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Abstract

This paper explores a novel framework for building
regression models using association rules. The model
consists of an ordered set of IF-THEN rules, where
the rule consequent is the predicted value of the target
attribute. The approach consist of two steps: (1)
extraction of association rules, and (2) construction of
the rule-based regression model. We propose a pruning
scheme for redundant and insignificant rules in the
rule extraction step, and also a number of heuristics
for building regression models. This approach allows
discovery of global patterns, offers resistance to noise,
while building relatively simple models. We perform a
comparative study on the performance of RBA against
CART and Cubist using 21 real-world data sets. Our
experimental results suggest that RBA outperforms
Cubist and are equally as good as CART in many data
sets, and more importantly, there are situations where
RBA is significantly better than CART, especially when
the number of noise dimensions in the data is large.

Keywords
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1 Introduction

Recent years have witnessed increasing interest in ap-
plying association rules [4] to a variety of data mining
tasks such as classification [17], clustering [24, 12, 25],
and anomaly detection [14]. For instance, techniques
such as CBA [17, 18] and CMAR [16] have been de-
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veloped to incorporate association rules into the con-
struction of rule-based classifiers. Such techniques have
been empirically shown to outperform tree-based algo-
rithms such as C4.5 [21] and rule-based algorithms such
as Ripper [7] using various benchmark data sets.

[ Technique [ Classification [ Regression ]
Tree-based C4.5, OC1, etc. CART, RT, etc.
Rule-based Ripper, CN2, etc. Cubist
Association-based CBA, CMAR, etc. ?

Table 1: Descriptive techniques for predictive modeling.

Regression is another data mining task that can po-
tentially benefit from association rules. Regression can
be viewed as a more general form of predictive mod-
elling, where the target variable has continuous values.
Currently, there is a wide spectrum of techniques for
building regression models from linear to more com-
plex, non-linear techniques such as regression trees, rule-
based regression, and artificial neural networks.

Tree-based and rule-based techniques are desirable
as they produce descriptive models that can help ana-
lysts to better understand the underlying structure and
relationships in data. Table 1 presents a taxonomy of
descriptive techniques used for classification and regres-
sion. Another class of techniques that can produce de-
scriptive models are based on association rules. These
techniques are useful as they can efficiently search the
entire input space to identify a set of candidate rules for
model building. This differs from the approach taken by
many tree-based or rule-based techniques, which must
grow a tree branch or rule from scratch in a greedy fash-
ion, without the hindsight of knowing whether it will
turn out to be a good subtree or rule. Moreover, since
the association rules must satisfy certain support cri-
terion and are evaluated over all the instances, models
built from these rules are less susceptible to noise.

Table 1 also highlights an important class of
techniques still missing from the taxonomy, namely,
association-based techniques for regression. In this pa-
per, we present a general framework, Regression Based
on Association (RBA), for building regression models
using association rules. The model consists of a collec-



tion of IF-THEN rules, where the rule consequent con-
tains the predicted value of the target variable. The
proposed techniques include single-rule (1-RBA) and
multi-rule (weighted k-RBA) schemes. In the single rule
scheme, each test example is predicted using a single
association rule whereas in the multi-rule scheme pre-
diction is a weighted sum of several association rules.

To illustrate the advantages of RBA, consider the
synthetic data set shown in Figure 1. This data set is an
example of the well-known, XOR-type problems, where
the target variable depends on the input attributes x
and y in the following manner:
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CUBIST results:
Read 8 cases (3 attributes) from xor.data

Model: Rule 1: [8 cases, mean 0.54, range 0.1 to 1, est err 0.40]
target = 0.54

Evaluation on training data (8 cases):
Average |error|
Relative [error| 1.00
Correlation coefficient  0.00

Figure 1: An illustrative example: the XOR data set

Figure 1 shows the results obtained using Cubist
[20], a rule-based algorithm. As can be seen, Cubist
fails to induce meaningful rules and predicts everything
to be the mean value of the training examples. This
can be attributed to the greedy nature of the algorithm,
attempting to grow a rule by choosing the current best
attribute at each stage. Since none of the attributes
provide a better prediction than the overall mean,
Cubist is not able to grow a rule. Similarly, given the
limited number of training examples, CART produces
a decision stump, i.e., a tree with a single node, that
encodes the mean value of the training examples.

The single-rule RBA scheme generates association
rules from the input data and then selects the best
representative set of rules for building the regression
model. The rules generated for the above example are:

x=0 y=1 — p=0.85, 0=0.07, support=0.25

x=1 y=1 — p=0.15, 0=0.07, support=0.25

x=0 y=0 — p=0.3, o= 0.14, support=0.25
default: ;4=0.85, 0=0.55

The above rules, including the default, specify
exactly the four regions shown in Equation 1.1. Unlike
the greedy strategy employed by CART and Cubist,
RBA uses an exhaustive search to identify rules covering
regions in the input space where the number of data
points is sufficiently large and the target variable has low
variance. A low variance rule ensures that its prediction
has relatively small expected error.

There are several issues that need to be addressed
in order to successfully incorporate association rules
into the regression problem. First, standard association
rule formulation assumes that the data is binary in
nature. Yet, many real-life data sets contain continuous
as well as categorical input attributes. This problem can
be addressed by discretizing the continuous attributes
and replacing each discrete interval or categorical value
with a distinct binary attribute!. While MDL-based
discretization [10] has been found to be very effective
in classification, such a method becomes applicable to
regression by mapping the continuous values of the
target to the closest bin only for the discretization part.

The second issue is that the right hand side of a
regular association rule is a class label, not a continuous
value. To address this, we apply the quantitative
association rule definition proposed by Aumann et al.
[5], which captures the descriptive statistics (e.g., mean
or variance) of the target variable in the region covered
by an association rule. For example, the following
quantitative association rule

Age € [31,45)A Status = Married — Income: mean = 80K.
suggests that the average income of a married person,
whose age is between 21 and 45, is 80K. The descriptive
statistics investigated in this study include measures
of central tendency (mean and median), measures of
dispersion (variance and mean absolute deviation), and
measures of significance (support).

