of the samples). Figure 5
shows clusters obtained by Jarvis – Patrick method using the smallest possible threshold
(any threshold smaller than this puts all points in the same cluster). Even this smallest
possible threshold breaks the data into many different clusters. In Figure 5, different
clusters are represented with different shapes and colors, where the discarded points /
background points are shown as tiny squares. We can see that, even with a better
similarity measure, it is hard to obtain the two apparent clusters.

 7

Figure 4. Gaussian Dataset

Figure 5. Connected Components - JP
Clustering

4. Shared Nearest Neighbor based Clustering Algorithm using Representative
Points and Noise Removal

In Section 3 we showed how Jarvis – Patrick method would fail on the gaussian dataset
where transition between regions is relatively smooth. In this section, we present an
algorithm that builds on Jarvis – Patrick method, and addresses the problems discussed in
section 2. This algorithm uses a density based approach to find core / representative
points. However, this approach will be based on the notion of density introduced in
Section 2.3, which is based on the idea of probability density. However, since we will be
using similarity based on a shared nearest neighbor approach, which automatically
compensates for different densities (see Section 3), this density approach will not be
subject to the same problem illustrated in Figure 1.

4.1 Noise Removal and Detection of Representative Points

Figures 6-9 illustrate how we can find representative points and effectively remove noise
using the snn graph. In this 2D point dataset, there are 8000 points. A near neighbor list
size of 20 is used. Figure 7 shows all the points that have 15 or more links remaining in
the snn graph. In Figure 8, all points have 10-14 links surviving and Figure 9 shows the
remaining points. As we can see in these figures, the points that have high connectivity
in the snn graph are candidates for representative / core points since they tend to be
located well inside the natural cluster, and the points that have low connectivity are
candidates for noise points and outliers as they are mostly in the regions surrounding the
clusters. Note that all the links in the snn graph are counted to get the number of links
that a point has, regardless of the strength of the links. An alternative way of finding
representative points is to consider only the strong links in the count. Similarly we can
find the representative points and noise points by looking at the sum of link strengths for
every point in the snn graph. The points that have high total link strength then become
candidates for representative points, while the points that have very low total link
strength become candidates for noise points.

 8

Figure 6. Initial Set of Points

Figure 8. High Connectivity Points

Figure 7. Medium Connectivity Points

Figure 9. Low Connectivity Points

4.2 The Algorithm

1. Construct the similarity matrix.
2. Sparsify the similarity matrix using k-nn sparsification.
3. Construct the shared nearest neighbor graph from k-nn sparsified similarity matrix.
4. For every point in the graph, calculate the total strength of links coming out of the

point. (Steps 1-4 are identical to the Jarvis – Patrick scheme.)
5. Identify representative points by choosing the points that have high total link strength.
6. Identify noise points by choosing the points that have low total link strength and

remove them.
7. Remove all links that have weight smaller than a threshold.
8. Take connected components of points to form clusters, where every point in a cluster

is either a representative point or is connected to a representative point.

The number of clusters is not given to the algorithm as a parameter. Depending on the
nature of the data, the algorithm finds “natural” clusters. Also note that not all the points
are clustered using out algorithm. Depending on the application, we might actually want
to discard many of the points.

Figure 10 shows the clusters obtained from the Gaussian dataset shown in Figure 4 using
the method described here. We can see that by using noise removal and the

 9

representative points, we can obtain the two clusters shown below. The points that do not
belong to any of the two clusters can be brought in by assigning them to the cluster that
has the closest core point.

Figure 10. SNN Clustering

5 Applications of SNN clustering

5.1 Earth Science Data

In this section, we consider an application of our SNN clustering technique to Earth
science data. In particular, our data consists of monthly measurements of sea level
pressure for grid points on a 2.5° longitude-latitude grid (144 horizontal divisions by 72
vertical divisions) from 1950 to 1994, i.e., each time series is a 540 dimensional vector.
These time series were preprocessed to remove seasonal variation. For a more complete
description of this data and the clustering analysis that we have performed on it, please
see [Ste+01] and [Ste+02].

