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ABSTRACT 
Ocean climate indices (OCIs), which are time series 
that summarize the behavior of selected areas of the 
Earth’s oceans, are important tools for predicting the 
effect of the oceans on land climate.  In this paper we 
describe the use of data mining to discover Ocean 
Climate Indices (OCIs).  In particular, we apply a 
shared nearest neighbor (SNN) clustering algorithm to 
cluster the pressure and temperature time series 
associated with points on the ocean, yielding clusters 
that represent ocean regions with relatively 
homogeneous behavior.  The centroids of these 
clusters are time series that summarize the behavior of 
these ocean areas, and thus, represent potential OCIs.  
To evaluate cluster centroids for their usefulness as 
potential OCIs, we must determine which cluster 
centroids significantly influence the behavior of well-
defined land areas.  For this task, we use a variety of 
approaches that analyze the correlation between 
potential OCIs and the time series (e.g., of temperature 
or precipitation) which describe the behavior of land 
points.  Based on these approaches, we have identified 
some cluster centroids  that are almost identical to 
well-known OCIs, e.g., the Southern Oscillation Index 
(SOI) and the North Atlantic Oscillation (NAO).   We 
also introduce two strategies for validating potential 
OCIs which do not correspond to well-known (and 
probably “stronger”) OCIs,  namely, focusing on the 
correlation between “extreme” events on the ocean and 
land and looking for more persistent patterns of 
correlation. 
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1. INTRODUCTION 
The climate of the Earth’s land surface is strongly 
influenced by the behavior of the Earth’s oceans.  For 
example, El Nino, the anomalous warming of the 
eastern tropical region of the Pacific, has been linked 
to climate phenomena such as droughts in Australia 
and heavy rainfall along the Eastern coast of South 
America [Tay98].  To investigate such land-sea 
connections, Earth scientists often use ocean climate 
indices (OCIs), which are time series (of sea surface 
temperature or air pressure) that summarize the 
behavior of selected areas of the Earth’s oceans 
[IND1].  

Our interest in OCIs arises from a desire to 
use climate variables, such as long term sea level 
pressure (SLP) and sea surface temperature (SST), to 
discover interesting patterns relating changes in NPP 
(“plant growth”) to land surface climatology and 
global climate. NPP (Net Primary Production) is the 
net assimilation of atmospheric carbon dioxide (CO2) 
into organic matter by plants, and ecologists who work 
at the regional and global scale have identified NPP as 
a key variable for understanding the global carbon 
cycle and the ecological dynamics of the Earth. 
Terrestrial NPP is driven by solar radiation and can be 
constrained by precipitation and temperature. Keeping 
track of NPP is important because it includes the food 
source of humans and all other animals, and thus, 
sudden changes in the NPP of a region can have a 
direct impact on the regional ecology.  
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Predicting NPP based on, for example, sea 
surface temperature, would be of great benefit given 
the near real-time availability of SST data and the 
ability of climate forecasting to anticipate SST El 
Nino/La Nina events. An ecosystem model for 
predicting NPP, CASA (the Carnegie Ames Stanford 
Approach [PKB99]), has been used for over a decade 
to produce a detailed view of terrestrial productivity.   
Our goal in the investigations of OCIs is to use an 
improved understanding of the effect of OCIs on land 
climate to enhance the CASA model. 

This paper outlines a data mining approach 
for   the discovery of OCIs which consists of five key 
steps.   
1) Use clustering to find areas of the oceans that 

have relatively homogeneous behavior.  Each of 
these clusters can be characterized by a centroid, 
i.e., the mean of all the time series describing the 
ocean points that belong to the cluster, and this 
centroid represents a potential OCI.  (Actually, as 
we will see later, an OCI can correspond either to 
a single cluster centroid or to a pair of cluster 
centroids.)  In previous Earth science work 
[Ste+01], we used K-means clustering, but for 
work reported here, we use a shared nearest 
neighbor clustering approach [ESK01].  While K-
means produces clusters of “reasonable” quality, 
SNN clustering is better at finding high quality 
clusters in noisy data.   