Finally, choosing the appropriate set of rules for
building a regression model is non-trivial. There is
often a tradeoff between the model complexity and
accuracy. Here, the rules are added incrementally as
long as the prediction of the overall model is improved.
This approach is very similar to the sequential covering
approach used by many rule-based classifiers [7].

The major contributions of this paper are summa-
rized below:

o We present a general framework for building regres-
sion models using association rules. The proposed
framework offers the ability to search the entire
input space efficiently to identify a promising set

TThis approach is similar to the one used by classification based

on association rules (CBA) methods [17]



of candidate rules, while offering robustness in the
presence of noise.

o We extensively compare the performance of RBA
against two leading rule-based regression algo-
rithms (CART and Cubist) using 21 real-world
data sets. Experimental results suggest that RBA
outperforms Cubist and performs as good as CART
in majority of these data sets, provided that dis-
cretization is not an issue. More importantly, we
were able to determine the characteristics of the
data sets for which RBA is significantly better than
CART, e.g., when the number of noise dimensions
in the data is large.

The remainder of this paper is organized as follows.
Section 2 presents the related work in this area while
Section 3 describes the problem formulation. The vari-
ous components of the RBA framework are discussed in
Section 4. Section 5 provides the experimental results,
and, finally, Section 6 presents the conclusions.

2 Related Work

Various techniques have been developed for building
regression models from data. These techniques often
have solid mathematical foundations, optimizing certain
loss functions. While the produced models can achieve
very high accuracy, they are not descriptive enough
to be easily interpreted by human analysts, with the
exception of rule and tree-based models. A tree-
based model, such as CART [6] partitions the input
space into smaller, rectangular regions, and assigns the
average of the target attribute as predicted value to each
region. Another technique, Cubist [20], uses a rules-
based approach for partitioning the input space, fitting
a linear regression model to each of the regions.

Association rule mining from numeric data has been
investigated in many studies [23, 22, 15, 11, 5]. The
rules discovered for such data sets are often known as
quantitative association rules. However, most of the
work in this area is concerned with integrating continu-
ous attributes into the rule antecedent [23, 11, 15, 22],
while the rule consequent contains only categorical or
discretized numeric attribute(s). With this approach,
conventional definitions of support and confidence mea-
sures are still applicable. As previously noted, such rules
are not directly applicable to regression.

Aumann et al. [5] proposed a quantitative associa-
tion rule formulation where the rule consequent is the
arithmetic mean of the continuous target variable for all
instances covered by the rule. For evaluation purposes,
they consider a rule to be interesting if its mean signifi-
cantly differs from the mean for the rest of the popula-
tion, where the significance tests were performed using

Z-test. The authors have also noted that the rule con-
sequent can contain other statistical information such
as the variance or median of the target variable. The
quantitative association rules used in the RBA frame-
work are based on this formulation. We are specifically
interested in the description of rule consequents that
include either mean, variance and support, or median,
mean absolute deviation and support. We also applied
a modified statistical test to determine the significance
of a rule (Section 4).

Morishita et al. [19] describe a formulation where
the input data may be discrete, but each transaction is
associated with a numeric attribute. In this case the
goal is to find itemsets that are highly correlated with
the numeric factor. They proposed an interestingness
measure, “interclass variance”, and showed that it
possesses certain monotonicity property that can be
incorporated directly into the mining algorithm.

Discretization is another important step in the
RBA framework. A robust supervised discretization
strategy for classification problems was developed by
Fayyad et al. in [10]. The method was based on the
entropy of class distribution in each discretized interval,
and the number of intervals is controlled by using
the Minimum Description Length Principle (MDL).
Experiments have shown that such a discretization
strategy is more tolerant to noise, and outperforms
unsupervised discretization schemes [10, 9]. We apply
the MDL-based discretization in the RBA framework,
with two enhancements, which try to avoid infrequent
bins after the discretization, and a loss of an attribute
due to “no-split” decision.

Another related work to the proposed approach in-
tegrates association rules into classification problems
[17, 18]. In fact, our regression framework generalizes
the Classification Based on Association (CBA) [17], fo-
cusing on the classification problem, which is in gen-
eral easier than regression. The implementation of main
components (discretization, rule extraction, and build-
ing the model) are significantly different since we are
dealing with continuous-valued target variables. The
proposed weighted k-RBA scheme is based on the idea
of using multiple association rules for prediction, ini-
tially used by Li et al. [16] in classification using asso-
ciations (instead of an unordered evaluation scheme we
use an ordered multi-rule approach, and also our multi-
rule weighting schemes are fundamentally different).

3 Preliminaries

Let D = {(x;,y:)[i =1,2,--- , N} be a data set with N
instances. Each instance consists of a tuple (x, y), where
x is the set of input attributes and y is the real-valued
target variable. Regression is the task of finding a target



function from x to y, such that § = f(x) provides a good
estimate of the target variable for any given x. The
discrepancy between the estimated and actual value of
y can be measured in terms of their mean squared error
(MSE) or mean absolute error (MAE).

1 N
MAE = =3 fui - £
i=1

N

(3.2) MSE = > o = 10x)?

The input vector x contains binary, categorical, or
continuous attributes. RBA transforms the categor-
ical and continuous attributes into binary attributes
through discretization and binarization of attribute val-
ues. Let I = {iy,i2, - ,iq} denote the new set of at-
tributes in binary form. Following the terminology used
in association rule literature, a binary attribute is called
an item while any subset of I is known as an itemset.
Additionally, the number of data points containing the

itemset A is denoted as o(A).