Briefly, Earth scientists are interested in discovering areas of the ocean, whose behavior
correlates well to climate events on the Earth’s land surface. In terms of pressure, Earth
scientists have discovered that the difference in pressure between two points on the
Earth’s surface often yields a time series that correlates well with certain weather
phenomena on the land. Such time series are called Ocean Climate Indices (OCIs). For
example, the Southern Oscillation Index (SOI) measures the sea level pressure (SLP)
anomalies between Darwin, Australia and Tahiti and is associated with El Nino, the
anomalous warming of the eastern tropical region of the Pacific that has been linked to
climate phenomena such as droughts in Australia and heavy rainfall along the Eastern
coast of South America [Tay98]. Our goal in clustering SLP is to see if the difference of
cluster centroids can yield a time series that reproduces known OCIs and to perhaps
discover new indices.

 10

longitude

la
tit

ud
e

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

0

-30

-60

-90

1 2
4 5

6

7

8 9

10

11 12 13 14

15

longitude

la
tit

ud
e

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

0

-30

-60

-90

1

2
4 5

6

7

8 9

10

11 12 13 14

15

28 JP Clusters of SLP (1950-1994)

longitude

la
tit

ud
e

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

90

60

30

0

-30

-60

-90

5

23

22

21

20 19
18

15

14 13 12 11

10
9 8

7

5 4
2

1

-60

-30

0

30

60

90

180 150 120 90 60 -60 -90 -120-15080 -1
-90

longitude 30
6

0 -30

31 K-means Clusters of SLP (1950-1994)
17 16

3

Figure 12. JP clustering with optimal parameters Figure 11. SNN clustering

latit
ude

23 SNN Clusters of SLP (1950-1994)
90

60

30

3

16 17

18

19
20

21

22

23

45 JP Clusters of SLP (1950-1994)
90

60

30

3
16 17

18

19
20

21

22

23

Figure 14. K-means cluster after discarding
“loose” clusters.

Figure 13. JP clustering with sub-optimal
parameters

Our SNN clustering approach yielded the clusters shown in Figure 11. These clusters
have been labeled (cluster “1” is the background or “junk” cluster) for easy reference.
(Note that we cluster pressure over the entire globe, but here we focus on the ocean.)
While we cluster the time series independently of any spatial information, the resulting
clusters are typically geographically contiguous, probably because of the underlying
spatial autocorrelation of the data.

Using these clusters, we have been able to reproduce SOI as the difference of the
centroids of clusters 13 and 10. We have also been able to reproduce another well-known
OCI, i.e., NAO, which is the Normalized SLP differences between Ponta Delgada,
Azores and Stykkisholmur, Iceland. NAO corresponds to the differences of the centroids
of clusters 16 and 19. For more details, see [Ste+02]. This success gives us confidence
that the clusters discovered by SNN have real physical significance.

However, it is reasonable to ask whether other clustering techniques could also discover
these clusters. To answer that question, we clustered the same data using the Jarvis-

 11

Patrick technique and K-means. The best results for JP clustering are shown in Figure
12, while Figure 13 shows the results for a less optimal parameter choice for JP
clustering. Note that the colors have no meaning except to distinguish the different
clusters and are not coordinated between any of the different figures. The cluster labels
of Figure 11 have been carried forward to Figure 12 to allow for easier comparison. The
JP and SNN clustering approaches find roughly the same set of clusters. However, the JP
approach tends to break the SNN clusters into a number of smaller clusters. Also, it took
a considerable amount of fiddling with the JP parameters to get this figure, while the
current implementation of our algorithm produced these clusters on the first try.

For K-means, we attempted to find roughly the same number of clusters.
However, since K-means naturally clusters all the data, we generated 100 clusters and
then threw out all but the 30 most cohesive clusters (as measured by their average cluster
correlation). Still, the clusters shown in Figure 13 are not a very good match for clusters
of Figure 11, although they do show the same pattern of clusters around the poles and
along the equator. Note that cluster 19, which is key to reproducing the NAO index, is
missing from the K-means clusters that we kept. Interestingly, one of the discarded K-
means clusters did correlate highly with cluster 19 (corr = 0.95), but it was the least
cohesive cluster with respect to average cluster correlation, and thus, the last cluster that
we would have considered interesting from a K-means viewpoint.

