
Finding Clusters of Different Sizes, Shapes, and Densities
in Noisy, High Dimensional Data

Levent Ertöz
Department of Computer Science

University of Minnesota
Minneapolis, MN USA
ertoz@cs.umn.edu

Michael Steinbach
Department of Computer Science

University of Minnesota
Minneapolis, MN USA

steinbac@cs.umn.edu

Vipin Kumar
Department of Computer Science

University of Minnesota
Minneapolis, MN USA

kumar@cs.umn.edu

ABSTRACT
The problem of finding clusters in data is challenging when
clusters are of widely differing sizes, densities and shapes, and
when the data contains large amounts of noise and outliers. Many
of these issues become even more significant when the data is of
very high dimensionality, such as text or time series data. In this
paper we present a novel clustering technique that addresses these
issues. Our algorithm first finds the nearest neighbors of each
data point and then redefines the similarity between pairs of
points in terms of how many nearest neighbors the two points
share. Using this new definition of similarity, we eliminate noise
and outliers, identify core points, and then build clusters around
the core points. The use of a shared nearest neighbor definition of
similarity removes problems with varying density, while the use
of core points handles problems with shape and size. We
experimentally show that our algorithm performs better than
traditional methods (e.g., K-means) on a variety of data sets:
KDD Cup '99 network intrusion data, NASA Earth science time
series data, and two dimensional point sets. While our algorithm
can find the “dense” clusters that other clustering algorithms find,
it also finds clusters that these approaches overlook, i.e., clusters
of low or medium density which are of interest because they
represent relatively uniform regions “surrounded” by non-uniform
or higher density areas. The run-time complexity of our
technique is O(n2) since the similarity matrix has to be
constructed. However, we discuss a number of optimizations that
allow the algorithm to handle large datasets efficiently. For
example, 100,000 documents from the TREC collection can be
clustered within an hour on a desktop computer.

Categories and Subject Descriptors
I.5.3 [Pattern Recognition]: Clustering

General Terms
Algorithms, Experimentation

Keywords
cluster analysis, shared nearest neighbor, time series, network
intrusion, spatial data

1. INTRODUCTION
Cluster analysis [8,11] divides data into groups (clusters) for the
purposes of summarization or improved understanding. For
example, cluster analysis has been used to group related
documents for browsing, to find genes and proteins that have
similar functionality, or as a means of data compression. While
clustering has a long history and a large number of clustering
techniques have been developed in statistics, pattern recognition,
data mining, and other fields, significant challenges still remain.
In part, this is because large, as well as high dimensional, data
sets and the computational power to deal with them are relatively
recent. However, most of the clustering challenges, particularly
those related to “quality,” rather than computational resources, are
the same challenges that existed decades ago: how to handle to
noise and outliers, how to determine the number of clusters, and
how to find clusters with differing sizes, shapes and densities. For
this reason, although scalability has been the main focus of much
of the clustering work in data mining, clustering research has also
focused on these other issues.

1.1. The Challenges of Cluster Analysis and
Related Work

Finding clusters of different shapes and sizes, especially in
the presence of noise is a problem that many recent clustering
algorithms, have addressed. For low dimensional data DBSCAN
[3], CURE [5], and Chameleon [10] have shown good
performance. Chameleon first builds a list of the nearest
neighbors of each point, constructs a weighted similarity graph
using this nearest neighbor list, and then partitions the graph to
obtain cluster fragments which are merged into clusters with a
hierarchical agglomerative clustering technique.

The notion of a representative point is key to DBSCAN,
although the term “core point” is used. In DBSCAN, the density
associated with a point is obtained by counting the number of
points in a region of specified radius around the point. Points
with a density above a specified threshold are classified as core
points, while noise points are defined as non-core points that
don’t have a core points within the specified radius. Noise points
are discarded, while clusters are formed around the core points.
If two core points are neighbors of each other, then their clusters
are joined. Non-noise, non-core points, which are called border
points, are assigned to the clusters associated with any core point
within their radius. Thus, core points form the skeleton of the
clusters, while border points flesh out this skeleton.

