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Abstract This chapter provides an overview of the Minnesota Intrusion Detection System
(MINDS), which uses a suite of data mining based algorithms to address different
aspects of cyber security. The various components of MINDS such as the scan
detector, anomaly detector and the pro�ling module detect different types of at-
tacks and intrusions on a computer network. The scan detector aims at detecting
scans which are the percusors to any network attack. The anomaly detection al-
gorithm is very effective in detecting behavioral anomalies in the network traf�c
which typically translate to malicious activities such as denial-of-service (DoS)
traf�c, worms, policy violations and inside abuse. The pro�ling module helps a
network analyst to understand the characteristics of the network traf�c and detect
any deviations from the normal pro�le. Our analysis shows that the intrusions
detected by MINDS are complementary to those of traditional signature based sys-
tems, such as SNORT, which implies that they both can be combined to increase
overall attack coverage. MINDS has shown great operational success in detecting
network intrusions in two live deployments at the University of Minnesota and
as a part of the Interrogator architecture at the US Army Research Lab�s Center
for Intrusion Monitoring and Protection (ARL-CIMP).

Keywords: network intrusion detection, anomaly detection, summarization, pro�ling, scan
detection

The conventional approach to securing computer systems against cyber threats
is to design mechanisms such as �rewalls, authentication tools, and virtual pri-
vate networks that create a protective shield. However, these mechanisms almost
always have vulnerabilities. They cannot ward off attacks that are continually
being adapted to exploit system weaknesses, which are often caused by careless
design and implementation �aws. This has created the need for intrusion detec-
tion [6], security technology that complements conventional security approaches
by monitoring systems and identifying computer attacks.
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Traditional intrusion detection methods are based on human experts' extensive
knowledge of attack signatures which are character strings in a message�s pay-
load that indicate malicious content. Signatures have several limitations. They
cannot detect novel attacks, because someone must manually revise the signature
database beforehand for each new type of intrusion discovered. Once someone
discovers a new attack and develops its signature, deploying that signature is
often delayed. These limitations have led to an increasing interest in intrusion
detection techniques based on data mining [12, 22, 2].

This chapter provides an overview of the Minnesota Intrusion Detection Sys-
tem (MINDS1) which is a suite of different data mining based techniques to address
different aspects of cyber security. In Section 1 we will discuss the overall archi-
tecture of MINDS. In the subsequent sections we will brie�y discuss the different
components of MINDS which aid in intrusion detection using various data mining
approaches.

1. MINDS - Minnesota INtrusion Detection System
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Figure 6.1. The Minnesota Intrusion Detection System (MINDS)

Figure 6.1 provides an overall architecture of the MINDS. The MINDS suite con-
tains various modules for collecting and analyzing massive amounts of network
traf�c. Typical analyses include behavioral anomaly detection, summarization,
scan detection and pro�ling. Additionally, the system has modules for feature
extraction and �ltering out attacks for which good signatures have been learnt [8].
Each of these modules will be individually described in the subsequent sections.
Independently, each of these modules provides key insights into the network.
When combined, which MINDS does automatically, these modules have a mul-
tiplicative affect on analysis. As shown in the �gure, MINDS system is involves
a network analyst who provides feedback to each of the modules based on their
performance to �ne tune them for more accurate analysis.

While the anomaly detection and scan detection modules aim at detecting
actual attacks and other abnormal activities in the network traf�c, the pro�ling
module detects the dominant modes of traf�c to provide an effective pro�le of the
network to the analyst. The summarization module aims at providing a concise
representation of the network traf�c and is typically applied to the output of the
anomaly detection module to allow the analyst to investigate the anomalous traf�c
in very few screen-shots.

The various modules operate on the network data in the NetFlow format
by converting the raw network traf�c using the �ow-tools library 2. Data in



Anomaly Detection 85

NetFlow format is a collection of records, where each record corresponds to a
unidirectional �ow of packets within a session. Thus each session (also referred to
as a connection) between two hosts comprises of two �ows in opposite directions.
These records are highly compact containing summary information extracted
primarily from the packet headers. This information includes source IP, source
port, destination IP, destination port, number of packets, number of bytes and
timestamp. Various modules extract more features from these basic features and
apply data mining algorithms on the data set de�ned over the set of basic as well
as derived features.

MINDS is deployed at the University of Minnesota, where several hundred
million network �ows are recorded from a network of more than 40,000 computers
every day. MINDS is also part of the Interrogator [15] architecture at the US Army
Research Lab�s Center for Intrusion Monitoring and Protection (ARL-CIMP),
where analysts collect and analyze network traf�c from dozens of Department
of Defense sites [7]. MINDS is enjoying great operational success at both sites,
routinely detecting brand new attacks that signature-based systems could not have
found. Additionally, it often discovers rogue communication channels and the
ex�ltration of data that other widely used tools such as SNORT [19] have had
dif�culty identifying.

2. Anomaly Detection
Anomaly detection approaches build models of normal data and detect de-

viations from the normal model in observed data. Anomaly detection applied
to intrusion detection and computer security has been an active area of research
since it was originally proposed by Denning [6]. Anomaly detection algorithms
have the advantage that they can detect emerging threats and attacks (which do not
have signatures or labeled data corresponding to them) as deviations from normal
usage. Moreover, unlike misuse detection schemes (which build classi�cation
models using labeled data and then classify an observation as normal or attack),
anomaly detection algorithms do not require an explicitly labeled training data
set, which is very desirable, as labeled data is dif�cult to obtain in a real network
setting.