5.2 Word Clustering

One interesting application comes from the text domain. Much work has been done in
document clustering, but relatively little on term clustering. Term clustering (clustering
of words) is technically exactly same as document clustering; instead of clustering the
rows in the document – term matrix, the columns are clustered. Term clustering can be
very useful when trying to identify topics in a given corpus. If we look at the task of
clustering words, we will immediately find out that most of the words are generic words
that wouldn’t give us any clue about the different themes in a given corpus. It is very
useful to be able to cluster the words that could give us hints about the different themes.
Therefore, we would need to use a clustering algorithm that can handle a serious amount
of noise in the data.

On a popular search engine, the query “Beatles” was issued and the words in the resulting 661
snippets were clustered using out algorithm. Note that each snipped contained only one or two lines
of text, since we did not download the actual documents. The vocabulary of this snippet set was
approximately 1500 words. Every row in

Table 1 represents a cluster obtained from “Beatles” query. Note that the words are in
their stemmed form. The snippets can be found at
www.cs.umn.edu/~ertoz/word_clusters/.

Here are the highlights of the results. Most of the words in each cluster make sense and
seem to belong together. Even the smalles size clusters (e.g., singletons and size two
clusters) are meaningful. For example, there was a “pictures” theme in the snippets
represented by cluster #2. Similarly, cluster #1 (beatles), and cluster #8 (rock’n roll)
make sense. Since these clusters are obtained in the web context, Cluster 3, which talks

 12

about "related files" makes sense. The ability to find small but meaningful clusters is a
unique feature of our algorithm. To the best of our knowledge, there is no clustering
algorithm that can attach meaning to a singleton cluster or to very small clusters. Note
that not all the singletons are clusters. Singleton clusters consist of a word that is a
representative point. We can say that the word "pictures" is chosen to be a representative
word since there was a coherent neighborhood around it. If we take a look at some of the
remaining clusters, cluster #4 contains the members of the band; John Lennon, Paul Mc
Cartney, George Harrison and (Ringo) Starr, while cluster #13 contains different albums
by the band; Sgt. Pepper's Lonely Hearts Club Band, Hard Day's Night, Magical Mystery
Tour, Yellow Submarine, Revolver and White (Album). "Abbey Road", which is another
album by the band is in cluster #9.

Table 1. Word Clusters from "beatles" query

1 beatl
2 pictur
3 relat file
4 georg harrison john paul mccartnei lennon starr
5 histori art artist
6 net sale result card postcard
7 fan includ comput perform guid robert
8 rock roll
9 abbei road
10 month event daili januari eight week forget
11 valu christma martin produc
12 trivia jukebox quiz
13 band club dai night tour hard white magic mysteri bbc revolv sgt pepper yellow

submarin lone heart

6 Conclusion

In this paper we have introduced a new clustering algorithm which combines a number of
ideas to overcome many of the challenges traditionally plague clustering algorithms, e.g.,
finding clusters in the presence of noise and outliers and finding clusters in data that has
clusters of different shapes, sizes, and density. In addition, our clustering approach
works well for high dimensional data, where the concepts of distance and density are
often ill-defined. To overcome the problems with distance in high dimensionality, we
use a distance measure which is based on the number of neighbors that two points share.
To handle problems with density, we define the density of a point as the sum of the
similarities of a point’s nearest neighbors.

The key aspects of our clustering algorithm, besides its use of more effective notions of
density and distance, are that it eliminates noise (low density points) and builds clusters
by associating non-noise points with representative or core points (high density points).
The use of representative points allows us to find arbitrarily shaped clusters, while our

 13

ability to handle noise and outliers make our clustering algorithm tolerant of poor data
quality.

