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Abstract. A spatial time series dataset is a collection of time series,
each referencing a location in a common spatial framework. Correlation
analysis is often used to identify pairs of potentially interacting elements
from the cross product of two spatial time series datasets. However, the
computational cost of correlation analysis is very high when the dimen-
sion of the time series and the number of locations in the spatial frame-
works are large. The key contribution of this paper is the use of spatial
autocorrelation among spatial neighboring time series to reduce compu-
tational cost. A filter-and-refine algorithm based on coning, i.e. grouping
of locations, is proposed to reduce the cost of correlation analysis over a
pair of spatial time series datasets. Cone-level correlation computation
can be used to eliminate (filter out) a large number of element pairs whose
correlation is clearly below (or above) a given threshold. Element pair
correlation needs to be computed for remaining pairs. Using experimen-
tal studies with Earth science datasets, we show that the filter-and-refine
approach can save a large fraction of the computational cost, particularly
when the minimal correlation threshold is high.

1 Introduction

Spatio-temporal data mining [14, 16, 15, 17, 13, 7] is important in many appli-
cation domains such as epidemiology, ecology, climatology, or census statistics,
where datasets which are spatio-temporal in nature are routinely collected. The
development of efficient tools [1, 4, 8, 10, 11] to explore these datasets, the focus
of this work, is crucial to organizations which make decisions based on large
spatio-temporal datasets.

A spatial framework [19] consists of a collection of locations and a neighbor
relationship. A time series is a sequence of observations taken sequentially in
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time [2]. A spatial time series dataset is a collection of time series, each refer-
encing a location in a common spatial framework. For example, the collection
of global daily temperature measurements for the last 10 years is a spatial time
series dataset over a degree-by-degree latitude-longitude grid spatial framework
on the surface of the Earth.
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Fig. 1. An Illustration of the Correlation Analysis of Two Spatial Time Series Datasets

Correlation analysis is important to identify potentially interacting pairs of
time series across two spatial time series datasets. A strongly correlated pair of
time series indicates potential movement in one series when the other time series
moves. For example, El Nino, the anomalous warming of the eastern tropical
region of the Pacific, has been linked to climate phenomena such as droughts
in Australia and heavy rainfall along the Eastern coast of South America [18].
Fig. 1 illustrates the correlation analysis of two spatial time series datasets D1

and D2. D1 has 4 spatial locations and D2 has 2 spatial locations. The cross
product of D1 and D2 has 8 pairs of locations. A highly correlated pair, i.e.
(D1

2,D
2
1), is identified from the correlation analysis of the cross product of the

two datasets.
However, a correlation analysis across two spatial time series datasets is com-

putationally expensive when the dimension of the time series and number of
locations in the spaces are large. The computational cost can be reduced by re-
ducing time series dimensionality or reducing the number of time series pairs to
be tested, or both. Time series dimensionality reduction techniques include dis-
crete Fourier transformation [1], discrete wavelet transformation [4], and singular
vector decomposition [6].

The number of pairs of time series can be reduced by a cone-based filter-and-
refine approach which groups together similar time series within each dataset.
A filter-and-refine approach has two logical phases. The filtering phase groups
similar time series as cones in each dataset and calculates the centroids and
boundaries of each cone. These cone parameters allow computation of the upper
and lower bounds of the correlations between the time series pairs across cones.
Many All-True and All-False time series pairs can be eliminated at the cone level
to reduce the set of time series pairs to be tested by the refinement phase. We
propose to exploit an interesting property of spatial time series datasets, namely
spatial auto-correlation [5], which provides a computationally efficient method to
determine cones. Experiments with Earth science data [12] show that the filter-
and-refine approach can save a large fraction of computational cost, especially



when the minimal correlation threshold is high. To the best of our knowledge,
this is the first paper exploiting spatial auto-correlation among time series at
nearby locations to reduce the computational cost of correlation analysis over a
pair of spatial time series datasets.

Scope and Outline: In this paper, the computation saving methods focus on
reduction of the time series pairs to be tested. Methods based on non-spatial
properties (e.g. time-series power spectrum [1, 4, 6]) are beyond the scope of the
paper and will be addressed in future work.