The MINDS anomaly detection module is a local outlier detection technique
based on the local outlier factor (LOF) algorithm [3]. The LOF algorithm is
effective in detecting outliers in data which has regions of varying densities
(such as network data) and has been found to provide competitive performance
for network traf�c analysis[13].

The input to the anomaly detection algorithm is NetFlow data as described in
the previous section. The algorithm extracts 8 derived features for each �ow [8].
Figure 6.2 lists the set of features which are used to represent a network �ow in
the anomaly detection algorithm. Note that all of these features are either present
in the NetFlow data or can be extracted from it without requiring to look at the
packet contents.

Applying the LOF algorithm to network data involves computation of similar-
ity between a pair of �ows that contain a combination of categorical and numerical
features. The anomaly detection algorithm uses a novel data-driven technique for
calculating the distance between points in a high-dimensional space. Notably,
this technique enables meaningful calculation of the similarity between records
containing a mixture of categorical and numerical features shown in Figure 6.2.
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Basic
Source IP
Source Port
Destination IP
Destination Port
Protocol
Duration
Packets Sent
Bytes per Packet Sent

Derived (Time-window Based)
count-dest Number of �ows to unique destina-

tion IP addresses inside the network
in the last T seconds from the same
source

count-src Number of �ows from unique
source IP addresses inside the net-
work in the last T seconds to the
same destination

count-serv-src Number of �ows from the source IP
to the same destination port in the
last T seconds

count-serv-dest Number of �ows to the destination
IP address using same source port in
the last T seconds

Derived (Connection Based)
count-dest-conn Number of �ows to unique destina-

tion IP addresses inside the network
in the last N �ows from the same
source

count-src-conn Number of �ows from unique
source IP addresses inside the net-
work in the lastN �ows to the same
destination

count-serv-src-conn Number of �ows from the source IP
to the same destination port in the
last N �ows

count-serv-dest-conn Number of �ows to the destination
IP address using same source port in
the last N �ows

Figure 6.2. The set of features used by the MINDS anomaly detection algorithm

LOF requires the neighborhood around all data points be constructed. This
involves calculating pairwise distances between all data points, which is anO(n2)
process, which makes it computationally infeasible for a large number of data
points. To address this problem, we sample a training set from the data and
compare all data points to this small set, which reduces the complexity toO(n∗m)
where n is the size of the data and m is the size of the sample. Apart from
achieving computational ef�ciency, sampling also improves the quality of the
anomaly detector output. The normal �ows are very frequent and the anomalous
�ows are rare in the actual data. Hence the training data (which is drawn uniformly
from the actual data) is more likely to contain several similar normal �ows and
far less likely to contain a substantial number of similar anomalous �ows. Thus
an anomalous �ow will be unable to �nd similar anomalous neighbors in the
training data and will have a high LOF score. The normal �ows on the other hand
will �nd enough similar normal �ows in the training data and will have a low
LOF score.
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Thus the MINDS anomaly detection algorithm takes as input a set of network
�ows3 and extracts a random sample as the training set. For each �ow in the
input data, it then computes its nearest neighbors in the training set. Using the
nearest neighbor set it then computes the LOF score (referred to as the Anomaly
Score) for that particular �ow. The �ows are then sorted based on their anomaly
scores and presented to the analyst in a format described in the next section.

Output of Anomaly Detection Algorithm. The output of the
MINDS anomaly detector is in plain text format with each input �ow described in
a single line. The �ows are sorted according to their anomaly scores such that the
top �ow corresponds to the most anomalous �ow (and hence most interesting for
the analyst) according to the algorithm. For each �ow, its anomaly score and the
basic features describing that �ow are displayed. Additionally, the contribution
of each feature towards the anomaly score is also shown. The contribution of a
particular feature signi�es how different that �ow was from its neighbors in that
feature. This allows the analyst to understand the cause of the anomaly in terms
of these features.

Table 6.1 is a screen-shot of the output generated by the MINDS anomaly
detector from its live operation at the University of Minnesota. This output is
for January 25, 2003 data which is one day after the Slammer worm hit the
Internet. All the top 23 �ows shown in Table 6.1 actually correspond to the
worm related traf�c generated by an external host to different U of M machines
on destination port 1434 (which corresponds to the Slammer worm). The �rst
entry in each line denotes the anomaly score of that �ow. The very high anomaly
score for the top �ows(the normal �ows are assigned a score close to 1), illustrates
the strength of the anomaly detection module in separating the anomalous traf�c
from the normal. Entries 2�7 show the basic features for each �ow while the last
entry lists all the features which had a signi�cant contribution to the anomaly
score. Thus we observe that the anomaly detector detects all worm related traf�c
as the top anomalies. The contribution vector for each of the �ow signi�es that
these anomalies were caused due to the feature � count src conn. The anomaly
due to this particular feature translates to the fact that the external source was
talking to an abnormally high number of inside hosts during a window of certain
number of connections.