2) Analyze the correlation between the clusters we 
have found. Many cluster centroids are highly 
correlated with one another since regions of the 
oceans are highly coupled to one another and are 
part of a global climate system.  In particular, we 
need to understand which clusters belong to 
groups of clusters, which together represent a 
single phenomenon.  Also, pairs of clusters which 
are negatively correlated sometimes correspond to 
a single OCI, and this can be identified by 
examining pairwise cluster correlations. 

3) Evaluate the influence of potential OCIs on 
land points.  Specifically, we are only interested 
in using a time series (cluster centroid, or 
otherwise) as an OCI if it can be used to explain 
the behavior of a well-defined region of the land.  
One way of evaluating OCI impact on the land is 
to compute the correlation of each cluster centroid 
(potential OCI) with each land point, where the 
behavior of a land point is described by a time 
series which captures the time dependent behavior 
of some variable, e.g., temperature or 
precipitation, associated with the land point.  In 
this fashion, we can determine, for each land 
point, the cluster centroid with which it is most 
highly correlated.  We can also investigate, for 

each land point, what the top two centroids are.  
The clusters or pairs of clusters which strongly 
affect many land points are potential candidates 
for climate indices.  

4)  Determine if the potential OCI matches a 
known OCI.  We show that some of the cluster 
centroids which are the best OCI candidates are 
almost identical to well-known OCIs, specifically, 
the Southern Oscillation Index (SOI) and the 
North Atlantic Oscillation (NAO). 

5) For potential OCIs that are not well-known, 
conduct further analysis. Only the strongest 
indices are likely to be discovered by the 
techniques in step 3, which rely on analyzing the 
raw correlation between two time series.  In large 
part this is because the impact of an ocean area on 
the land may only be significant for extreme 
events, e.g., an anomalously high temperature in 
an ocean region may produce anomalously low 
precipitation in a land area.  In such cases, it is 
better to look at only the anomalous portion of the 
potential OCI.  In addition, we have noticed  that 
OCIs typically show patterns of correlations that 
persist in time, and thus, comparing the correlation 
patterns in successive months is useful for OCI 
validation. 

The basic outline of this paper is as follows. 
Section 2 provides a description of the Earth science 
data that we use in our subsequent analyses;  Section 3 
briefly discusses our clustering technique; and  Section 
4 shows the ocean clusters produced by our SNN 
clustering approach.  Section 5 investigates the inter-
cluster correlation for clusters derived from pressure 
time series, discovering a) groups of related clusters 
and b) pairs of clusters that are candidate OCIs.  
Section 6 describes how analysis of the correlation 
between ocean clusters can be used to identify clusters 
(or pairs of clusters) that are promising candidates for 
OCIs.  Based on the results of sections 5 and 6,   
Section 7 shows that some of our clusters (or pairs of 
clusters) correspond to well-known OCIs such as SOI 
and NAO.  Section 8 describes a methodology for 
validating “weaker” candidate OCIs, while  Section 9 
is a conclusion and an indication of future directions.  

2. Earth Science Data 
The Earth science data for our analysis consists of 
global snapshots of measurement values for a number 
of variables (e.g., NPP, temperature, pressure and 
precipitation) collected for all land surfaces or water 
(see Figure 1). These variable values are either 
observations from different sensors, e.g., precipitation 
and sea surface temperature (SST), or the result of 
model predictions, e.g., NPP from the CASA model, 
and are typically available at monthly intervals that 

 2



span a range of 10 to 50 years. For the analysis 
presented here, we focus on attributes measured at 
points (grid cells) on latitude-longitude spherical grids 
of different resolutions, e.g., NPP, which is available 
at a resolution of 0.5° x 0.5°, and sea surface 
temperature, which is available for a 1° x 1° grid. 