A quantitative association rule is an implication
expression in the form A — (m,d,S), where m is a
measure of central tendency (mean [i, or median m),

d is a measure of dispersion (variance 62, or mean

absolute deviation ¢), and S is a measure of significance
(support s). These measures are computed based on
the statistical distribution of instances covered by the
rule. Specifically,

o= ZieA Yi 52 — Zies(yi - ﬂ)2
Al [Al-1 7

A 1
m = median;c 4(y;), and ¢ = m Z ly; —m.
i€EA

Using the definition given in [5], the support of a
quantitative association rule is the fraction of instances
that satisfy antecedent of the rule, i.e., s(4) = %.
Support also has an anti-monotone property: s(AUC) <
s(C) for all A, C' C I. An association rule is considered
to be frequent if its support exceeds a user-specified
minimum support threshold. Depending on the choice
of the loss function, different statistics may be used
to describe the rule consequent. For instance, if the
objective is to minimize MSE, then it makes sense to
include the mean value of the target variables [ in
the rule consequent [8]. On the other hand, if the
objective is to minimize MAE, the best estimate of
central tendency is given by the sample median.

The regression model constructed by the RBA
framework consists of an ordered list of association
rules (r1,72,---,7,). These rules partition the input
space into homogeneous, rectangular regions, assigning
a predicted value to each region (based on the mean

or median of the rule consequent). The regions can be
overlapping or disjoint depending on the method used
for constructing the model (Section 4). If R, is the
effective region? of an association rule r, then the model
constructed by RBA can be represented as:
(3.3) f(x):Zwi X pr; X I[x € Ry,],

i=1
where w; is a weight factor for rule r; and I[] is an
indicator function, whose value is 1 when its argument
is true and 0 otherwise.
4 Framework for Regression based
Association Rules (RBA)

Figure 2 illustrates the general framework of the regres-
sion based on association rules (RBA) scheme. There
are four major components in this framework: (1) dis-
cretization, (2) association rule generation, (3) regres-
sion model building, and (4) model testing.

on

RBA

Discretization
7| Module
continuous attributes V

Data i 7| Association
r| Rule I Q —
Generation

Model
Building

a

discrete attributes

target attribute I

Testing

Figure 2: General RBA framework

The discretization step is needed to partition the
numeric features of the data set (except for the target
variable) into discrete intervals. Each discrete interval
and categorical attribute value is then mapped into
a binary variable. This step is needed to ensure
that existing algorithms such as Apriori [4] or FP-
tree [13] can be applied to generate frequent itemsets.
Next, each extracted frequent itemset is converted into
a rule by computing the descriptive statistics (e.g.,
mean, variance, or median) of the target variable for
all training instances covered by the itemset. A rule
pruning step is then applied to systematically eliminate
rules that are redundant or statistically insignificant.
During model building, a subset of the extracted rules
will be selected for constructing the regression model.
The induced model is then applied to predict the target
value of test instances.

2A region that excludes the subspace covered by other, higher
precedent rules.

of rules



4.1 Discretization We apply the MDL-based super-
vised discretization method [10] to continuous target
variables. This method was originally developed for
classification problems, where the range of each con-
tinuous input attribute is successively partitioned into
smaller discrete intervals until each interval contains in-
stances with relatively homogeneous classes, i.e., their
overall entropy is low.

In our approach, the continuous target variable is
divided into equally spaced k bins, that are consec-
utively labelled from 1 to k, where k is specified by
the user. Then, discretization of the continuous input
attributes is performed according to the new class la-
belling of the target variable (note that this mapping is
preformed only in this section to aid the discretization
of input attributes). One potential limitation of this
approach is that the entropy measure used in MDL-
based discretization scheme will not differentiate be-
tween splits containing instances of classes with varying
distance from each other (e.g. instances within classes
1, 2, and 3 are closer, while the instances within classes
1, 25, and 50 are farther apart. However, those two
cases are penalized equally using the entropy measure.)

We add two constraints to the discretization algo-
rithm: minimum support for each bin, and default equal
width split (when MDL-based discretization decides not
to partition the input variable).

4.2 Rule Generation Next, we apply a standard
frequent itemset generation algorithm (Apriori [4]) to
the discretized data set. Each frequent itemset is turned
into a rule by computing the needed statistics for the
itemset, as described in Section 3. For example, the
rule could be of the form zy..x; — (ji1, 62, support) or
Th..T] — (m,é,support), where i is the mean of the
target attribute, 62 is the variance, r is the median,
and ¢ is the mean absolute error.
Two pruning strategies are applied to eliminate
rules that are redundant or statistically insignificant.
e Redundancy Test: Let r : A — puj,0} and
7 A" — p,0% be two association rules. If
A" C A, then 7' is said to be a generalization (or
ancestor) of r while r is said to be a specialization
(or descendent) of r'. A rule r is redundant if
there exists a generalization of the rule, r’, that
produces a lower variance. For example, suppose
r: ABC — pu1 = 0.1,0'% = 0.4 and r’: AC —
w2 = 0.2,02 = 0.25 are two association rules. In this
case, r is redundant since it has a generalization (r')
that produces a lower variance (0.25 versus 0.4).

If the rules are specified using median and mean ab-
solute error, we can perform a similar redundancy

Procedure RruleGen(D: set of training instances,
mins: minimum support)
1. Let I be the set of frequent 1-itemsets
2. For each item i € F}
create the rule (i — p, o) or (i — m,9)
3. for(k=2;F_1 #0;k=k+1)

4. Cr=apriori-gen(Fy_1);
5. For each candidate ¢ € Ck,

compute its mean, variance, and support;
6. Let F), = {c|c € Ck, support(c) > minsup};
7. Prune itemsets in Fj, according to

the redundancy and significance tests;
8. endfor
9. return Vk Fy;

Figure 3: Rule Generation Procedure

test by comparing its mean absolute error to the
minimum absolute error of its ancestor rules.

e Significance Test: Let r : A — puy,01 be
an association rule. We call 7 : A — L2, 02
the complement of r since 7 covers only those
instances that do not satisfy the conditions given
by the antecedent of r. In [5], the authors perform
a Z-test to compare the mean values of a rule r
against its complement, 7. The null hypothesis to
be tested is p1 = po. If the similarity is statistically
significant, then r is pruned. Although such a
pruning strategy may be useful from a descriptive
data mining perspective, it may not be useful from
a predictive perspective. For example, suppose r
and 7 have the same mean but the variance for r is
much lower than the variance for 7. This suggests
that r may still be a useful rule for prediction.
In the RBA framework, the rule is kept, if the
difference is statistically significant. Otherwise, we
compare the variance of r against its complement 7.
If r has a larger variance, then the rule is pruned.