The rest of the paper is organized as follows. In Section 2, the basic concepts
and lemmas related to cone boundaries are provided. Section 3 proposes our
filter-and-refine algorithm, and the experimental design and results are presented
in Section 4. We summarize our work and discuss future directions in Section 5.

2 Basic Concepts

In this section, we introduce the basic concepts of correlation calculation and
the multi-dimensional unit sphere formed by normalized time series. We define
the cone concept in the multi-dimensional unit sphere and prove two lemmas to
bound the correlation of pairs of time series from two cones.

2.1 Correlation and Test of Significance of Correlation

Let x = 〈x1, x2, . . . , xm〉 and y = 〈y1, y2, . . . , ym〉 be two time series of length
m. The correlation coefficient [3] of the two time series is defined as:

corr(x, y) =
1

m− 1

m∑

i=1

(
xi − x

σx
)· (yi − y

σy
) = x̂· ŷ

where x =
Pm

i=1 xi

m , y =
Pm

i=1 yi

m , σx =
√Pm

i=1(xi−x)2

m−1 , σy =
√Pm

i=1(yi−x)2

m−1 , x̂i =
1√

m−1
xi−x

σx
, ŷi = 1√

m−1
yi−y
σy

, x̂ = 〈x̂1, x̂2, . . . , x̂m〉, and ŷ = 〈ŷ1, ŷ2, . . . , ŷm〉.
A simple method to test the null hypothesis that the product moment cor-

relation coefficient is zero can be obtained using a Student’s t-test [3] on the t
statistic as follows: t =

√
m− 2 r√

1−r2 , where r is the correlation coefficient be-
tween the two time series. The freedom degree of the above test is m− 2. Using
this we can find a p − value or find the critical value for a test at a specified
level of significance. For a dataset with larger length m, we can adopt Fisher’s
Z-test [3] as follows: Z = 1

2 log 1+r
1−r , where r is the correlation coefficient between

the two time series. The correlation threshold can be determined for a given time
series length and confidence level

2.2 Multi-dimensional Sphere Structure

In this subsection, we discuss the multi-dimensional unit sphere representation
of time series. The correlation of a pair of time series is related to the cosine
measure between their unit vector representations in the unit sphere.



Fact 1 (Multi-dimensional Unit Sphere Representation) Let x =
〈x1, x2, . . . , xm〉 and y = 〈y1, y2, . . . , ym〉 be two time series of length m. Let x̂i =

1√
m−1

xi−x
σx

, ŷi = 1√
m−1

yi−y
σy

, x̂ = 〈x̂1, x̂2, . . . , x̂m〉, and ŷ = 〈ŷ1, ŷ2, . . . , ŷm〉.
Then x̂ and ŷ are located on the surface of a multi-dimensional unit sphere and
corr(x, y) = x̂· ŷ = cos(∠(x̂, ŷ)) where ∠(x̂, ŷ) is the angle of x̂ and ŷ in [0, 180◦]
in the multi-dimensional unit sphere .

Because the sum of the x̂i
2 is equal to 1:

∑m
i=1 x̂i

2 =
∑m

i=1(
1√

m−1
xi−xrPm

i=1(xi−x)2

m−1

)2

= 1, x̂ is located in the multi-dimensional unit sphere. Similarly, ŷ is also located
in the multi-dimensional unit sphere. Based on the definition of corr(x, y), we
have corr(x, y) = x̂· ŷ = cos(∠(x̂, ŷ)).

Fact 2 (Correlation and Cosine) Given two time series x and y and a
user specified minimal correlation threshold θ where 0 < θ ≤ 1, |corr(x, y)| =
| cos(∠(x̂, ŷ))| ≥ θ if and only if 0 ≤ ∠(x̂, ŷ) ≤ θa or 180◦− θa ≤ ∠(x̂, ŷ) ≤ 180◦,
where θa = arccos(θ).
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Fig. 3. Angle of Time Series in Two Spherical
Cones

Fig. 2 shows that |corr(x, y)| = | cos(∠(x̂, ŷ))| falls in the range of [θ, 1]
or [−1,−θ] if and only if ∠(x̂, ŷ) falls in the range of [0, arccos(θ)] or [180◦ −
arccos(θ), 180◦].