Using variables derived from sensor 
observations, Earth scientists have developed standard 
ocean climate indices.  These indices are useful 
because 1) they can distill climate variability at a 
regional or global scale into a single time series, 2) 
they are related to well-known climate phenomena 
such as El Nino, and 3) they are well-accepted by 
Earth scientists. For example, various El Nino related 
indices, such as NINO 1+2 and NINO 4, have been 
established to measure sea surface temperature 
anomalies across different regions of the Pacific 
Ocean.  Some of the well-known climate indices are 
shown in Table 1 [IND1, IND2].   Figure 2 shows the 
time series for the SOI index.  Note that the dip in 
1982 and 1983 corresponds to a severe El Nino event. 

 

 
Table 1: Description of well-known climate indices.  

 
For completeness, we mention that there are 

significant issues related to the spatial and temporal 
nature of Earth science data: the “proper” measure of 
similarity between time series, the seasonality of the 
data, and the presence of spatial and temporal 
autocorrelation (i.e., measured values that are close in 

time and space tend to be highly correlated, or similar).  
For our similarity measure, we use Pearson’s 
correlation coefficient [Lin98], which ranges between  
–1 (perfect negative linear correlation) and 1 (perfect 
positive linear correlation), with a value of 0 indicating 
no linear correlation.  To handle the issues of 
seasonality and temporal autocorrelation, we pre-
process the data to remove seasonality.  In particular, 
we use the “monthly Z score” transformation, which  
takes the set of values for a given month, calculates the 
mean and standard deviation of that set of values, and 
then “standardizes” the data by calculating the Z-score 
of each value, i.e., by subtracting off the corresponding 
monthly mean and dividing by the monthly standard 
deviation.  For further details, we refer the reader to 
[Ste+01] or [Tan+01].   

3. An SNN Based Clustering Approach 
If we apply a clustering algorithm [JD88, KR90] to 
cluster the pressure and temperature time series 
associated with points on the ocean, we obtain clusters 
that represent ocean regions with relatively 
homogeneous behavior.  The centroids of these 
clusters are time series that summarize the behavior of 
these ocean areas, and thus, represent potential OCIs.  
Consequently, clustering is an initial and key step in 
using data mining for the discovery of OCIs.  

For our initial exploration of Earth science 
data, we employed the widely used K-means clustering 
algorithm [JD88], which is simple and efficient.  
(Because of space considerations we omit a detailed 
description of the K-means algorithm  and refer the 
reader to [JD88] for a general description, and to  
[Stei+01] for a description of K-means in the context 
of the Earth science data that we are discussing.)  
While we did find some interesting results using K-
means clusters [Ste+01], we decided to switch to a 
shared nearest neighbor (SNN) clustering approach 

Climate 
Index 

Description 

SOI  Measures the sea level pressure (SLP) anomalies 
between Darwin and Tahiti 

NAO Normalized SLP differences between Ponta 
Delgada, Azores and Stykkisholmur, Iceland 

NINO 
1+2    

Sea surface temperature anomalies in the region 
bounded by 80°W-90°W and 0°-10°S 

NINO 4  Sea surface temperature anomalies in the region 
bounded by 150°W-160°W and 5°S-5°N 

NP Area-weighted sea level pressure over the region  
30N-65N, 160E-140W 
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Figure 1: A simplified view of the problem domain. 

Figure 2:  Southern Oscillation Index (SOI) 
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[ESK01].  K-means tries to cluster all the data, and 
because of this, cluster quality suffers greatly, 
particularly if  the data is noisy, as with Earth science 
data.  Also, for K-means, the number of clusters needs 
to be specified in advance.  Furthermore, the clusters 
produced by K-means sometimes consist of “chunks” 
which are geographically widely separated.  While this 
can be interesting and useful, for our work in detecting 
OCIs, we wanted clusters that are geographically 
contiguous, or nearly so. The SNN clustering approach 
produces high quality clusters, which are almost 
always geographically contiguous, and automatically 
discovers the “correct” number of clusters.  Because of 
space considerations,  we omit a detailed description of 
the SNN algorithm  and refer the reader to [ESK01].   
4. SNN Clustering of Ocean Data 
We used SNN clustering on the two sets of data that 
we have for the ocean, sea level pressure (SLP) and 
sea surface temperature (SST).  For each of these data 
sets we clustered over two different time periods, from 

1950 through 1994, and from 1982 though 1993.  The 
second, shorter time frame was chosen because it 
matches the time frame for our NPP data, while the 
longer term data represents the full set of ocean data 
available to us.   