Using the pruning strategies described above, we
are left with (1) rules that are more precise than
their ancestors and (2) rules that have very different
characteristics (mean or median) or lower variance (or
mean absolute error) than those describing the rest of
the population. The pseudocode for the rule generation
step is shown in Figure 3.

4.3 Building a Regression Model Building a re-
gression model requires selection of a smaller, represen-
tative set of rules that provides an accurate represen-
tation of the training data. More specifically, rules are



selected to minimize a certain loss function 3.2. RBA
applies several variations of the sequential covering al-
gorithm to generate a regression model. The basic idea
of this algorithm is to choose the best remaining rule
available in a greedy fashion, add the rule to the model,
and then remove instances covered by the rule.

In order to do this, we must first sort the extracted
rules according to certain objective criteria. Given a
pair of rules, say, r; and ro, let r; > 7o denote that
r1 has higher precedence than ry. Naturally, a good
rule must have sufficiently high support, i.e. it should
cover a large portion of the data, to avoid overfitting.
In addition, a good rule must be precise, i.e. the target
values of the covered instances must have relatively low
variance. Finally, if the support and variance for two
rules are the same, the more general rule is preferred.

The following order definition is used to sort the
rules: rule 7 is said to precede ro (1) if the variance
of 1 is smaller that variance of 7o, (2) if the variances
are the same, but the support of ry is greater than that
of ra, or (3) if both variance and support are the same,
but condition size of r; is smaller than ry.

There are a number of ways to implement the
sequential covering algorithm. This depends on whether
each instance should be predicted by a single rule
or multiple rules. In the case of a single rule (1-
RBA, Section 4.3.1), once a rule has been selected,
all instances covered by the rule will be eliminated
immediately. If multiple rules are allowed to fire, we
need a weighted voting scheme (k-RBA, Section 4.3.2)
to determine the predicted target value.

4.3.1 1-RBA 1-RBA adds a rule only if it reduces
the prediction errors made by the previous model. The
instances covered by the added rule are removed from
the data. The rule selection process continues until
there are no remaining instances or rules. Each time
a new rule is added to the model, the error of the
model along with its current default value is recorded.
When the stopping criteria is reached, the rules after
the index where the minimum error has been recorded
are discarded, and the corresponding default value is
restored, so that the final model is a list of ordered rules
and a default value.

A summary of the 1-RBA algorithm is shown in
Figure 4. The algorithm takes a list of sorted rules
and the set of training instances as input, and returns
a final model M. The getStatistics function is used
to compute the mean value of the remaining training
instances not covered by the model. The evaluateRule
function is used to compute the mean square error or
mean absolute error of the training instances covered by
the rule r, and the error of the predictions made by the

previous model M. evaluateModel function evaluates
the model M with default value pg over all samples D.

Procedure 1-RBA(RIlist: list of sorted rules,
D: set of training instances)
1. Initialize model: M = (;
2. Initialize error list: e = (;
3. Let D' = D;
4. wa = getStatistics(D’);
5. prev_err=evaluateModel(M, uaq, D);
6. while(Rlist # 0 and D" # 0)
7. r: remove the top rule from Rlist
8. Let S C D’ be the instances in D’ covered
by r;
9. if(S # 0)
10. [err,prev_err]=evaluateRule(r,M,uq);
11. if(err < prev_err)
12. M .push(r);
13. D'=D-8;
14. na=getStatistics(D');
15. e.push(evaluateModel(M ,uq,D));
16. endif
17. endif
18. endwhile
19.  find rule index 4 in M with min error in e;
20. remove rules in M after position ;
21.  return M;

Figure 4: 1-RBA Procedure

4.3.2 Weighted k-RBA The main disadvantage of
the previous algorithm is that the decision about the
target value of an instance is made based on the
prediction of a single rule. If the prediction error is
high, there is no other way to modify the prediction.
Alternatively, we can extend the previous scheme to
solicit the opinions of a mixture of experts, i.e., using
an ensemble of k rules, while weighting each opinion
according to how reliable the rule is. This is the basis
for the weighted k-RBA algorithm.

Let w, be the predicted value by the rule r, and
w, be the weight of the prediction made by r. Suppose
{ri,ra, -+ ,ri} are the set of k rules selected by the
regression model for predicting the test instance z. The
predicted value for z is given by

k
F2) = Zizlkwm' X Kri
D=1 Wri

Several weighting schemes are investigated:
(1) For the precision-k weighting scheme, each pre-
diction is weighted by the inverse of the variance for the
rule. Here the inverse of the variance is evaluated as an

(4.4)



estimation of the precision of the prediction.

(2) For the probabilistic-k weighting scheme, we use
support as the weight for each prediction.

(3) For the average-k weighting scheme, each predic-
tion is weighted equally, i.e., w, = 1/k.