The correlation of two time series is directly related to the angle between the
two time series in the multi-dimensional unit sphere. Finding pairs of time series
with an absolute value of correlation above the user given minimal correlation
threshold θ is equivalent to finding pairs of time series x̂ and ŷ on the unit multi-
dimensional sphere with an angle in the range of [0, θa] or [180◦ − θa, 180◦].

2.3 Cone and Correlation between a Pair of Cones

This subsection formally defines the concept of cone and proves two lemmas to
bound the correlations of pairs of time series from two cones. The user specified



minimal correlation threshold is denoted by θ (0 < θ ≤ 1), and arccos(θ) is
denoted by θa accordingly.

Definition 1 (Cone). A cone is a set of time series in a multi-dimensional
unit sphere and is characterized by two parameters, the center and the span of
the cone. The center of the cone is the mean of all the time series in the cone.
The span τ of the cone is the maximal angle between any time series in the cone
and the cone center.

We now investigate the relationship of two time series from two cones in
a multi-dimensional unit sphere as illustrated in Fig. 3 (a). The largest angle
(∠P1OQ1) between two cones C1 and C2 is denoted as γmax and the smallest
angle (∠P2OQ2) is denoted as γmin. We prove the following lemmas to show
that if γmax and γmin are in specific ranges, the absolute value of the correlation
of any pair of time series from the two cones are all above θ (or below θ). Thus
all pairs of time series between the two cones satisfy (or dissatisfy) the minimal
correlation threshold.

Lemma 1 (All-True Lemma). Let C1 and C2 be two cones from the multi-
dimensional unit sphere structure. Let x̂ and ŷ be any two time series from the
two cones respectively. If 0 ≤ γmax ≤ θa, then 0 ≤ ∠(x̂, ŷ) ≤ θa. If 180◦ − θa ≤
γmin ≤ 180◦, then 180◦ − θa ≤ ∠(x̂, ŷ) ≤ 180◦. If either of the above two
conditions is satisfied, {C1, C2} is called an All-True cone pair.

Proof: For the first case, it is easy to see from Fig. 3 that if γmax ≤ θa, then
the angle between x̂ and ŷ is less or equal to θa. For the second case, when
180◦ − θa ≤ γmin ≤ 180◦, we need to show that 180◦ − θa ≤ ∠(x̂, ŷ) ≤ 180◦. If
this were not true, there exist x̂′ ∈ C1 and ŷ′ ∈ C2 where 0 ≤ ∠(x̂′, ŷ′) < 180◦−θa

since the angle between any pairs of time series is chosen from 0 to 180◦. From
this inequality, we would have either γmin ≤ φ = ∠(x̂′, ŷ′) < 180◦− θa as shown
in Fig. 3 (b) or 360◦ − γmax ≤ φ = ∠(x̂′, ŷ′) < 180◦ − θa as shown in Fig. 3 (c).
The first condition contradicts our assumption that 180◦ − θa ≤ γmin ≤ 180◦.
The second condition implies that 360◦ − γmax < γmin since 180◦ − θa ≤ γmin.
This contradicts our choice of γmin as the minimal angle of the two cones. ¤

Lemma 1 shows that when two cones are close enough, any pair of time series
from the two cones is highly positively correlated; and when two cones are far
enough apart, any pair of time series from the two cones are highly negatively
correlated.

Lemma 2 (All-False Lemma). Let C1 and C2 be two cones from the multi-
dimensional unit sphere; let x̂ and ŷ be any two time series from the two cones
respectively. If θa ≤ γmin ≤ 180◦ and γmin ≤ γmax ≤ 180◦ − θa, then θa ≤
∠(x̂, ŷ) ≤ 180◦ − θa and {C1, C2} is called an All-False cone pair.

Proof: The proof is straightforward from the inequalities. ¤
Lemma 2 shows that if two cones are in a moderate range, any pair of time

series from the two cones is weakly correlated.