Table 6.2 shows another output screen-shot from the University of Minnesota
network traf�c for January 26, 2003 data (48 hours after the Slammer worm
hit the Internet). By this time, the effect of the worm attack was reduced due to
preventive measures taken by the network administrators. Table 6.2 shows the
top 32 anomalous �ows as ranked by the anomaly detector. Thus while most of
the top anomalous �ows still correspond to the worm traf�c originating from an
external host to different U of M machines on destination port 1434, there are two
other type of anomalous �ows which are highly ranked by the anomaly detector

1 Anomalous �ows that correspond to a ping scan by an external host (Bold rows in Table
6.2)

2 Anomalous �ows corresponding to U of M machines connecting to half-life game servers
(Italicized rows in Table 6.2)
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3. Summarization
The ability to summarize large amounts of network traf�c can be highly valu-

able for network security analysts who must often deal with large amounts of
data. For example, when analysts use the MINDS anomaly detection algorithm to
score several million network �ows in a typical window of data, several hundred
highly ranked �ows might require attention. But due to the limited time available,
analysts often can look only at the �rst few pages of results covering the top few
dozen most anomalous �ows. A careful look at the tables 6.1 and 6.2 shows that
many of the anomalous �ows are almost identical. If these similar �ows can be
condensed into a single line, it will enable the analyst to analyze a much larger set
of anomalous �ows. For example, the top 32 anomalous �ows shown in Table 6.2
can be represented as a three line summary as shown in Table 6.3. We observe
that every �ow is represented in the summary. The �rst summary represents
�ows corresponding to the slammer worm traf�c coming from a single external
host and targeting several internal hosts. The second summary represents con-
nections made to half-life game servers by an internal host. The third summary
corresponds to ping scans by different external hosts. Thus an analyst gets a
fairly informative picture in just three lines. In general, such summarization has
the potential to reduce the size of the data by several orders of magnitude. This

avg Score cnt src IP sPort dst IP dPort proto pkts bytes

15102 21 63.150.X.253 1161 *** 1434 tcp [0,2) [0,1829)
3833 2 *** 27016 128.101.X.116 *** tcp [2,4) [0,1829)
3371 11 *** 0 *** 2048 icmp *** [0,1829)

Table 6.3. A three line summary of the 32 anomalous �ows in Table 6.2. The column count
indicates the number of �ows represented by a line. �***� indicates that the set of �ows
represented by the line had several distinct values for this feature.

motivates the need to summarize the network �ows into a smaller but meaningful
representation. We have formulated a methodology for summarizing information
in a database of transactions with categorical features as an optimization problem
[4]. We formulate the problem of summarization of transactions that contain cat-
egorical data, as a dual-optimization problem and characterize a good summary
using two metrics � compaction gain and information loss. Compaction gain
signi�es the amount of reduction done in the transformation from the actual data
to a summary. Information loss is de�ned as the total amount of information
missing over all original data transactions in the summary. We have developed
several heurisitic algorithms which use frequent itemsets from the association
analysis domain [1] as the candidate set for individual summaries and select a
subset of these frequent itemsets to represent the original set of transactions.

The MINDS summarization module [8] is one such heuristic-based algorithm
based on the above optimization framework. The input to the summarization
module is the set of network �ows which are scored by the anomaly detector.
The summarization algorithm �rst generates frequent itemsets from these network
�ows (treating each �ow as a transaction). It then greedily searches for a subset
of these frequent itemsets such that the information loss incurred by the �ows
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in the resulting summary is minimal. The summarization algorithm is further
extended in MINDS by incorporating the ranks associated with the �ows (based
on the anomaly score). The underlying idea is that the highly ranked �ows should
incur very little loss, while the low ranked �ows can be summarized in a more
lossy manner. Furthermore, summaries that represent many anomalous �ows
(high scores) but few normal �ows (low scores) are preferred. This is a desirable
feature for the network analysts while summarizing the anomalous �ows.

The summarization algorithm enables the analyst to better understand the
nature of cyberattacks as well as create new signature rules for intrusion detec-
tion systems. Speci�cally, the MINDS summarization component compresses the
anomaly detection output into a compact representation, so analysts can investi-
gate numerous anomalous activities in a single screen-shot. Table 6.4 illustrates
a typical MINDS output after anomaly detection and summarization. Each line
contains the average anomaly score, the number of anomalous and normal �ows
represented by the line, eight basic �ow features, and the relative contribution
of each basic and derived anomaly detection feature. For example, the second
line in Table 6.4 represents a total of 150 connections, of which 138 are highly
anomalous. From this summary, analysts can easily infer that this is a backscatter
from a denial-of-service attack on a computer that is outside the network being
examined. Note that if an analyst looks at any one of these �ows individually,
it will be hard to infer that the �ow belongs to back scatter even if the anomaly
score is available. Similarily, lines 7, 17, 18, 19 together represent a total of 215
anomalous and 13 normal �ows that represent summaries of FTP scans of the U
of M network by an external host (200.75.X.2). Line 10 is a summary of IDENT
lookups, where a remote computer is trying to get the user name of an account
on an internal machine. Such inference is hard to make from individual �ows
even if the anomaly detection module ranks them highly.

4. Pro�ling Network Traf�c Using Clustering
Clustering is a widely used data mining technique [10, 24] which groups sim-

ilar items, to obtain meaningful groups/clusters of data items in a data set. These
clusters represent the dominant modes of behavior of the data objects determined
using a similarity measure. A data analyst can get a high level understanding of
the characteristics of the data set by analyzing the clusters. Clustering provides
an effective solution to discover the expected and unexpected modes of behavior
and to obtain a high level understanding of the network traf�c.

The pro�ling module of MINDS essentially performs clustering, to �nd related
network connections and thus discover dominant modes of behavior. MINDS uses
the Shared Nearest Neighbor (SNN) clustering algorithm [9], which can �nd
clusters of varying shapes, sizes and densities, even in the presence of noise and
outliers. The algorithm can also handle data of high dimensionalities, and can
automatically determine the number of clusters. Thus SNN is well-suited for
network data. SNN is highly computationally intensive � of the order O(n2),
where n is the number of network connections. We have developed a parallel
formulation of the SNN clustering algorithm for behavior modeling, making it
feasible to analyze massive amounts of network data.