 2

While DBSCAN can find clusters of arbitrary shapes, it
cannot handle data containing clusters of differing densities, since
its density based definition of core points cannot identify the core
points of varying density clusters. Consider Figure 1. If the user
defines the neighborhood of a point by specifying a particular
radius and looks for core points that have a pre-defined number of
points within that radius, then either the tight left cluster will be
picked up as one cluster and the rest will be marked as noise, or
else every point will belong to one cluster.

In CURE, the concept of representative points is also
employed to find non-globular clusters. The use of representative
points allows CURE to find many types of non-globular clusters.
However, there are still many types of globular shapes that CURE
cannot handle. This is a result of the way the CURE algorithm
finds representative points, i.e., it finds points along the boundary,
and then shrinks those points towards the center of the cluster.

While Chameleon does not explicitly use the notion of core
points, all three approaches share the idea that the challenge of
finding clusters of different shapes and sizes can be handled by
finding points or small subsets of points and then building clusters
around them. This approach is especially important for spatial
data, since non-globular clusters are not represented by their
centroid, and thus, cannot be handled by centroid based schemes.
Single link agglomerative clustering methods are most suitable for
capturing clusters with non-globular shapes, but these methods
are very brittle and cannot handle noise properly.

Cure, DBSCAN and Chameleon also gave considerable
attention to dealing with noise and outliers. As mentioned, in
DBSCAN noise points are not clustered. Cure eliminates noise
points by periodically eliminating small groups of points that are
not growing very fast. Chameleon does not eliminate any points,
but by building the similarity graph from the nearest neighbor list,
it does eliminate most of the influence of noise points on the
clustering process. Note that outliers are also eliminated by these
approaches.

However, both CURE and DBSCAN have problems with
clusters of different density. Chameleon can handle clusters of
varying density, partly because of its nearest neighbor approach,
but does not work well for high dimensional data, e.g.,
documents.

While DBSCAN, CURE, and Chameleon focused on solving
clustering problems for low dimensional data, data of high
dimensionality brings new challenges. In particular, the
dimensionality of the data typically makes its influence felt
through its affect on the similarity function. For example, in high
dimensional data sets, distances or similarities between points
become more uniform, making clustering more difficult. Also,

sometimes the similarity between individual data points can be
misleading, i.e., a point can be more similar to a point that
“actually” belongs to a different cluster than to points in its own
cluster. A shared nearest neighbor approach to similarity, as
proposed in ROCK [5] and earlier by Jarvis and Patrick in [9], is a
promising way to deal with this issue. Specifically, the nearest
neighbors of each point are found, and then a new similarity
between points is defined in terms of the number of neighbors
they share. Given the new similarity, ROCK performs
agglomerative hierarchical clustering , while the Jarvis-Patrick
approach simply groups all points with non-zero similarity, i.e.,
finds connected components.

Our discussion of how several recent clustering approaches
handle some of the important challenges of cluster analysis is far
from complete. For example, DENCLUE [6] and OptiGrid [7]
are more recent density based schemes that are likely to
outperform DBSCAN. However, we believe that we have
identified the key issues: using representative points to deal with
differing shapes and sizes, the difficulty of dealing with clusters
of differing densities, the importance of eliminating outliers and
noise, and the problems with similarity that can arise, particularly
in higher dimensions.

1.2. Our Contribution
Here we present a clustering approach that can

simultaneously address several important clustering challenges for
a wide variety of data sets. In particular, our algorithm first finds
the nearest neighbors of each data point and then redefines the
similarity between pairs of points in terms of how many nearest
neighbors the two points share. Using this new definition of
similarity, we eliminate noise and outliers, identify core points,
and then build clusters around the core points. These clusters do
not contain all the points, but rather represent relatively uniform
groups of points. The use of a shared nearest neighbor definition
of similarity removes problems with varying density and the
unreliability of distance measures in high dimensions, while the
use of core points handles problems with shape and size.
Furthermore, the number of clusters is automatically determined,
although there are parameters that allow for the adjustment of the
algorithm.