Procedure k-RBA(Rlist: list of sorted rules,

D: set of training instances,

k: number of experts,

wr: weighting scheme)
Initialize model: M = (;
Let D' = D;
wa = getStatistics(D’); /* default prediction */
Vz € D' : z.pred = pa,
z.weight = 0, z.count = 0;
5 while(Rlist # () and D’ # 0)
6. r: remove the top rule from Rlist;
7. Let S = {z|z € D', z.count < k, r covers z};
8
9

Ll

/* initialization */

Terr = 05 preverr = 0;
for(each instance z € S)

10. pred =

z.predXz.weight4+wy X piy .
z.weight4+w, )
11. /* new prediction */
12. Terr = Terr + Difference(pred, z.y);
13. Préverr = PreéVerr
+ Difference(z.pred, z.y);
14. endfor
15. if(rerr < prever,)
16. M .push(r);
17. for(each instance z € S)
18. z.pred = z'p”d;fu';‘z’.;;gt}fzi"”“r;
19. z.weight = z.weight + wy;
20. z.count = z.count + 1;
21. if(z.count = k)
22. D' =D —z
23. endif
24. endfor
25. wa = getStatistics(D’);
26. Vz € D' such that z.count = 0,
assign z.pred = 4.
27. endif
28. endwhile
29.  if(D’ #0)
30. pa = getStatistics(D’);
31.  else pg = getStatistics(D);
32.  endif

33.  return M;

Figure 5: k-RBA Procedure

In order to implement a multi-rule scheme, each
training instance z must keep track of several counters:
z.y: the actual target value for z.
z.count: the present number of rules covering z.
z.pred: the current predicted value for z, i.e., f(2).
z.weight: the sum of the weights for all the rules

covering z, i.e., the denominator of Equation 4.4.
Figure 5 depicts the weighted k-RBA algorithm.
Unlike the 1-RBA approach, each instance is not re-
moved until there are k£ rules covering it. In addition,
each rule also keeps track of the amount of error it has
committed on the training instances (re..). A rule r is
added to the model only if it improves the prediction
of instances covered by r (lines 13-14). This implicitly
provides resistance to adding rules that are highly cor-
related /similar to each other, and does not have addi-
tional predictive value. The model building procedure
terminates when there are no more rules or instances
remaining. The default mean is calculated over the re-
maining instances, if any, otherwise it is assigned to be
the mean value of the training set. Once the stoping
criteria is reached, as in 1-RBA, the rules after the in-
dex where the minimum error has been observed are re-
moved, and the corresponding default value is restored.

5 Experimental Results

Our algorithm was evaluated on both real and synthetic
data sets. Synthetic data sets allows us to study the
effects of noise on the performance of regression models
in a controlled environment, while real data sets are
useful to evaluate the relative performance of RBA
against other existing algorithms.

5.1 Synthetic Data The synthetic data is very sim-
ilar in nature to the XOR example given in Section 1.
The target variable depends only on the values of its two
“clean” dimensions, z and y. If both x and y have the
same values, then the target variable is zero; otherwise,
the target variable is one. Note that the truncation to
0 and 1 is to simplify the discussion, and the results
presented in this section still hold if the target is a sim-
ilar continuous valued function on those 4 quadrants.
Although attributes, together, contain sufficient infor-
mation for making the correct prediction, alone, neither
of them can predict the target variable correctly.

X y 71 no ns3 ng target
0 0 1 0 0 1 0
0 1 1 1 1 0 1
1 0 0 1 1 1 1
1 1 0 0 1 0 0

Table 2: Synthetic Data example

5.1.1 Synthetic Data Generator The synthetic
data is parameterized by two parameters: the number
of noise dimensions and the size of the training set.
Noise dimensions are added to the synthetic data in the
following way: first, a random number between 0 and 1



is generated. If the number is greater than 0.5, then the
value of the noise dimension is 1, otherwise its value is
0. This process is repeated for every entry in the noise
dimensions. Table 2 shows an example of the synthetic
data, where each n; correspond to i*" noise dimension.

The above approach is used to generate equal
number of training and test data sets. The training
set is used for model building, while the test set is used
to estimate the MSE. All the MSE results reported in
the remainder of this section correspond to the average
MSE value of 30 trials.

5.1.2 Effect of Noise on 1-RBA and CART The
objective of this experiment is to evaluate the robustness
of the regression models in the presence of noise. The
following evaluations are conducted:

1. The effect of increasing the training set size on MSE
of the induced models, given a fixed number of noise
dimensions.

2. We study the number of training samples needed
to achieve an acceptable mean square error (MSE)
while increasing number of noise dimensions.

3. We study the complexity of the regression model
while increasing number of noisy dimensions.

For these experiments, we report the results of 1-
RBA and CART. Cubist is excluded, and not investi-
gated further, as it produces only a single default rule-
the average value of the target variable for the clean
data set as well as with one or two noise dimensions®.

Figure 6 compares the MSE for 1-RBA against
CART as the size of training set increases for a syn-
thetic data set with noise dimensions set to four. It is
intuitively clear that the MSE for both methods should
decrease with increasing number of training examples,
as seen in the Figure 6. This experiment demonstrates
that CART needs significantly more data to learn the
right concept compared to RBA. If both were provided
with only 100 samples for this six-input features prob-
lem, RBA would clearly outperform CART.

Figure 7 shows the effective number of training
examples needed by both algorithms to learn the correct
model (i.e., a model that achieves an MSE < ¢ over
the test set, where ¢ = 0.01). Notice that CART
requires significantly more training examples in order to
learn the correct model compared to 1-RBA. For CART,
the size of the training set grows exponentially as the
number of noise dimensions increases. This observation
suggests that CART is more susceptible to noise, and

SNote that the distribution of z and y values are always

maintained to be uniform throughout the experiment.
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Figure 6: MSE versus number of training samples for
2D XOR with 4 noise dimensions

may produce models containing irrelevant features. 1-
RBA is more robust as the needed number of training
samples grows less rapidly (at most linearly for these
data sets) as the number of noise dimensions increases.
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Figure 7: Effective size of training set needed to achieve
MSE < 0.01 versus number of noise dimensions

In general, techniques that are susceptible to noise
tend to produce models that overfit the training data,
producing rules that may contain many irrelevant at-
tributes. There are several ways to capture the com-
plexity of a model. For rule-based methods, model
complexity can be expressed in terms of the number of
rules, while for tree-based methods, it can be measured
in terms of the number of leaf nodes (since each path
from the root to the leaf forms a unique rule). As shown
in Figure 8, the average size of the rule set for 1-RBA is
four, which corresponds to the four distinct (z,y) val-
ues for learning the XOR concept. On the other hand,
the complexity of models produced by CART is several
orders of magnitude higher than 1-RBA and grows ex-
ponentially with increasing number of noise dimensions.
This observation supports our previous assertion that
CART tends to overfit noisy training data by creating
unnecessarily complex models. Although tree-based al-



gorithms such as CART may reduce overfitting via tree
pruning (beginning from the leaves) or using the early
stopping strategy, such approaches do not remove irrel-
evant attributes appearing at higher levels of the tree.