An experiment we ran on a real network illustrates this approach as well as
the computational power required to run SNN clustering on network data at a
DoD site [7]. The data consisted of 850,000 connections collected over one
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Start Time Duration Src IP Src Port Dst IP Dst Port Proto Pkt Bytes
10:00:10.428036 0:00:00 A 4125 B 8200 tcp 5 248
10:00:40.685520 0:00:03 A 4127 B 8200 tcp 5 248
10:00:58.748920 0:00:00 A 4138 B 8200 tcp 5 248
10:01:44.138057 0:00:00 A 4141 B 8200 tcp 5 248
10:01:59.267932 0:00:00 A 4143 B 8200 tcp 5 248
10:02:44.937575 0:00:01 A 4149 B 8200 tcp 5 248
10:04:00.717395 0:00:00 A 4163 B 8200 tcp 5 248
10:04:30.976627 0:00:01 A 4172 B 8200 tcp 5 248
10:04:46.106233 0:00:00 A 4173 B 8200 tcp 5 248
10:05:46.715539 0:00:00 A 4178 B 8200 tcp 5 248
10:06:16.975202 0:00:01 A 4180 B 8200 tcp 5 248
10:06:32.105013 0:00:00 A 4181 B 8200 tcp 5 248
10:07:32.624600 0:00:00 A 4185 B 8200 tcp 5 248

(a)

Start Time Duration Src IP Src Port Dst IP Dst Port Proto Pkt Bytes
10:01:00.181261 0:00:00 A 1176 B 161 udp 1 95
10:01:23.183183 0:00:00 A -1 B -1 icmp 1 84
10:02:54.182861 0:00:00 A 1514 B 161 udp 1 95
10:03:03.196850 0:00:00 A -1 B -1 icmp 1 84
10:04:45.179841 0:00:00 A -1 B -1 icmp 1 84
10:06:27.180037 0:00:00 A -1 B -1 icmp 1 84
10:09:48.420365 0:00:00 A -1 B -1 icmp 1 84
10:11:04.420353 0:00:00 A 3013 B 161 udp 1 95
10:11:30.420766 0:00:00 A -1 B -1 icmp 1 84
10:12:47.421054 0:00:00 A 3329 B 161 udp 1 95
10:13:12.423653 0:00:00 A -1 B -1 icmp 1 84
10:14:53.420635 0:00:00 A -1 B -1 icmp 1 84
10:16:33.420625 0:00:00 A -1 B -1 icmp 1 84
10:18:15.423915 0:00:00 A -1 B -1 icmp 1 84
10:19:57.421333 0:00:00 A -1 B -1 icmp 1 84
10:21:38.421085 0:00:00 A -1 B -1 icmp 1 84
10:21:57.422743 0:00:00 A 1049 B 161 udp 1 168

(b)

Start Time Duration Src IP Src Port Dst IP Dst Port Proto Pkt Bytes
10:10:57.097108 0:00:00 A 3004 B 21 tcp 7 318
10:11:27.113230 0:00:00 A 3007 B 21 tcp 7 318
10:11:37.111176 0:00:00 A 3008 B 21 tcp 7 318
10:11:57.118231 0:00:00 A 3011 B 21 tcp 7 318
10:12:17.125220 0:00:00 A 3013 B 21 tcp 7 318
10:12:37.132428 0:00:00 A 3015 B 21 tcp 7 318
10:13:17.146391 0:00:00 A 3020 B 21 tcp 7 318
10:13:37.153713 0:00:00 A 3022 B 21 tcp 7 318
10:14:47.178228 0:00:00 A 3031 B 21 tcp 7 318
10:15:47.199100 0:00:00 A 3040 B 21 tcp 7 318

(c)

Table 6.5. Clusters obtained from network traf�c at a US Army Fort, representing (a) connec-
tions to GoToMyPC.com, (b) mis-con�gured computers subjected to SNMP surveillance and (c)
a mis-con�gured computer trying to contact Microsoft
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hour. On a 16-CPU cluster, the SNN algorithm took 10 hours to run and required
100 Mbytes of memory at each node to calculate distances between points. The
�nal clustering step required 500 Mbytes of memory at one node. The algorithm
produced 3,135 clusters ranging in size from 10 to 500 records. Most large
clusters correspond to normal behavior modes, such as virtual private network
traf�c. However, several smaller clusters correspond to deviant behavior modes
that highlight miscon�gured computers, insider abuse, and policy violations that
are dif�cult to detect by manual inspection of network traf�c.

Table 6.5 shows three such clusters obtained from this experiment. Clus-
ter in Table 6.5(a) represents connections from inside machines to a site called
GoToMyPC.com, which allows users (or attackers) to control desktops remotely.
This is a policy violation in the organization for which this data was being ana-
lyzed. Cluster in Table 6.5(b) represents mysterious ping and SNMP traf�c where
a mis-con�gured internal machine is subjected to SNMP surveillance. Cluster in
Table 6.5(c) represents traf�c involving suspicious repeated ftp sessions. In this
case, further investigations revealed that a mis-con�gured internal machine was
trying to contact Microsoft. Such clusters give analysts information they can act
on immediately and can help them understand their network traf�c behavior.