A novel aspect of our algorithm is that it finds clusters that
other approaches would overlook. In particular, many clustering
algorithms only find “dense” clusters. However, this approach
ignores sets of points that represent relatively uniform regions
with respect to their surroundings. Another novel aspect of our
approach is that a cluster consisting of a single data point can be
significant, since this data point may be representative of a large
number of other data points. (Unfortunately , there is not room in
this paper to illustrate this idea and we refer the reader to [4].)

Much of the strength of our approach comes from ideas (core
or representative points, defining similarity in terms of near
neighbors, noise removal) that are found in several recent
clustering algorithms, i.e., CURE, Chameleon, and DBSCAN,
although our basic inspiration derives from the Jarvis-Patrick
clustering technique, which was proposed in 1973. Our
contributions include extending the Jarvis-Patrick clustering
technique to encompass the notion of representative points,
creating a complete clustering algorithm which incorporates a
variety of recent and old ideas, relating this approach to the
approaches of other researchers, and importantly, showing that

Neighborhood of a point

Figure 1. Density based neighborhoods.

 3

our approach works better than current algorithms for a variety of
different types of data.

While our algorithm has many good characteristics, it has a
few characteristics that may be liabilities in some situations.
First, the algorithm does not cluster all the points. Generally, this
is a good thing, as often much of the data is noise and should be
eliminated. However, if a complete clustering is desired, the
unclustered data can be added to the core clusters found by our
algorithm by assigning them to the cluster containing the closest
representative point. Secondly, the algorithm is basically
partitional, although we have experimented some with producing
a hierarchy of clusters. Finally, The run-time complexity is
O(n2), where n is the number of points, since the similarity matrix
has to be constructed. However, we discuss a number of
optimizations that allow the algorithm to handle large datasets
efficiently.

1.3. Outline of the Paper
The rest of the paper is organized as follows. Sections 2 and

3, respectively, describe our approaches to the definition of
similarity and density (or connectedness), which are key to our
clustering algorithm. The actual clustering algorithm itself is
described in Section 4. Section 5 follows up with three case
studies: two dimensional point data, NASA Earth Science time
series data, and the KDD cup ’99 network intrusion data. Section
8 discusses the complexity of our clustering algorithm and
strategies for improving the run-time, while Section 7 presents a
short conclusion and directions for future work.

2. A BETTER DEFINITION OF
SIMILARITY

The most common distance metric used in low dimensional
datasets is Euclidean distance, or the L2 norm. While Euclidean
distance is useful in low dimensions, it doesn’t work as well in
high dimensions. Consider the pair of ten-dimensional data
points, 1 and 2, shown below, which have binary attributes.

Poin
t

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

1 1 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 1

If we calculate the Euclidean distance between these two points,
we get √2. Now, consider the next pair of ten-dimensional
points, 3 and 4.

Poin
t

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

3 1 1 1 1 1 1 1 1 1 0

4 0 1 1 1 1 1 1 1 1 1

If we calculate the distance between points 3 and 4, we again
find out that it’s √2. Notice that points 1 and 2 do not share any
common attributes, while points 3 and 4 are almost identical.
Clearly Euclidean distance does not capture the similarity of
points with binary attributes. The problem with Euclidean
distance is that missing attributes are as important as the present
attributes. However, in high dimensions, the presence of an
attribute is typically a lot more important than the absence of an
attribute, provided that most of the data points are sparse vectors,
and in high dimensions, it is often the case that the data points

will be sparse vectors, i.e., they will only have a handful of non-
zero attributes (binary or otherwise).