Another way to capture model complexity is the av-
erage number of conditions of the rules, or equivalently,
the average depth of the regression tree. The average
depth of the regression trees increases linearly with the
number of noise dimensions, while remaining fixed at
two for RBA.

T
. CART
— RBA

number of learned rules at MSE<=0.01

0 1 2 3 7 8 9 10

a 5 6
number of noise dimensions

Figure 8: Number of Learned rules vs. number of noise
dimensions

Overall, the experiments in this section demon-
strate the fundamental advantage of a regression based
on association rules scheme: by exploiting global pat-
terns, it avoids irrelevant features in its rules, as well
as irrelevant rules in its model. It does not suffer much
from the sparsity of the data points in the input space:
if there are underlying patterns in the data, it does not
need as many points to induce the correct pattern as
other techniques do. RBA’s success is not limited to
the type of the synthetic data presented in this section:
the patterns may be much more complex, multi-modal,
multi-valued, etc. As long as the discovered global pat-
terns are highly precise, its vision may not be easily
obscured by local noise and disturbances.

5.2 Real Data For these experiments, we used 21
real data sets obtained from public-domain sources such
as the UCI Machine Learning Repository [3] and CMU
StatLib [2], as well as our own in-house data. The exper-
iments were performed on a Pentium 4, 2.8 GHz Linux
machine with 1 GB RAM. The RBA algorithms were
implemented in C++4, and are reasonably optimized.

5.2.1 Methodology As previously noted, current
association rule mining algorithms assume that the
input data is in binary format. Since most of the real-
life data sets are non-binary, some information will be

lost during discretization, thus degrading the overall
performance of RBA. Other techniques such as CART*
and Cubist [20] do not suffer from such limitations.

Our goal is to provide a systematic performance
study of RBA in comparison to other techniques such
as CBA and Cubist. To highlight the strengths and
limitations of RBA, we need to isolate the effects of
discretization from model building. Therefore, we have
conducted two series of experiments, first using the
discretized data, and second, using the original data.

Each model is evaluated based on the Pearson cor-
relation coefficient between the predicted value and ac-
tual value of the target variables. The correlation co-
efficients are obtained from evaluation of concatenated
results of the test partitions with 10-fold cross valida-
tion. The same data partitions in the 10-fold cross val-
idation are used for training and testing for all compet-
ing algorithms. Correlation difference test is applied to
determine the Win-Loss-Draw counts.

For RBA, the appropriate choice of minimum sup-
port threshold depends on a number of factors such as
target variable distribution, size of training set, multi-
modality, etc. We have used the default support thresh-
old (0.01) for all of our experiments. Nevertheless, for
large data sets, the support threshold might still be too
high to extract a reasonably complete set of association
rules, especially if there are many underlying structures
in the data. Therefore, in addition to the default value,
we have also reported the results using several alter-
native minimum support thresholds (3/|D|, 5/|D|, and
10/D). For k-RBA, the number of experts is fixed to
be its default value £ = 5. Cubist and CART are also
applied with their default settings.

Table 3 summarizes the characteristics of the data
sets and the total run time for both 1-RBA and k-RBA
algorithms. The run time for association rule generation
is reported in a separate column since it is the same
for both 1-RBA and k-RBA. Furthermore, the model
building run time and model sizes are very similar for
all three versions of multi-rule RBA. In Table 3 the
average total run time and average model size for the
three variations of the multi-rule scheme is reported.

Table 4 shows the correlation coefficients for the
discretized data sets applying CART, Cubist and RBA.
The best results obtained for each data set are shown
in boldface. For some of the RBA algorithms, we have
also reported the best correlation result obtained using
alternative support thresholds (beside the default 0.01)
as described above. For space considerations, we only
show the results of using MSE, as results using MAE
were similar.

TMatlab’s implementation of CART is used [1].



Data set Data Z Orig. | # total 10-cfv ave. Rgen total 1-RBA | avg # 1-RBA | total kkRBA | ave # k-RBA
name size Attr. items Rgen time (s.) # rules time (s.) rules time (s.) rules
autompg 398 7 44 2.97 526.2 0.92 114.1 1.68 192.03
bodyfat 252 13 62 28.82 2586 3.3 115.3 6.53 289.53
bolts 40 6 19 0.11 37.7 0.07 6.5 0.07 7.27
californiahouses 20640 8 63 86.03 40.5 7.71 11 13.33 13
case2002 147 6 14 0.54 91.4 0.2 20.2 0.28 28.3
crabs 200 4 19 0.15 72.7 0.13 24.6 0.15 36.3
housing 506 13 89 107.69 3765.6 6.11 225.3 16.62 534.87
kidney 76 5 16 0.14 44.1 0.1 17.3 0.08 17.87
logis 70 7 16 0.37 119.1 0.1 19.6 0.17 34.07
machine 209 8 48 2 267.7 0.45 53.9 0.57 91.67
mtwashnh6597 12053 8 47 75.41 483.9 23.14 135.6 56.05 131.57
mulimputbvn 100 5 10 0.18 41 0.14 10.1 0.13 13.8
ozone 330 8 20 4.08 622.1 0.89 94.7 1.59 161.33
plasmabcarotene 315 12 40 38.38 3413.9 5.14 167 11.01 284.50
pollen 3848 4 30 3.41 244.5 2.2 108.5 6.03 108.50
pollution 60 15 58 1.1 297.8 0.34 25.2 0.42 59.20
sensory 576 11 36 46.11 4175.6 7.06 219.5 17.19 515.97
servo 167 4 19 0.12 63.8 0.1 36.4 0.13 42.5
socmob 1156 5 43 1.87 222.2 1.23 167.6 2.26 157.53
spacega 3107 6 40 10.54 474.5 5.03 159.5 11.82 195.17
weather 84 7 25 0.45 94 0.17 21.2 0.2 24.47