3 Cone-based Filter-and-Refine Algorithm

Our algorithm consists of four steps as shown in Algorithm 1: Pre-processing
(line 1), Cone Formation (line 2), Filtering i.e. Cone-level Join (line 4), and
Refinement i.e. Instance-level Join (lines 7-11). The first step is to pre-process

Input: 1) S1 = {s1
1, s

1
2, . . . , s1

n}: n1 spatial referenced time series

where each instance references a spatial framework SF1;

2) S2 = {s2
1, s

2
2, . . . , s2

n}: n2 spatial referenced time series

where each instance references a spatial framework SF2;
3) a user defined correlation threshold θ;

Output: all pairs of time series each from S1 and S2 with

correlations above θ;
Method:

Pre-processing(S1); Pre-processing(S2); (1)

CN1 = Cone Formation(S1, SF1); CN2 = Cone Formation(S2, SF2); (2)

for all pair c1 and c2 each from CN1 and CN2 do { (3)

Filter F lag = Cone-level Join(c1, c2, θ); (4)

if (Filter F lag == ALL TRUE) (5)

output all pairs in the two cones (6)

else if (Filter F lag != ALL FALSE) { (7)

for all pair s1 and s2 each from c1 and c2 do { (8)

High Corr F lag = Instance-level Join(s1,s2, θ); (9)

if (High Corr F lag) output s1 and s2; (10)

} (11)

} (12)

Algorithm 1: Correlation Finder

the raw data to the multi-dimensional unit sphere representation. The second
step, cone formation, involves grouping similar time series into cones in spatial
time series datasets. Clustering the time series is an intuitive approach. How-
ever, clustering on time-series datasets may be expensive and sensitive to the
clustering method and its objective function. For example, K-means approaches
[9] find globular clusters while density-based clustering approaches [9] find arbi-
trary shaped clusters with user-given density thresholds. Spatial indexes, such
as R∗ trees, which are built after time series dimensionality reduction [1, 4] could
be another approach to group similar time series together. In this paper, we ex-
plore spatial auto-correlation for the cone formation. First the space is divided
into disjoint cells. The cells can come from domain experts, such as the El Nino
region, or could be as simple as uniform grids. By scanning the dataset once, we
map each time-series into its corresponding cell. Each cell contains similar time
series and represents a cone in the multi-dimensional unit sphere representation.
The center and span are calculated to characterize each cone.

Example 1 (Spatial Cone Formation). Fig. 4 illustrates the spatial cone forma-
tion for two datasets, namely land and ocean. Both land and ocean frameworks
consist of 16 locations. The time series of length m in a location s is denoted
as F (s) = F1(s), F2(s), . . . , Fi(s), . . . Fm(s). Fig. 4 only depicts a time series



for m = 2. Each arrow in a location s of ocean or land represents the vector
< F1(s), F2(s) > normalized to the two dimensional unit sphere. Since the di-
mension of the time series is two, the multi-dimensional unit sphere reduces to
a unit circle, as shown in Fig. 4 (b). By grouping the time series in each dataset
into 4 disjoint cells according to their spatial proximity, we have 4 cells each for
ocean and land. The ocean is partitioned to L1−L4 and the land is partitioned
to O0 − O4, as shown in Fig. 4 (a). Each cell represents a cone in the multi-
dimensional unit sphere. For example, the patch L2 in Fig. 4 (a) matches L2 in
the circle in Fig. 4 (b).
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Fig. 4. An Illustrative Example for Spatial Cone Formation

After the cone formation, a cone-based join is applied between the two
datasets. The calculation of the angle between each pair of cone centers is car-
ried out, and the minimum and maximum bounds of the angles between the
two cones are derived based on the spans of the two cones. The All-False cone
pairs or All-True cone pairs are filtered out based on the lemmas. Finally, the
candidates which cannot be filtered are explored in the refinement step.

Example 2 (Filter-and-refine). The join operations between the cones in Fig. 4
(a) are applied as shown in Table 1. The number of correlation computations
is used in this paper as the basic unit to measure computation costs. Many All-
False cone pairs and All-True cone pairs are detected in the filtering step and the
number of candidates explored in the refinement step are reduced substantially.
The cost of the filtering phase is 16. Only pairs (O1, L1), (O3, L4), and (O4, L4)
cannot be filtered and need to be explored in the refinement step. The cost of
the refinement step is 3× 16 since there are 4 time series in both the ocean and
land cone for all 3 pairs. The total cost of filter-and-refine adds up to 64. The
number of correlation calculations using the simple nested loop is 256, which
is greater than the number of correlation calculations in the filter-and-refine
approach. Thus when the cost of the cone formation phase is less than 192 units,
the filter-and-refine approach is more efficient.