Table 6.6 shows a sample of interesting clusters obtained by performing a
similar experiment on a sample of 7500 network �ows sampled from the Univer-
sity of Minnesota network data. The �rst two clusters (Tables 6.6(a) and 6.6(b))
represent Kazaa (P2P) traf�c between a UofM machine and different external
P2P clients. Since Kazaa usage is not allowed in the university, this cluster
brings forth an anomalous pro�le for the network analyst to investigate. Cluster
in Table 6.6(c) represents traf�c involving bulk data transfers between internal
and external hosts; i.e. this cluster covers traf�c in which the number of packets
and bytes are much larger than the normal values for the involved IPs and ports.
Cluster in Table 6.6(d) represents traf�c between different U of M hosts and
Hotmail servers (characterized by the port 1863). Cluster in Table 6.6(e) repre-
sents ftp traf�c in which the data transferred is low. This cluster has different
machines connecting to different ftp servers all of which are transferring much
lower amount of data than the usual values for ftp traf�c. A key observation to
be made is that the clustering algorithm automatically determines the dimensions
of interest in different clusters. In clusters of Table 6.6(a),6.6(b), the protocol,
source port and the number of bytes are similar. In cluster of Table 6.6(c) the only
common characteristic is large number of bytes. The common characteristics in
cluster of Table 6.6(d) are the protocol and the source port. In cluster of Table
6.6(e) the common features are the protocol, source port and the low number of
packets transferred.

5. Scan Detection
A precursor to many attacks on networks is often a reconnaissance operation,

more commonly referred to as a scan. Identifying what attackers are scanning
for can alert a system administrator or security analyst to what services or types
of computers are being targeted. Knowing what services are being targeted
before an attack allows an administrator to take preventative measures to protect
the resources e.g. installing patches, �rewalling services from the outside, or
removing services on machines which do not need to be running them.
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Start Time Duration Src IP Src Port Dst IP Dst Port Proto Pkt Bytes
03:49:24.854 0:14:44 128.101.X.46 3531 69.3.X.173 3015 tcp 20 857
03:49:37.167 0:14:54 128.101.X.46 3531 62.201.X.143 4184 tcp 19 804
03:49:57.223 0:14:17 128.101.X.46 3531 24.197.X.13 10272 tcp 17 701
03:49:57.224 0:17:00 128.101.X.46 3531 209.204.X.46 4238 tcp 20 835
03:52:07.707 0:13:33 128.101.X.46 3531 24.153.X.185 2008 tcp 15 620

(a) Cluster representing Kazaa traf�c between a UofM host and external machines

Start Time Duration Src IP Src Port Dst IP Dst Port Proto Pkt Bytes
03:49:34.399 0:14:08 128.101.X.139 3531 66.68.X.95 2422 tcp 19 804
03:49:39.215 0:15:07 128.101.X.139 3531 24.81.X.107 56782 tcp 19 814
03:49:44.975 0:15:05 128.101.X.139 3531 65.100.X.201 62654 tcp 22 998
03:49:49.447 0:12:06 128.101.X.139 3531 212.126.X.39 1125 tcp 19 814
03:49:52.759 0:14:44 128.101.X.139 3531 68.165.X.144 3208 tcp 17 706

(b) Cluster representing Kazaa traf�c between a UofM host and external machines

Start Time Duration Src IP Src Port Dst IP Dst Port Proto Pkt Bytes
03:36:53.116 0:31:07 160.94.X.7 2819 61.104.X.142 4242 tcp 3154 129490
03:43:43.575 0:20:24 66.163.X.112 5100 134.84.X.91 1224 tcp 2196 1217668
03:49:20.880 0:18:42 81.129.X.96 6881 134.84.X.14 1594 tcp 3200 4399254
03:50:21.403 0:15:08 211.180.X.131 4670 160.94.X.7 21 tcp 2571 3330750
03:52:49.530 0:10:20 195.29.X.70 27568 160.94.X.50 63144 tcp 2842 113680
03:54:32.854 0:09:00 24.147.X.216 6881 128.101.X.1191 5371 tcp 2677 115353

(c) Cluster representing bulk data transfer between different hosts

Start Time Duration Src IP Src Port Dst IP Dst Port Proto Pkt Bytes
03:58:56.069 00:00:00 207.46.106.183 1863 128.101.169.37 3969 tcp 1 41
03:59:18.521 00:00:30 207.46.108.59 1863 128.101.248.166 1462 tcp 4 189
04:00:04.001 00:00:00 207.46.106.151 1863 134.84.5.26 3963 tcp 1 41
04:00:36.910 00:00:00 207.46.107.39 1863 134.84.255.18 4493 tcp 1 41
04:00:59.570 00:00:00 207.46.106.3 1863 128.101.169.165 2869 tcp 1 92
04:02:56.103 00:00:00 207.46.106.188 1863 134.84.255.22 4715 tcp 1 41
04:03:39.646 00:00:00 207.46.106.151 1863 134.84.5.26 3963 tcp 1 475
04:03:59.178 00:00:50 207.46.106.97 1863 128.101.35.20 1102 tcp 4 176

(d) Cluster representing traf�c between U of M hosts and Hotmail servers

Start Time Duration Src IP Src Port Dst IP Dst Port Proto Pkt Bytes
03:58:32.117 00:00:02 128.101.36.204 21 155.210.211.122 1280 tcp 13 1046
04:00:02.326 00:00:05 128.101.36.204 21 12.255.198.216 34781 tcp 18 1532
04:00:53.726 00:00:11 128.101.25.35 21 62.101.126.201 9305 tcp 13 1185
04:02:54.718 00:00:00 128.101.36.204 21 62.101.126.217 27408 tcp 2 144
04:05:31.784 00:00:10 128.101.36.204 21 213.170.40.147 10029 tcp 3 144
04:07:00.800 00:00:01 38.117.149.172 21 134.84.191.5 2968 tcp 10 649
04:07:03.440 00:00:03 128.101.36.204 21 210.162.100.225 7512 tcp 13 998
04:08:05.649 00:00:00 66.187.224.51 21 134.84.64.243 45607 tcp 4 227