Different measures, such as the cosine measure and Jaccard
coefficient, have been suggested to address this problem. The
cosine similarity between two data points is equal to the dot
product of the two vectors divided by the individual norms of the
vectors. (If the vectors are already normalized the cosine
similarity simply becomes the dot product of the vectors.) The
Jaccard coefficient between two points is equal to the number of
common attributes divided by the number of attributes in either
vector (if attributes are binary). (There is also an extension of the
Jaccard coefficient to handle non-binary attributes.) If we
calculate the cosine similarity or Jaccard coefficient between data
points 1 and 2, and 3 and 4, we see that the similarity between 1
and 2 is equal to zero, but is almost 1 between 3 and 4.

Nonetheless, even though both of these measures give more
importance to the presence of a term than to its absence, there are
cases where using such similarity measures still does not
eliminate all problems with similarity in high dimensions. For
example, for several TREC datasets which had class labels, we
found that 15-20% of the time a document’s most similar
document (according to the cosine measure) is of a different class
[15]. The “unreliability” of direct similarity is also illustrated in
[5] using a synthetic market basket data set. Note that this
problem is not due to the lack of a good similarity measure.
Instead, the problem is that direct similarity in high dimensions
cannot be trusted when the similarity between pairs of points are
low. In general, data in high dimensions is sparse and the
similarity between data points, on the average, is low.

Another very important problem with similarity measures in
high dimensions is that, the triangle inequality doesn’t hold.
Here’s an example:

Poin
t

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10

A 1 1 1 1 1 0 0 0 0 0

B 0 0 1 1 1 1 1 1 0 0

C 0 0 0 0 0 1 1 1 1 1

Point A is close to point B, point B is close to point C, and
yet, points A and C are infinitely far apart. The similarity
between points A and B, and points C and B come from different
sets of attributes.

An alternative to direct similarity is to define the similarity
between a pair of points in terms of their shared nearest
neighbors. That is, the similarity between two points is
“confirmed” by their common (shared) nearest neighbors. If point
A is close to point B and if they are both close to a set of points C
then we can say that A and B are close with greater confidence
since their similarity is “confirmed” by the points in set C. The
shared nearest neighbor approach was first introduced by Jarvis
and Patrick [9]. A similar idea was later presented in ROCK [5].

In the Jarvis–Patrick scheme, a shared nearest neighbor
graph is constructed from the similarity matrix as follows. A link
is created between a pair of points, p and q, if and only if p and q
have each other in their closest k nearest neighbor lists. This
process is called k-nearest neighbor sparsification. The weights
of the links between two points in the SNN graph can either be
simply the number of nearest neighbors the two points share, or
can take the ordering of the nearest neighbors into account. Let i

 4

and j be two points. The strength of the link between i and j is
now defined as:

strength(i, j) = ∑ (k+1-m) (k + 1 – n), where im = jm
In the equation above, k is the nearest neighbor list size, m and n

are the positions of a shared nearest neighbor in i and j’s lists. At
this point, clusters can be obtained by removing all edges with
weights less than a user specified threshold and taking all the
connected components as clusters [9].

Figures 2 illustrates two key properties of the shared nearest
neighbor graph in the context of a 2-D point data set. In Figure 2,
(left) links to the five most similar neighbors are drawn for each
point. Figure 2 (right) shows the unweighted shared nearest
neighbor graph. In the graph, there is a link between points A and
B, only if A and B have each other in their nearest neighbor lists.

There are two important issues to note in this 2-D point set
example. First, noise points and outliers end up having most, if
not all, of their links broken. The point on the lower right corner
ended up losing all its links, because it wasn’t in the nearest
neighbor lists of its own nearest neighbors. Thus, by looking at
the number of surviving links after constructing the SNN graph,
we can remove a lot of noise. Second, the shared nearest neighbor
graph is “density” invariant, i.e. it keeps the links in uniform
regions and breaks the ones in the transition regions. This is an
important property, since widely varying density (tightness) of
clusters is one of the hardest problems in cluster analysis.