We first present the clusters that resulted from 
clustering SST.  Figure 3 shows the ocean clusters 
(black regions) found for the short term SST data, 
while Figure 4 shows the ocean clusters for the long 
term data.  Notice that while there are some 
differences, e.g., a cluster has disappeared from off the 
tip of eastern Brazil and the shapes and sizes of some 
clusters have changed, there are many similarities 
between the two figures.  It is possible that some of the 
differences in the two sets of clusters are related to 
climate change.  However, we do not pursue that issue 
here.  

Figures 5 and 6 show the ocean and land 
clusters (colored regions) for the short term and long 
term SLP data, respectively.  (Notice that the pressure 
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Figure 5.  26 ocean clusters produced by SNN 
clustering of  sea level pressure (1982-1993). 

Figure 6.  22 ocean clusters produced by SNN 
clustering of  sea level pressure (1950-1994). 
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Figure 3.  105 ocean clusters produced by SNN 
clustering of  sea surface temperature (1982-1993). 
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data is actually for the entire globe and thus, we have 
some clusters on the land.)  We have numbered these 
clusters for easy reference since they will be referred 
to in the following sections.  Please  note that the 
numbering and colors are not the same between Figure 
5 and Figure 6.  Finally, in order to keep the focus on 
the oceans, we will mostly ignore land clusters in the 
subsequent analysis.  

Once again, there are some differences 
between the long and short term data, e.g., clusters 2 
and 23 from the short term figures are absent from the 
set of long term clusters.  However, there are also 
many similarities, and  the clusters that we will discuss 
in detail are present in both the short and long term 
data.  

In the following, we will concentrate on the 
SLP clusters since there are fewer, and thus, it is easier 
to deal with them. 

5. Cluster Correlations 
In this section we consider only the SLP clusters for 
the short term data (1982-1993).  Our goal is to 
identify groups of related clusters and to identify pairs 
of clusters that are negatively correlated.  Identifying 
groups of related clusters is important when evaluating 
a cluster centroid as a potential OCI because some 
ocean phenomena, e.g., El Nino, may involve several 
different, but related, ocean areas.  Since pressure 
differences are important in weather and climate,  
negative correlations between pairs of clusters are also 
important, and indeed, some well-known OCIs that are 
based on pressure are defined as the difference of two 
pressure time series.  

Figure 7 shows the correlation matrix for the 
26 clusters found by clustering the sea level pressure 
for the time period 1982-1983.  First, notice that the 
clusters fall into three groups of clusters whose 

members are relatively highly (negatively or 
positively) correlated to each other.  The largest group 
is clusters 3-12, which are clusters near Antarctica.  
Similarly, the Artic clusters 22, 24, and 25 also form a 
group.  Finally, the equatorial clusters, 15 through 20, 
show a noticeable pattern of correlation, although this 
pattern is not as strong, or consistent as with the polar 
groups. 

Since some OCIs, e.g., SOI and NAO, are 
defined by the pressure differences between two points 
on the Earth, Figure 7 can also be used to identify 
cluster pairs that correspond to potential OCIs.  For 
example, the negative correlation between clusters 15 
and 20 is clear, as is the negative correlation of clusters 
13 and 25.  We will investigate these two pairs of 
clusters and their relationship to known OCIs (see 
Section 8) after we first investigate another technique 
for identifying potential OCIs.  We plan to investigate 
the other pairs of negatively correlated clusters, e.g., 
15 and 23,  but will not discuss them further in this 
paper. 

6. Correlation of Ocean Clusters to  
Land Points 

As mentioned previously, a cluster centroid (or pair of 
centroids) is an interesting OCI only if it strongly 
influences well-defined regions on the land.  Our first 
approach for determining which clusters are most 
influential counts the number of land points for which 
a given cluster centroid is the most highly correlated 
centroid.  Note that the maximum correlation between 
time series may occur when the time series are shifted, 
and thus, we take the maximum value of the 
correlations found by considering shifts between 0 and 
6 months. 