(e) Cluster representing FTP traf�c with small payload

Table 6.6. Five clusters obtained from University of Minnesota network traf�c
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Given its importance, the problem of scan detection has been given a lot of
attention by a large number of researchers in the network security community.
Initial solutions simply counted the number of destination IPs that a source IP
made connection attempts to on each destination port and declared every source IP
a scanner whose count exceeded a threshold [19]. Many enhancements have been
proposed recently [23, 11, 18, 14, 17, 16], but despite the vast amount of expert
knowledge spent on these methods, current, state-of-the-art solutions still suffer
from high percentage of false alarms or low ratio of scan detection. For example, a
recently developed scheme by Jung [11] has better performance than many earlier
methods, but its performance is dependent on the selection of the thresholds. If
a high threshold is selected, TRW will report only very few false alarms, but
its coverage will not be satisfactory. Decreasing the threshold will increase
the coverage, but only at the cost of introducing false alarms. P2P traf�c and
backscatter have patterns that are similar to scans, as such traf�c results in many
unsuccessful connection attempts from the same source to several destinations.
Hence such traf�c leads to false alarms by many existing scan detection schemes.

MINDS uses a data-mining-based approach to scan detection. Here we present
an overview of this scheme and show that an off-the-shelf classi�er, Ripper [5],
can achieve outstanding performance both in terms of missing only very few
scanners and also in terms of very low false alarm rate. Additional details are
available in [20, 21].

Methodology. Currently our solution is a batch-mode implementation
that analyzes data in windows of 20 minutes. For each 20-minute observation
period, we transform the NetFlow data into a summary data set. Figure 6.3
depicts this process. With our focus on incoming scans, each new summary
record corresponds to a potential scanner�that is pair of external source IP
and destination port (SIDP). For each SIDP, the summary record contains a set
of features constructed from the raw net�ows available during the observation
window. Observation window size of 20 minutes is somewhat arbitrary. It needs
to be large enough to generate features that have reliable values, but short enough
so that the construction of summary records does not take too much time or
memory.

Given a set of summary data records corresponding to an observation period,
scan detection can be viewed as a classi�cation problem [24] in which each SIDP,
whose source IP is external to the network being observed, is labeled as scanner
if it was found scanning or non-scanner otherwise. This classi�cation problem
can be solved using predictive modeling techniques developed in the data mining
and machine learning community if class labels (scanner/non-scanner) are
available for a set of SIDPs that can be used as a training set.

Figure 6.4 depicts the overall paradigm. Each SIDP in the summary data
set for an observation period (typically 20 minutes) is labeled by analyzing the
behavior of the source IPs over a period of several days. Once a training set
is constructed, a predictive model is built using Ripper. The Ripper generated
model can now be used on any summary data set to produce labels of SIDPs.

The success of this method depends on (1) whether we can label the data
accurately and (2) whether we have derived the right set of features that facilitate
the extraction of knowledge. In the following sections, we will elaborate on these
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Figure 6.3. Transformation of raw net�ow data in an observation window to the Summary Data
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Figure 6.4. Scan Detection using an off-the-shelf classi�er, Ripper. Building a predictive
model: 20 minutes of NetFlow data is converted into unlabeled Summary Record format, which
is labeled by the Labeler using several days of data. Predictive model is built on the labeled
Summery Records. Scan Detection: 20 minutes of data is converted into unlabeled Summary
Record format. The predictive model is applied to it resulting in a list of predicted scanners.

points.

Features: The key challenge in designing a data mining method for a concrete
application is the necessity to integrate the expert knowledge into the method.
A part of the knowledge integration is the derivation of the appropriate features.
We make use of two types of expert knowledge. The �rst type of knowledge
consists of a list of inactive IPs, a set of blocked ports and a list of P2P hosts in
the network being monitored. This knowledge may be available to the security
analyst or can be simply constructed by analyzing the network traf�c data over a
long period (several weeks or months). Since this information does not change
rapidly, this analysis can be done relatively infrequently. The second type of
knowledge captures the behavior of <source IP, destination port> (SIDP) pairs,
based on the 20-minute observation window. Some of these features only use the
second type of knowledge, and others use both types of knowledge.
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Labeling the Data Set: The goal of labeling is to generate a data set that can be
used as training data set for Ripper. Given a set of summarized records corre-
sponding to 20-minutes of observation with unknown labels (unknown scanning
statuses), the goal is to determine the actual labels with very high con�dence.
The problem of computing the labels is very similar to the problem of scan de-
tection except that we have the �exibility to observe the behavior of an SIDP
over a long period. This makes it possible to declare certain SIDPs as scanner
or non-scanner with great con�dence in many cases. For example, if a source
IP s ip makes a few failed connection attempts on a speci�c port in a short
time window, it may be hard to declare it a scanner. But if the behavior of s ip
can be observed over a long period of time (e.g. few days), it can be labeled
as non-scanner (if it mostly makes successful connections on this port) or
scanner (if most of its connection attempts are to destinations that never offered
service on this port). However, there will situations, in which the above analysis
does not offer any clear-cut evidence one way or the other. In such cases, we
label the SIDP as dontknow. For additional details on the labeling method, the
reader is referred to [20].