3. A BETTER DEFINITION OF DENSITY
In high dimensional datasets, the traditional Euclidean notion of
density, which is the number of points per unit volume, is
meaningless. To see this, consider that as the number of
dimensions increases, the volume increases rapidly, and unless
the number of points grows exponentially with the number of
dimensions, the density tends to 0. Thus, in high dimensions, it is
not possible to use a (traditional) density based method such as
DBSCAN which identifies core points as points in high density
regions and noise points as points in low density regions. (To be
fair, it is possible to use DBSCAN if you abandon Euclidean
density, i.e., use a similarity measure such as the cosine measure,
instead of Euclidean distance.)

However, there is another notion of density that does not
have the same problem, i.e., the notion of the probability density
of a point. In the k-nearest neighbor approach to multivariate
density estimation [2], if a point that has a lot of close near
neighbors, then it is more likely to be in a region which has a
relatively high probability density. Thus, when we look at the
nearest neighbors of a point, points with a large number of close
(highly similar) neighbors are in more “dense” regions than are
points with distant (weakly similar) neighbors.

In practice, we take the sum of the similarities of a point’s
nearest neighbors as a measure of this density. The higher this
density, the more likely it is that a point is a core or representative
points. The lower the density, the more likely, the point is a noise
point or an outlier. Note that while our motivation is to identify
those points which have the highest probability density, from a
graph point of view we are identifying the points that have the
strongest connectivity. Also note that since we are using an SNN
graph as our starting point, our densities do not correspond to an
absolute probability density or connectivity strength, but rather
correspond to values that are “normalized” to a local
neighborhood.

The importance of this approach is that it gives us a density
invariant method for identifying core or representative points,
which, in turn, are the key to handling clusters of differing sizes
and shapes.

4. A SHARED NEAREST NEIGHBOR
CLUSTERING ALGORITHM

 We now present an algorithm that builds on the Jarvis–Patrick
method. This algorithm uses a density based approach to find
core or representative points. However, this approach is based on
the notion of density introduced in Section 3, which is based on
the idea of probability density (or alternatively, the graph
connectivity in a similarity graph). However, since we are using
similarity based on a shared nearest neighbor approach, which
automatically compensates for different densities (see Section 2),
this density approach is not be subject to the problem illustrated in
Figure 1.

4.1. Identifying Core Points and Removing
Noise

Figure 3 illustrates how we can find representative points
and effectively remove noise using the SNN graph. In this 2D
point dataset, there are 8000 points and a nearest neighbor list of
size of 20 is used. Figure 3b shows all the points that have 15 or
more links remaining in the SNN graph. In Figure 3c, all points
have 10-14 links surviving and Figure 3d shows the remaining
points. As we can see in these figures, the points that have high
connectivity in the SNN graph are candidates for representative or

a) All points b) Core Points c) Border Points d) Noise Points
Figure 3. Two Dimensional Point Set Example

Figure 2. Near Neighbor Graph (left) and
Unweighted Shared Nearest Neighbor Graph

 5

core points since they tend to be located well inside the natural
cluster, and the points that have low connectivity are candidates
for noise points and outliers as they are mostly in the regions
surrounding the clusters. Note that all the links in the SNN graph
are counted to get the number of links that a point has, regardless
of the strength of the links. An alternative way of finding
representative points is to consider only the strong links in the
count. Similarly we can find the representative points and noise
points by looking at the sum of link strengths for every point in
the SNN graph. The points that have high total link strength then
become candidates for representative points, while the points that
have very low total link strength become candidates for noise
points.

4.2. The SNN Clustering Algorithm
The steps of the SNN clustering algorithms are as follows:

1. Compute the similarity matrix. (This corresponds to a
similarity graph with data points for nodes and edges whose
weights are the similarities between data points.)

2. Sparsify the similarity matrix by keeping only the k most
similar neighbors. (This corresponds to only keeping the k
strongest links of the similarity graph.)