There are a number of different land variables 
that can be used for this investigation.  To cut down on 
the number of figures displayed, we use only NPP, 
temperature, and precipitation.  For these variables, 
respectively, figures 8, 9, and 10, show the number of 
land points for which each SLP cluster centroid is the 
most highly correlated centroid.  Notice that results are 
omitted for SLP clusters that lie entirely on the land 
and that the y-scale, the number of points, is different 
for each plot.   
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Clusters 15 and 20 have the largest impact on 
land points in terms of NPP, and are also among the 
highest for precipitation. Cluster 15 has, by far, the 
highest impact for temperature, and although 20 is not 
nearly as influential with respect to temperature, it is 
higher than average. Clusters 13 and 25 are also 
among the clusters showing a widespread impact on 
the land.  Figure 7. Pairwise correlation of SLP cluster 

centroids. (1982-1993). Correlations with 
absolute value < 0.2 are been omitted for 

For land points, it is also possible to compute 
the pairs of clusters that occur most frequently as the 
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two most highly correlated clusters.  Figure 11, shows 
the  number of land points (on a log base 10 scale) for 
which each pair of pressure clusters are the two most 
correlated clusters with respect to land temperature. 
Clusters 15 and 20 have a strong co-occurrence 
relationship for all the variables.  Clusters 13 and 25 
also have a noticeable co-occurrence relationship for 
all variables, although it is weaker than that of clusters 
15 and 20.  From figure 11, and from similar plots (for 
other land variables) which are not shown, we can 
identify other pairs of clusters that may possibly be 
new climate indices: (2, 20), (15, 23), and (13, 22).  
Notice that in all cases, these pairs of clusters are 
negatively correlated.  In the next section, we show 
that two of these pairs of clusters, (20, 15) and (13, 
25), correspond to well known OCIs.    

7. Replicating Current Climate Indices 
There are two basic types of ocean climate indices: 
OCIs based on pressure and OCIs based on 
temperature.  The OCIs based on pressure are more 
complicated, since they are often defined as the 
difference of the anomalous pressure readings at two 
different locations on the Earth’s surface.  For 
example,  as mentioned in Table 1, the Southern 
Oscillation Index (SOI) measures the sea level 
pressure anomalies between Darwin and Tahiti, while 
the North Atlantic Oscillation (NAO) measures 
normalized SLP differences between Ponta Delgada, 
Azores and Stykkisholmur, Iceland. 

If our approach for discovering ocean climate 
indices via clustering works, then we should be able to 
discover some of the well known indices. Thus, in this 
section we use our approach to show that there are 
pairs of clusters (15 and 20, 13 and 25 in Figure 5) 

Figure 11: Number of land points best correlated 
for pairs of SLP clusters for Temperature. 
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Figure 10:  Number of land points best correlated 
to an SLP cluster for precipitation. 

Figure 8:  Number of land points best correlated
to an SLP cluster for NPP.

Figure 9:  Number of land points best correlated 
to an SLP cluster for temperature. 
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Figure 14.  Smoothed difference of SLP cluster 
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Figure 12.  Centroids of SLP clusters 15 (near 
Darwin, Australia) and 20 (near Tahiti)  1982-1993. 
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correlated with El Nino indices. 

Figure 13.  Difference of SLP cluster centroids 20 
and 15 versus the SOI index.  (1982-1993)  

which correspond to well-known OCIs (SOI and 
NAO) created by Earth scientists.  We also show that 
some SST clusters correspond to well-known OCIs 
which are based on temperature.   