Evaluation. For our experiments, we used real-world network trace data
collected at the University of Minnesota between the 1st and the 22nd March,
2005. The University of Minnesota network consists of 5 class-B networks with
many autonomous subnetworks. Most of the IP space is allocated, but many
subnetworks have inactive IPs. We collected information about inactive IPs
and P2P hosts over 22 days, and we used �ows in 20 minute windows during
03/21/2005 (Mon.) and 03/22/2005 (Tue.) for constructing summary records for
the experiments. We took samples of 20-minute duration every 3 hours starting
at midnight on March 21. A model was built for each of the 13 periods and tested
on the remaining 12 periods. This allowed us to reduce possible dependence on
a certain time of the day, and performed our experiments on each sample.

Table 6.7 describes the traf�c in terms of number of <source IP, destination
port> (SIDP) combinations pertaining to scanning-, P2P-, normal- and backscat-
ter traf�c.

In our experimental evaluation, we provide comparison to TRW [11], as it
is one of the state-of-the-art schemes. With the purpose of applying TRW for
scanning worm containment, Weaver et al. [25] proposed a number of simpli�-
cations so that TRW can be implemented in hardware. One of the simpli�cations
they applied�without signi�cant loss of quality�is to perform the sequential
hypothesis testing in logarithmic space. TRW then can be modeled as count-
ing: a counter is assigned to each source IP and this counter is incremented
upon a failed connection attempt and decremented upon a successful connection
establishment.

Our implementation of TRW used in this paper for comparative evaluation
draws from the above ideas. If the count exceeds a certain positive threshold,
we declare the source to be scanner, and if the counter falls below a negative
threshold, we declare the source to be normal.

The performance of a classi�er is measured in terms of precision, recall and
F-measure. For a contingency table of
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Table 6.7. The distribution of (source IP, destination ports) (SIDPs) over the various traf�c types
for each traf�c sample produced by our labeling method

ID Day.Time Total scan p2p normal backscatter dont-know
01 0321.0000 67522 3984 28911 6971 4431 23225
02 0321.0300 53333 5112 19442 9190 1544 18045
03 0321.0600 56242 5263 19485 8357 2521 20616
04 0321.0900 78713 5126 32573 10590 5115 25309
05 0321.1200 93557 4473 38980 12354 4053 33697
06 0321.1500 85343 3884 36358 10191 5383 29527
07 0321.1800 92284 4723 39738 10488 5876 31459
08 0321.2100 82941 4273 39372 8816 1074 29406
09 0322.0000 69894 4480 33077 5848 1371 25118
10 0322.0300 63621 4953 26859 4885 4993 21931
11 0322.0600 60703 5629 25436 4467 3241 21930
12 0322.0900 78608 4968 33783 7520 4535 27802
13 0322.1200 91741 4130 43473 6319 4187 33632

classi�ed as classi�ed as
Scanner not Scanner

actual Scanner TP FN
actual not Scanner FP TN

precision =
TP

TP + FP

recall =
TP

TP + FN

F−measure =
2 ∗ prec ∗ recall

prec + recall
.

Less formally, precision measures the percentage of scanning (source IP, des-
tination port)-pairs (SIDPs) among the SIDPs that got declared scanners; recall
measures the percentage of the actual scanners that were discovered; F-measure
balances between precision and recall.

To obtain a high-level view of the performance of our scheme, we built a
model on the 0321.0000 data set (ID 1) and tested it on the remaining 12 data
sets. Figure 6.5 depicts the performance of our proposed scheme and that of
TRW on the same data sets 4.

One can see that not only does our proposed scheme outperform TRW by a
wide margin, it is also more stable: the performance varies less from data set to
data set (the boxes in Figure 6.5 appear much smaller).

Figure 6.6 shows the actual values of precision, recall and F-measure for the
different data sets. The performance in terms of F-measure is consistently above
90% with very high precision, which is important, because high false alarm rates
can rapidly deteriorate the usability of a system. The only jitter occurs on data
set # 7 and it was caused by a single source IP that scanned a single destination
host on 614(!) different destination ports meanwhile touching only 4 blocked
ports. This source IP got misclassi�ed as P2P, since touching many destination
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Figure 6.5. Performance comparison between the proposed scheme and TRW. From left to
right, the six box plots correspond to the precision, recall and F-measure of our proposed scheme
and the precision, recall and F-measure of TRW. Each box plot has three lines corresponding
(from top downwards) to the upper quartile, median and lower quartile of the performance values
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Figure 6.6. The performance of the proposed scheme on the 13 data sets in terms of precision
(topmost line), F-measure (middle line) and recall (bottom line). The model was built on data
set ID 1.

ports (on a number of IPs) is characteristic of P2P. This single misclassi�cation
introduced 614 false negatives (recall that we are classifying SIDPs not source
IPs). The reason for the misclassi�cation is that there were no vertical scanners
in the training set � the highest number of destination ports scanned by a single
source IP was 8, and this source IP touched over 47 destination IPs making it
primarily a horizontal scanner.