3. Construct the shared nearest neighbor graph from the
sparsified similarity matrix. (Each link is assigned a strength
according to the formula in Section 3.)

4. For every node (data point) in the graph, calculate the total
strength of links coming out of the point. (Steps 1-4 are
identical to the Jarvis – Patrick scheme.)

5. Identify representative points by choosing the points that
have high density, i.e., high total link strength.

6. Identify noise points by choosing the points that have low
density (total link strength) and remove them.

7. Remove all links between points that have weight smaller
than a threshold.

8. Take connected components of points to form clusters,
where every point in a cluster is either a representative point
or is connected to a representative point.
The number of clusters is not given to the algorithm as a

parameter. Depending on the nature of the data, the algorithm
finds the natural number of clusters for the given set of
parameters. Also note that not all the points are clustered using
out algorithm. Depending on the application, we might actually
want to discard many of the points.

5. EXPERIMENTAL STUDIES

5.1. 2D Data
We first illustrate the superiority of our SNN clustering

algorithm with respect to the Jarvis-Patrick approach. A major
drawback of the Jarvis–Patrick scheme is that the threshold needs
to be set high since otherwise two distinct set of points can be
merged into same cluster even if there is only one link between
them. On the other hand, if the threshold is too high, then a
natural cluster may be split into small clusters due to natural
variations in the similarity within the cluster. Indeed, there may
be no right threshold for some data sets. This problem is
illustrated in the following example that contains clusters of
points sampled from Gaussian distributions of two different
means and variances.

In Figure 4, there are two Gaussian samples. (Note that
these clusters cannot be correctly separated by K-means due to
their different sizes and densities). Figure 5 shows the clusters
obtained by Jarvis–Patrick method using the smallest possible
threshold. (Any threshold smaller than this puts all points in the
same cluster.) Even this smallest possible threshold breaks the
data into many different clusters. In Figure 5, different clusters
are represented with different shapes and colors, where the
discarded points / background points are shown as tiny squares.
Even with a better similarity measure, it is hard to obtain the two
apparent clusters. Figure 6 shows the connected components that
result from SNN clustering.

Figure 4. Gaussian Data Set.

Figure 5. Connected components, JP Clustering.

Figure 6. Connected components SNN Clustering.
In order to visualize how the SNN clustering algorithm described
in this paper compares to other clustering algorithms, we created a
2-D point dataset and ran our algorithm, as well as CURE,
DBSCAN, and K-means, on this dataset. The dataset consists of
6 globular clusters of varying densities. Figure 6 shows the
clusters obtained from the Gaussian dataset shown in Figure 4
using the SNN clustering method described here. We can see that
by using noise removal and the representative points, we can
obtain two clusters. The points that do not belong to any of the
two clusters can be brought in by assigning them to the cluster
that has the closest core point.

 6

In Figure 7, we see that CURE failed to detect the clusters
correctly; it almost identified one cluster correctly (the middle
one), but merged the four rightmost clusters into one, and split
the leftmost cluster into several parts.

Figure 7. Clusters Produced by Cure.

For one parameterization (shown in Figure 8), DBSCAN
found three different clusters, two that were genuine, and one that
combined four “real” clusters. For a different choice of
parameters (Figure 9), DBSCAN was able to separate the three
tightest clusters, but classified everything else as noise. This
example clearly illustrates DBSCAN's problems with clusters of
varying density.

K-means' performance (Figure 10) was very poor even
though the clusters were globular and the right value of K was
specified. This is due to the fact that the clusters are of very
different sizes and densities. Clusters found by K-means were
either a mixture of two real clusters or a portion of one real
cluster.

Figure 11 shows that our SNN clustering algorithm was able
to identify each of the clusters in the dataset, although 15% of the
points were not assigned to any cluster.

The performance of our SNN clustering algorithm on the
datasets used in CHAMELEON can be found in the appendix.