For the 1982-1993 SLP data, we can 
reproduce the SOI index by taking the difference of 
the centroids of clusters 20 (near Tahiti) and 15 (near 
Darwin, Australia).  Figure 12 shows, the plot of SLP 
cluster 15 versus SLP cluster 20.  These two time 
series are very similar, but of opposite phase.  Figure 
13 shows time series for cluster centroid 20 minus 
cluster centroid 15 versus the SOI index..  The degree 
of correlation, 0.78,  is statistically very significant (>> 
0.01) and the visual match is striking  

We can perform the same sort of analysis for 
NAO.  When we do, we find that for short term SLP 
data, the difference of clusters 13 and 25 is highly 

correlated with NAO.  These clusters correspond, 
respectively, to clusters near the Azores and 
Greenland.  Figure 14 shows the smoothed version 
(12-month moving average) of NAO versus cluster 
centroid 13 minus cluster centroid 25.  (NAO is very 
spiky and an un-smoothed figure is hard to evaluate.) 
Coincidentally, the correlation for the un-smoothed 
time series (not shown) is 0.81, the same as for the 
smoothed series.  

We obtain similar results if we use the long 
terms SLP, from Figure 6. Clusters 13 and 10 
correspond to SOI with a correlation of 0.77, while 
clusters 19 and 16 correspond to NAO with a 
correlation of 0.76. 

To conclude this section, we provide Figure 
15, which shows three SST clusters – red, green, and 
blue (from the 1982-1993 SST data, Figure 3), which 



are highly correlated ( ≈ 0.94 for all cases) with the El 
Nino indices. In particular,   Nino 1+2  corresponds to 
the red cluster, Nino 3  to the green, Nino 3+4 to the 
red, and Nino 4 also to the red.  These clusters 
correspond well with the El Nino region definitions 
given in Table 2 [IND1]. 

Niño Region Range Longitude Range Latitude 

1+2 90°W-80°W     10°S-0° 

3 150°W-90°W 5°S-5°N 

3.4 170°W-120°W 5°S-5°N 

4 160°E-150°W       5°S-5°N 

 
 

8. Val

using th

known OCIs, but are potential candidates for new 
OCIs.  Earth scientists are more interested in 
candidates that exhibit strong correlation with some of 
the land climate variables. However, quite often, a 
straightforward correlation between a candidate OCI 
and the time series of the land climate variable yields 
poor results for the following reasons: 
a) The impact of an OCI on the land climate 

variable is often more pronounced at its 
extreme (high and low) values as compared to 
its moderate values. For example, Figure 16 
shows the correlation between SOI and 
precipitation in the United States between January, 
1958 and December, 1994. We can divide the SOI 
time series into 2 disjoint segments: one that 
corresponds to the months for which the value of 
SOI is anomalously high or low (this is called the s 
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Table 2:  El Nino Region

 

idation of Candidate OCIs 
Some of the cluster centroids discovered 
e previous approaches do not correspond to 

HI & LO series) and another that corresponds to 
the months for which SOI is moderate (this is 
known as the NULL series). The results of this 
figure suggest that much of the correlation 

-0.3

0   

0.3 
Entire Series

-0.8

0   

0.8 
Hi & Lo Series

-0.8

0   

0.8 
Null Series

-0.3

0   

0.3 

-0.8

0   

0.8 

-0.8

0   

0.8 

-0.3

0   

0.3 

-0.8

0   

0.8 

-0.8

0   

0.8 

-0.3

0   

0.3 

-0.8

0   

0.8 

-0.8

0   

0.8 

-0.3

0   

0.3 

-0.8

0   

0.8 

-0.8

0   

0.8 

-0.3

0   

0.3 

-0.8

0   

0.8 

-0.8

0   

0.8 

-0.3

0   

0.3 

-0.8

0   

0.8 

-0.8

0   

0.8 

0 

 

 

 

 

igure 16: Correlation between SOI and precipitation in the United States (from Jan 1958 – Dec 1994). 
he first column corresponds to correlation for the entire SOI time series. The second column 
orresponds to the anomalously high/low SOI segment (Z ≥ 1.5 or Z ≤ -1.5) while the third column 
orresponds to the moderate SOI segment (-1 ≤ Z ≤ 1), where Z is the standardized value of SOI. 
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between SOI and precipitation can be explained 
by the HI & LO series (figures in the second 
column), and there is very little correlation 
between precipitation and the NULL series 
(figures in the third column). Furthermore, the 
correlation values computed using the HI & LO 
segment are significantly higher than the 
correlation values computed using the entire time 
series.  

b) The impact of OCI on the land climate variable 
may not be immediate. As a result, the direct 
correlation between them could be poor unless 
time shifts are taken into account. The rows in 
Figure 16 illustrate the values of the correlation 
between SOI and precipitation for various lags of 
the precipitation time series.  