6. Conclusion
MINDS is a suite of data mining algorithms which can be used as a tool by net-

work analysts to defend the network against attacks and emerging cyber threats.
The various components of MINDS such as the scan detector, anomaly detector
and the pro�ling module detect different types of attacks and intrusions on a
computer network. The scan detector aims at detecting scans which are the per-
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cusors to any network attack. The anomaly detection algorithm is very effective
in detecting behavioral anomalies in the network traf�c which typically translate
to malicious activities such as dos traf�c, worms, policy violations and inside
abuse. The pro�ling module helps a network analyst to understand the charac-
teristics of the network traf�c and detect any deviations from the normal pro�le.
Our analysis shows that the intrusions detected by MINDS are complementary to
those of traditional signature based systems, such as SNORT, which implies that
they both can be combined to increase overall attack coverage. MINDS has shown
great operational success in detecting network intrusions in two live deployments
at the University of Minnesota and as a part of the Interrogator [15] architecture
at the US Army Research Lab�s Center for Intrusion Monitoring and Protection
(ARL-CIMP).
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Notes
1. www.cs.umn.edu/research/minds
2. www.splintered.net/sw/�ow-tools
3. Typically, for a large sized network such as the University of Minnesota, data for a

10 minute long window is analyzed together
4. The authors of TRW recommend a threshold of 4. In our experiments, we found,

that TRW can achieve better performance (in terms of F-measure) when we set the threshold
to 2, this is the threshold that was used in Figure 6.5, too.

References
[1] Rakesh Agrawal, Tomasz Imieliski, and Arun Swami. Mining association

rules between sets of items in large databases. In Proceedings of the 1993
ACM SIGMOD international conference on Management of data, pages
207�216. ACM Press, 1993.

[2] Daniel Barbara and Sushil Jajodia, editors. Applications of Data Mining
in Computer Security. Kluwer Academic Publishers, Norwell, MA, USA,
2002.

[3] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and J Sander.
Lof: identifying density-based local outliers. In Proceedings of the 2000
ACM SIGMOD international conference on Management of data, pages
93�104. ACM Press, 2000.

[4] Varun Chandola and Vipin Kumar. Summarization � compressing data into
an informative representation. In Fifth IEEE International Conference on



102 MINDS: Architecture & Design

Data Mining, pages 98�105, Houston, TX, November 2005.
[5] William W. Cohen. Fast effective rule induction. In International Confer-

ence on Machine Learning (ICML), 1995.
[6] Dorothy E. Denning. An intrusion-detection model. IEEE Trans. Softw.

Eng., 13(2):222�232, 1987.
[7] Eric Eilertson, Levent Ert�oz, Vipin Kumar, and Kerry Long. Minds � a

new approach to the information security process. In 24th Army Science
Conference. US Army, 2004.

[8] Levent Ert�oz, Eric Eilertson, Aleksander Lazarevic, Pang-Ning Tan, Vipin
Kumar, Jaideep Srivastava, and Paul Dokas. MINDS - Minnesota Intrusion
Detection System. In Data Mining - Next Generation Challenges and Future
Directions. MIT Press, 2004.

[9] Levent Ertoz, Michael Steinbach, and Vipin Kumar. Finding clusters of
different sizes, shapes, and densities in noisy, high dimensional data. In
Proceedings of 3rd SIAM International Conference on Data Mining, May
2003.

[10] Anil K. Jain and Richard C. Dubes. Algorithms for Clustering Data.
Prentice-Hall, Inc., 1988.

[11] Jaeyeon Jung, Vern Paxson, Arthur W. Berger, and Hari Balakrishnan. Fast
portscan detection using sequential hypothesis testing. In IEEE Symposium
on Security and Privacy, 2004.

[12] Vipin Kumar, Jaideep Srivastava, and Aleksander Lazarevic, editors. Man-
aging Cyber Threats�Issues, Approaches and Challenges. Springer Verlag,
May 2005.

[13] Aleksandar Lazarevic, Levent Ert�oz, Vipin Kumar, Aysel Ozgur, and
Jaideep Srivastava. A comparative study of anomaly detection schemes in
network intrusion detection. In SIAM Conference on Data Mining (SDM),
2003.

[14] C. Lickie and R. Kotagiri. A probabilistic approach to detecting network
scans. In Eighth IEEE Network Operations and Management, 2002.

[15] Kerry Long. Catching the cyber-spy, arl's interrogator. In 24th Army
Science Conference. US Army, 2004.

[16] V. Paxon. Bro: a system for detecting network intruders in real-time. In
Eighth IEEE Network Operators and Management Symposium (NOMS),
2002.

[17] Phillip A. Porras and Alfonso Valdes. Live traf�c analysis of tcp/ip gate-
ways. In NDSS, 1998.

[18] Seth Robertson, Eric V. Siegel, Matt Miller, and Salvatore J. Stolfo.
Surveillance detection in high bandwidth environments. In DARPA DIS-
CEX III Conference, 2003.

[19] Martin Roesch. Snort: Lightweight intrusion detection for networks. In
LISA, pages 229�238, 1999.



Acknowledgements 103

[20] Gyorgy Simon, Hui Xiong, Eric Eilertson, and Vipin Kumar. Scan detec-
tion: A data mining approach. Technical Report AHPCRC 038, University
of Minnesota � Twin Cities, 2005.

[21] Gyorgy Simon, Hui Xiong, Eric Eilertson, and Vipin Kumar. Scan detec-
tion: A data mining approach. In Proceedings of SIAM Conference on Data
Mining (SDM), 2006.

[22] Anoop Singhal and Sushil Jajodia. Data mining for intrusion detection.
In Data Mining and Knowledge Discovery Handbook, pages 1225�1237.
Springer, 2005.

[23] Stuart Staniford, James A. Hoagland, and Joseph M. McAlerney. Practical
automated detection of stealthy portscans. Journal of Computer Security,
10(1/2):105�136, 2002.

[24] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to
Data Mining. Addison-Wesley, May 2005.

[25] Nicholas Weaver, Stuart Staniford, and Vern Paxson. Very fast contain-
ment of scanning worms. In 13th USENIX Security Symposium, 2004.