Completeness and Correctness Based on the lemmas in Section 2, All-True
cone pairs and All-False cone pairs are filtered out so that a superset of results



is obtained after the filtering step. There are no false dismissals for this filter-
and-refine algorithm. All pairs found by the algorithm satisfy the given minimal
correlation threshold.

Ocean-Land Filtering Refinement Ocean-Land Filtering Refinement

O1 − L1 No 16 O3 − L1 All-True
O1 − L2 All-False O3 − L2 All-True
O1 − L3 All-False O3 − L3 All-True
O1 − L4 All-False O3 − L4 No 16
O2 − L1 All-False O4 − L1 All-True
O2 − L2 All-False O4 − L2 All-True
O2 − L3 All-False O4 − L3 All-True
O2 − L4 All-False O4 − L4 No 16

Table 1. Cone-based Join in Example Data

4 Performance Evaluation

We wanted to answer two questions: (1)How does the spatial auto-correlation
based inexpensive grouping algorithm affect filtering efficiency? In particular,
how do we identify the proper cone size to achieve better overall savings? (2)
How does the minimal correlation threshold influence the filtering efficiency?
These questions can be answered in two ways: algebraically, as discussed in
section 4.1 and experimentally, as discussed in section 4.2.

Fig. 5 describes the experimental setup to evaluate the impact of parameters
on the performance of the algorithm. We evaluated the performance of the al-
gorithm with a dataset from NASA Earth science data [12]. In this experiment,
a correlation analysis between the East Pacific Ocean region (80W - 180W, 15N
- 15S) and the United States was investigated. The time series from 2901 land
cells of the United States and 11556 ocean cells of the East Pacific Ocean were
obtained under a 0.5 degree by 0.5 degree resolution.

Pre−Processing

Pre−Processing Coning

Coning

Answers

thresholdcorrelation
time
series 1

time
series 2

spatial framework or
concept hierachy

Refinement

All−False

Filtering

All−True

Minimal

Fig. 5. Experiment Design

Net Primary Production (NPP) was the attribute for the land cells, and Sea
Surface Temperature (SST) was the attribute for the ocean cells. NPP is the
net photo-synthetic accumulation of carbon by plants. Keeping track of NPP
is important because NPP includes the food source of humans and all other
organisms and thus, sudden changes in the NPP of a region can have a direct
impact on the regional ecology. The records of NPP and SST were monthly data
from 1982 to 1993.



4.1 Parameter Selections

In this section we investigate the selective range of the cone spans to improve
filtering efficiency. Both All-False and All-True filtering can be applied in the
filtering step. Thus we investigate the appropriate range of the cone spans in
each of these filtering categories. Here we define the fraction of time series pairs
reduced in the filtering step as FAR, i.e. FAR = Ntime series pairs−filtered

|D1|×|D2| . Thus
FAR in the cone level is represented as FARcone.
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Fig. 6 demonstrates the FARcone is related to the cone size and minimal cor-
relation threshold. The proper cone size and larger minimal correlation threshold
improve the filtering ability. Given a minimal correlation threshold θ (0 < θ < 1),
γmax = δ+τ1+τ2 and γmin = δ−τ1−τ2, where δ is the angle between the centers
of two cones, and the τ1 and τ2 are the spans of the two cones respectively. For
simplicity, suppose τ1 ' τ2 = τ .

Lemma 3. Given a minimal correlation threshold θ, if a pair of cones both with
span τ is an All-True cone pair, then τ < arccos(θ)

2 .

Proof: Assume that a cone pair satisfies the All-True Lemma, i.e., either γmax <
arccos(θ) or γmin > 180◦−arccos(θ) is satisfied. In the former scenario, the angle
δ is very small, and we get δ + 2τ < arccos(θ), i.e., τ < arccos(θ)−δ

2 . In the latter
scenario, the angle δ is very large, and we get δ − 2τ > 180◦ − arccos(θ), i.e.,
τ < arccos(θ)+δ−180◦

2 . The τ is less than arccos(θ)
2 in either scenario since τ < 180◦.

¤

Lemma 4. Given a minimal correlation threshold θ, if a pair of cones both with
span τ is an All-False cone pair, then τ ≥ 180◦

4 − arccos(θ)
2 .