 

Figure 17 shows a similar plot for correlation 
between precipitation in the United States and a 
randomly generated time series. The following results 
are observed upon comparing figures 16 and 17: 
a) The magnitude of the correlation is weaker for 

random noise compared to the SOI time series, 
especially for the HI & LO segment of the series. 

b) The land region that attains the highest correlation 
at different shifts appears to be quite similar for 
the SOI time series but is significantly different 
for the random noise time series. 

These results suggest that one way to identify 
a reliable OCI is to look for candidates that have a 
strong correlation, especially for extreme events, with 
some land climate variables.  However, another 
requirement is that their correlation maps should be 
relatively stable, i.e., should not change dramatically 
when we shift the time series of the land climate 
variable. To demonstrate this point, we have computed 
an overall similarity measure between the correlation 
maps (at consecutive shifts) of a given OCI. For a 
fixed region, let Mi denote the correlation map between 
an OCI and the time series of a land variable (shifted 
by i months). Also, let corr(Mi, Mi+1) denote the 
correlation between two consecutive maps Mi and 
Mi+1. Then the overall similarity measure, S, between 
the shifted correlation maps is: 

∑
−

=
+=

1

0
1 ),(1 p

i
ii MMcorr

p
S  

where p is the maximum shift. Figure 18 shows a 
histogram of S for the shifted correlation maps of 1000 

Figure 17: Correlation between random noise and precipitation in the United States.  
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randomly generated time series with the United States 
precipitation time series. About 95% of the values lie 
between –0.2 and 0.25. Figure 19 shows the 
corresponding values of S for several known OCIs. 
Apart from NAO and WP, many of the known OCIs 
have higher S values than those for random noise. The 
value of S for NAO could be poor because the NAO 
time series fluctuates rapidly. Furthermore, we have 
only examined precipitation in the United States. If we 
consider the precipitation for the entire globe, the S 
value for NAO increases to 0.2, while the range of S 
values for the noise time series is between –0.1 and 
0.25. Thus, more study is needed to distinguish  NAO-
like candidate OCIs from random noise. 

9. Conclusion and Future Work 
In this paper we described the use of data 

mining to discover ocean climate indices.  In 
particular, we illustrated how SNN clustering can be 
used to find ocean clusters when each point in the 

ocean is described either by a temperature or a 
pressure time series.  The centroids of these clusters 
are time series that summarize the behavior of these 
areas, and thus, represent potential ocean climate 
indices.  We also described some ways of evaluating 
which cluster centroids might be good candidates for 
climate indices, i.e., by looking at the correlation 
matrix of the cluster centroids or looking at the number 
of land points which have a cluster or a pair of clusters 
as their top centroid(s). 
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For SLP and SST ocean clusters, we then 
showed that some of the promising ocean clusters (or 
pairs of ocean clusters in the case of pressure) 
correspond to well-known ocean indices.  However, 
for unknown and potentially “weaker” OCIs, we need 
additional strategies for validating whether the 
potential OCI is really useful, and we discussed two 
approaches: focusing on extreme values of a potential 
OCI and looking for correlation patterns that persist 
over several months. 

Figure 18: Average similarity of shifted correlation 
maps for 1000 randomly generated time series. 

 A task for future research is to use regression 
or other statistical models to quantitatively evaluate the 
effect of multiple OCI’s on land points.  A key issue 
here is the lag between an OCI and its effect on or 
correlation with a land area.  It is not clear how to 
perform multiple regression for thousands of land 
points in cases where there are different “best” shifts 
for different OCIs and different land points. 
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