Two examples were given that illustrated the performance of our algorithm on real data:
documents and NASA Earth science data consisting of time series. In the latter case, we
also compared our approach to the Jarvis-Patrick approach and to K-means. While JP
clustering produced comparable results, it was hard to parameterize, and in other cases
we have observed, impossible to parameterize to yield good clusters.

References
[AGGR98] Rakesh Agrawal, Johannes Gehrke, Dimitrios Gunopoulos, and Prabhakar

Raghavan, (1998), Automatic Subspace Clustering of High Dimensional
Data for Data Mining Applications, Technical Report, IBM Almaden
Research Center.

[DHS01] Richard Duda, Peter Hart, and David Stork, (2001), Pattern Classification,
Wiley-Interscience.

[EKSX96] Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu, (1996), A
Density-Based Algorithm for Discovering Clusters in Large Spatial
Databases with Noise, Proceedings of 2nd International Conference on
Knowledge Discovery and Data Mining, Portland, OR, pp. 226-231.

[GHC99] Sanjay Goil, Harasha Nagesh, and Alok Choudhary, (1999), MAFIA:
Efficient and Scalable Subspace Clustering for Very Large Data Sets,
Technical Report Number CPDC-TR-9906-019, Center for Parallel and
Distributed Computing, Northwestern University, June 1999.

[GK78] K. C. Gowda and G. Krishna, (1978), “Agglomerative Clustering Using the
Concept of Mutual Nearest Neighborhood”, Pattern Recognition, Vol. 10, pp.
105-112.

[GRS98] Sudipto Guha, Rajeev Rastogi, Kyuseok Shim, (1998), CURE: An Efficient

Clustering Algorithm for Large Databases, ACM SIGMOD Conference,
1998, pp. 73-84.

[GRS99] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim, (1998), ROCK: A Robust
Clustering Algorithm for Categorical Attributes, In Proceedings of the 15th
International Conference on Data Engineering, 1999.

[HK98] Alexander Hinneburg Daniel. A. Keim and: An Efficient Approach to
Clustering in Large Multimedia Databases with Noise, Proceedings of the
4th International Conference on Knowledge Discovery and Data Mining,
AAAI Press.

 14

[JP73] R. A. Jarvis and E. A. Patrick, “Clustering Using a Similarity Measure Based
on Shared Nearest Neighbors,” IEEE Transactions on Computers, Vol. C-22,
No. 11, November, 1973.

[KHK99] George Karypis, Eui-Hong Han, and Vipin Kumar, (1999) CHAMELEON: A

Hierarchical Clustering Algorithm Using Dynamic Modeling, IEEE
Computer, Vol. 32, No. 8, August, 1999. pp. 68-75.

[SKK00] Michael Steinbach, George Karypis, and Vipin Kumar, “A Comparison of
Document Clustering Algorithms,” KDD-2000 Text Mining Workshop,
2000.

[Ste+01] M. Steinbach, P. N. Tan, V. Kumar, C. Potter, S. Klooster, A. Torregrosa,
“Clustering Earth Science Data: Goals, Issues and Results”, In Proc. of the
Fourth KDD Workshop on Mining Scientific Datasets (2001).

[Ste+02] M. Steinbach, P. N. Tan, V. Kumar, C. Potter, S. Klooster, “Data Mining for
the Discovery of Ocean Climate Indices”, Submitted to Workshop on
Mining Scientific Datasets, Second SIAM International Conference on Data
Mining (2002).

 [Tay98] G. H. Taylor, “Impacts of the El Niño/Southern Oscillation on the Pacific
Northwest” (1998)

 http://www.ocs.orst.edu/reports/enso_pnw.html

 15

	A New Shared Nearest Neighbor Clustering Algorithm and its Applications
	Abstract
	Introduction
	Challenges of Clustering High Dimensional Data
	Behavior of similarity and distance measures in high dimensions
	Density in High Dimensional Space
	4.1 Noise Removal and Detection of Representative Points

	Applications of SNN clustering
	
	5.2 Word Clustering

	Conclusion