Table 3: Data set properties, rule generation and model building total timing and average rule sizes

Method CART CUBIST 1-RBA precision-k-RBA probabilistic-k-RBA average-k-RBA
autompg 0.9074 0.8732 0.8408 0.9045 0.9007 0.8992
bodyfat 0.6897 0.7171 0.4786,0.7142 0.7396,0.7428 0.7027,0.7222 0.7247,0.7320
bolts 0.9344 0.9026 0.9672 0.9059 0.9004 0.9034
californiahouses 0.7682 0.5840 0.6768 0.6989 0.7033 0.7033
case2002 0.5538 0.6314 0.5231,0.5800 0.5695,0.5904 0.5607,0.5817 0.5681

crabs 0.9734 0.9720 0.9720 0.9745 0.9735 0.9742
housing 0.8797 0.8413 0.6641,0.7174 0.8802 0.9054 0.8921

kidney 0.3693 0.4128 0.3697,0.3761 0.3996,0.4641 0.4348,0.4645 0.4303,0.4761
logis 0.4811 0.4749 0.4694,0.5160 0.5373 0.5972 0.5591
machine n/a5 0.7925 0.6520,0.7947 0.7987,0.8144 0.7385,0.7880 0.7923
mtwashnh6597 0.4967 0.4002 0.4454 0.4608 0.4765 0.4667
mulimputbvn 0.7656 0.7739 0.7601,0.7806 0.7778,0.7813 0.7505,0.7841 0.7549,0.7812
ozone 0.7800 0.7803 0.7481,0.7881 0.7822,0.7988 0.7885,0.8065 0.7894,0.8022
plasmabcarotene 0.1113 0.1143 0.1409 0.2256,0.2817 0.2480,0.2763 0.2526,0.2684
pollen 0.7705 0.5794 0.6882,0.7494 0.7368,0.7617 0.7194,0.7583 0.7330,0.7565
pollution 0.4643 0.5260 0.1270,0.4276 0.5129,0.5823 0.5233,0.5905 0.5560,0.6306
sensory 0.4105 0.2498 0.2915 0.4035 0.4430,0.4718 0.4079,0.4653
servo 0.9171 0.9067 0.7945 0.8114 0.8929 0.8907

socmob 0.8157 0.5860 0.7298,0.7500 0.7065,0.7244 0.7598,0.8104 0.7658,0.8028
spacega 0.7378 0.6629 0.7157,0.7294 0.7353,0.7418 0.7205 0.7304
weather 0.5160 0.5476 0.7464 0.7183 0.7262 0.7180
average 0.6671 0.6347 0.6571 0.6942 0.7072 0.7054

Table 4: Pearson Correlation coefficients for CART, Cubist, and the proposed four RBA methods

5.2.2 Comparison between RBA and Cubist
Table 5 summarizes the relative performance of RBA
against Cubist in terms of the number of wins, losses,
and draws. We use two different criteria to decide which
method is better: 0.01 and 0.1 difference, which are
based on the magnitude of difference in the correlation
coefficient between the two competing techniques.

criteria 1-RBA prec-RBA prob-RBA avg-RBA
0.01 difference 10-6-5 16-2-3 15-2-4 15-2-4
0.1 difference 3-2-15 6-0-15 7-0-14 7-0-14

Table 5: Win-Loss-Draws for the 21 real-life data sets
RBA versus Cubist

The results shown in Table 5 suggest that all RBA
schemes outperform Cubist for the majority of the data
sets. Even when winners are declared with a correlation
difference more than 0.10, single-rule scheme wins 3 to
2, and multi-rule schemes are better with a win-loss
situation of 6 and 7 to 0.

5.2.3 Comparison between RBA and CART
Comparing the RBA methods against CART (Table
6), using the 0.01 difference criteria shows that k-

RBA outperforms CART for more than half of the
data sets. In contrast, CART wins only on 5 to 6
different data sets. If the criteria for winning is based
on correlation difference greater than 0.1, then CART
outperforms only the precision-based k-RBA for one of
the 21 data sets, whereas there are at least 3 or 4 data
sets where multi-rule RBA predictions correlate better
to the target values with 0.10 difference.

criteria 1-RBA prec-RBA prob-RBA avg-RBA
0.01 difference 7-9-4 9-5-6 11-6-3 11-6-3
0.1 difference 1-3-16 3-1-16 4-0-16 4-0-16

Table 6: Win-Loss-Draws for the 21 real-life data sets
RBA versus CART

We investigated further the situations where CART
does better. californiahouses is the data set, where
CART performs the best compared to other data sets,
with a correlation difference of 0.06. The average num-
ber of rules-leaf nodes generated by CART for this data
set is 2721. In contrast, the average number of rules for
k-RBA is only 13 (selected among the 41 non-redundant
and significant rules generated by the rule generation
module of RBA). The tradeoff between precision and



complexity models suggests another desirable property
of RBA methods: they tend to produce simpler models
at a reasonable precision tradeoff compared to CART.
In fact, the average model size ratio between CART and
1-RBA is 13.39, and 11.36 for CART and k-RBA.