Proof: Assume that a cone pair satisfies the All-False Lemma, i.e., the conditions
γmin > arccos(θ) and γmax < 180◦ − arccos(θ) hold. Based on the two in-
equations above, γmax − γmin < 180◦ − 2 arccos(θ) and γmax − γmin = 4τ <



180◦ − 2 arccos(θ) are true. Thus when the All-False lemma is satisfied, τ <
180◦

4 − arccos(θ)
2 . ¤

The range of τ is related to the minimal correlation thresholds. In this ap-
plication domain, the pairs with absolute correlations over 0.3 are interesting
to the domain experts. As shown in Fig. 6, All-False filtering provides stronger
filtering than All-True filtering for almost all values of cone sizes and correlation
thresholds. Thus we choose the cone span τ for maximizing All-False filtering
conditions. The value of arccos(θ) is less than 72.5◦ for θ ∈ (0.3, 1], so the cone
span τ should not be greater than 180◦

4 − arccos(θ)
2 = 8.75◦.

4.2 Experimental Results

Experiment 1: Effect of Coning The purpose of the first experiment was to eval-
uate under what coning sizes the savings from filtering outweighs the overhead.
When the cone is small, the time series in the cone are relatively homogeneous,
resulting in a small cone span τ . Although it may result in more All-False and
All-True pairs of cones, such cone formation incurs more filtering overhead be-
cause the number of cones is substantially increased and the number of filtered
instances in each All-False or All-True pair is small. When the cone is large,
the value of the cone span τ is large, resulting in a decrease in the number of
All-False and All-True pairs. The effects of the All-False and All-True filtering
in the given data are investigated.

Experiment 2: Effect of Minimal Correlation Thresholds In this experiment, we
evaluated the performance of the filtering algorithm when the minimal corre-
lation threshold is changed. Various minimal correlation thresholds were tested
and the trends of filtering efficiency were identified with the change of minimal
correlation thresholds.

Effect of Coning This section describes a group of experiments carried out
to show the net savings of the algorithm for different cone sizes. For simplicity,
we only changed the cone size for one dataset. According to the analysis of the
previous section, the land cone size is fixed at 1 × 1. We carried out a series of
experiments using the fixed minimal correlation threshold, the fixed land cone
size, and various ocean cone sizes. The minimal correlation threshold θ was fixed
at 0.5. Fig. 7 (a) shows the net savings as a percentage of the computational
cost of the nested loop join algorithm for different ocean cone sizes. The x-axis
represents the different cone sizes ranging from 1 × 1 to 6 × 6, and the y-axis
represents the net savings in computational cost as a percentage of the costs
using the simple nested loop join algorithm. The net savings range from 40
percent to 62 percent.

Effect of Minimal Correlation Thresholds In this experiment, we investi-
gated the effects of minimal correlation threshold θ on the savings in computation
cost for correlation analysis. The land and ocean cone sizes were fixed at 1 × 1
and 3×3 respectively, and a series of experiments was carried out for different θs.



Fig. 7 (b) shows the total savings as a percentage of the computational cost of
the nested loop join algorithm for different θs. The x-axis represents the different
cone sizes ranging from 1×1 to 6×6, and the y-axis represents the total savings
as a percentage of the computational cost of the nested loop join algorithm. The
net savings percentages range from 44 percent to 88 percent with the higher
savings at higher values of correlation thresholds. Thus when other parameters
are fixed, the filtering algorithm generally achieves better performance as the
minimal correlation threshold is increased.
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Fig. 7. Testing Different Cone Sizes and Minimal Correlation Threshold θ

5 Conclusion and Future Work

In this paper, a filter-and-refine correlation analysis algorithm for a pair of spa-
tial time series datasets is proposed. Experimental evaluations using a NASA
Earth science dataset are presented. The total savings of correlation analysis
computation range from 40 percent to 88 percent. In future work, we would like
to explore other coning methods, such as clustering and time series dimension-
ality reduction and indexing methods [1, 4, 6]. Clustering and spatial methods
using other schemes may provide higher filtering capabilities but possibly with
higher overheads. Time series dimensionality reduction and indexing methods
will also be explored to determine the tradeoff between filtering efficiency and
overhead.
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