Pruning redundant and significant rules is a very
important part of our algorithm, but for this particular
case, as part of our investigation, we turned the pruning
off, to increase the number of rules available for model
building. If we do so for the californiahouses data
set, RBA will select, on average, 300 rules, increasing
the correlation coefficient from 0.67 to 0.73 (for 1-
RBA) and from 0.70 to 0.76 (for k-RBA), while still
maintaining a much smaller rule set compared to the
models produced by CART.

Another interesting observation is that the size of
the model produced by CART is found to be highly
correlated to the data set size, with a correlation
coefficient of 0.93. On the other hand, the correlation
between the size of data set and model size is -0.04
for 1-RBA and -0.14 for k-RBA. Indeed, increasing
training data size does not always mean introducing new
patterns, in a very large data set one may find only few
patterns explaining the target, similarly one may mine
many patterns from a small data set. This observation
supports the previous assertion that RBA tends to
produce a compact set of high quality predictive rules
from the data, independent of the data size, which is a
very useful property especially for noisy data sets.

5.2.4 Discussion on 1-RBA and k-RBA Our ex-
perimental results indicate that k-RBA schemes tend to
be more effective than 1-RBA for most of the data sets.
One possible explanation is that a multi-rule scheme is
more tolerant towards errors committed by individual
rules, and on average, tends to make better prediction
by soliciting the opinions of multiple experts/rules.
The performance of both 1-RBA and k-RBA can
be affected by the amount of rule pruning in the rule
generation step. On the one hand, too much pruning
may reduce the number of rules available for model
building, while on the other, pruning may help to
eliminate spurious rules. On average, the redundancy
and significance tests applied during rule generation
result in a 2% gain in correlation produced by the
final model. To be more precise, the redundancy
test was found to prune 72% of the rules satisfying
minimum support while the significance test applied
after the redundancy test prunes between 1% to 3% of
the remaining rules. In terms of model size, 1-RBA’s
models are 4% to 8% smaller when pruning is applied
(as opposed to no pruning) while the k-RBA models
are 35% to 38% smaller. Thus, k-RBA appears to

benefit more from rule pruning compared to 1-RBA.
Rule pruning not only achieves better correlation, it
leads to lower complexity models, and shorter run times
for model building, which by itself is a significant gain.
The choice of minimum support threshold have an
impact on the performance of the model as it affects the
number of rules generated. For large data sets, a min-
imum support threshold of 0.01 may produce inferior
models compared to using a much lower threshold.

5.3 Discussion Given the wide variety of real data
sets, it is unreasonable to expect a single regression
technique to work well on all data sets. This is partly
due to the consensus that no search algorithm works the
best for all problems. Thus, it is crucial to understand
the characteristics of a data set for which a regression
method works better than other competing methods.
We have identified one such characteristics in Section
5.1, where RBA-based methods are more resilient to
noise compared to CART.

To understand these methods better, we first de-
rived several metrics to characterize the data sets such
as skewness, sparseness, size, dimensionality, nearest
neighbor error, etc. Next, these metrics are correlated
to the difference of RBA and CART’s correlation to the
output. This will allow us to identify the data charac-
teristics for which RBA performs better or worse. The
correlation of data size to RBA-CART performance is
-0.36, meaning RBA is more successful compared to
CART when the size of the data is small. RBA also
does better when the feature space is sparser (the cor-
relation to the ratio of data size to the number of at-
tributes is -0.36), and when the number of attributes is
larger (0.45).

Another interesting observation is the correlation
between the average prediction error made by 1-nearest
neighbor (0.58) and variance of prediction error made
by 1-nearest neighbor (0.73) to the relative performance
of RBA over CART. These metrics can be used to
approximate the amount of noise in the data: if the
prediction made by 1-nearest neighbor is unreliable, the
data tends to be more noisy. Such an unusually high
correlation suggests that RBA indeed does better than
CART on noisy data sets, a result that is consistent
with the findings in Section 5.1.

There is also positive correlation (0.45) between the
skewness of the target variable distribution (normalized
difference of the mean and the median) and the success
of RBA. We also identified the skewed data sets by
visual inspection of their histograms. Out of the nine
highly skewed data sets, RBA is doing better in 5 of
them, CART on 2, and Cubist on 1, and one was a
draw between RBA and CART.



Finally, RBA schemes were found to be very suc-
cessful when the competitor methods were applied to
nominal-valued input variables. However, when the
competitors were provided with the original data sets,
the RBA schemes become comparable to the competi-
tor methods. The average performance of CART and
Cubist, when applied to the original attributes, are 0.69
and 0.71, respectively. In terms of win-loss-draw, using
the 0.1 correlation difference criteria, the results for k-
RBA versus Cubist is 3-4-14 and k-RBA versus CART
is 3-2-15. This suggests that the straightforward MDL-
based discretization method does lose quite significant
information. We are currently investigating better alter-
native discretization techniques for regression that will
reduce the amount of information loss.

6 Conclusion

Rule based approaches have the benefit of being intu-
itive, and easily interpretable. In this paper, we pro-
posed a novel rule-based approach for predicting con-
tinuous target attribute using association rule mining;:
Regression Based on Association (RBA). Unlike greedy
approaches, association rules analysis explores all possi-
ble patterns satisfying the user specified minimum sup-
port. Hence, it does not risk missing key patterns that
the existing rule-based methods may easily miss, at the
expense of runtime in the case of dense data sets. We
proposed two pruning strategies for eliminating rules
that are redundant and statistically insignificant.

The proposed pruning schemes are found to be very
effective at no cost in terms of prediction performance.
Four single and multi-rule variations of the proposed
method are implemented and compared against two
leading rule-based schemes (Cubist, and CART), and
found to be superior on majority of real-life data sets.
We also provided simple, and illustrative example cases
where our approach can successfully find the underlying
patterns and predict accurately, while the regression
trees fail to do so.

For future work we are considering investigation
of different discretization schemes in order to make
RBA highly competitive on data sets with continuous
input attributes. Dynamic minimum support or anti-
monotonic measures are potential directions for future
research, which may contribute significantly to the
quality of the predictions.
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