Figure 8. DBSCAN (MinPts=4, Eps=9.75).

Figure 9. DBSCAN (MinPts=4, Eps=9.92).

5.2. NASA Earth Science Data
In this section, we consider an application of our SNN clustering
technique to Earth science data. In particular, our data consists of
monthly measurements of sea level pressure for grid points on a

Figure 10. K-means Clustering.

Figure 11. SNN Clustering.

2.5° longitude-latitude grid (144 horizontal divisions by 72
vertical divisions) from 1950 to 1994, i.e., each time series is a
540 dimensional vector. These time series were preprocessed to
remove seasonal variation. For a more complete description of
this data and the clustering analysis that we have performed on it,
please see [13] and [14].

Briefly, Earth scientists are interested in discovering areas of
the ocean, whose behavior correlates well to climate events on the
Earth’s land surface. In terms of pressure, Earth scientists have
discovered that the difference in pressure between two points on
the Earth’s surface often yields a time series that correlates well
with certain weather phenomena on the land. Such time series are
called Ocean Climate Indices (OCIs). For example, the Southern
Oscillation Index (SOI) measures the sea level pressure (SLP)
anomalies between Darwin, Australia and Tahiti and is associated
with El Nino, the anomalous warming of the eastern tropical
region of the Pacific that has been linked to climate phenomena
such as droughts in Australia and heavy rainfall along the Eastern
coast of South America [16]. Our goal in clustering SLP is to see
if the difference of cluster centroids can yield a time series that
reproduces known OCIs and to perhaps discover new indices.

Our SNN clustering approach yields the clusters shown in
Figure 12. These clusters have been labeled for easy reference.
(Note that cluster “1” is the background or “junk” cluster, and that
while we cluster pressure over the entire globe, we focus on the
ocean.) Although we cluster the time series independently of any
spatial information, the resulting clusters are typically
geographically contiguous because of the underlying spatial
autocorrelation of the data.

Using these clusters, we have been able to reproduce SOI as
the difference of the centroids of clusters 15 and 20. We have
also been able to reproduce another well-known OCI, i.e., NAO,
which are the normalized SLP differences between Ponta
Delgada, Azores and Stykkisholmur, Iceland. NAO corresponds
to the differences of the centroids of clusters 25 and 13. For more

 7

details, see [14]. This success gives us confidence that the
clusters discovered by SNN have real physical significance.

The reader might wonder how we know that these are the
“real” set of clusters, i.e., is it possible that the clusters we find
might change significantly if we change the parameters for the
SNN clustering algorithm. However, that is not the case, and
basically the same clusters are produced for different
parameterizations. We illustrate why this is so by plotting the
SNN density (as discussed in Section 4) at each point – see Figure
13. The densest (reddest, darkest) points correspond to time
series that will be the core points, although exactly which ones are
chosen will depend on a threshold. The time series merged with
any given core point will typically be the time series of the
surrounding points since the spatial autocorrelation makes the
time series of physically close points be highly similar. Thus, for
this data, the SNN clusters can be picked out visually and are in
good agreement with those produced by our clustering algorithm.

It is also reasonable to wonder whether other clustering
techniques could also discover these clusters. To answer that
question, we clustered the same data using DBSCAN and K-
means. The best results for DBSCAN clustering are shown in
Figure 14, while Figure 15 shows the results for a less optimal
parameter choice for DBSCAN clustering. Note that the colors
have no meaning except to distinguish the different clusters and
are not coordinated between any of the different figures. While
there are similarities between the two figures, it seems that to find
the less dense clusters, e.g.., 15 and 23, which are the clusters not
on the equators or at the poles, it is necessary to relax the
parameterization. These less dense clusters are present in Figure
15, but it is also clear that we have “blurred” the other clusters in
our attempt to find the “weaker” clusters.

We can see this blurring effect even better if we try to
reproduce the SOI and NAO indices using the DBSCAN clusters.
For the first set of DBSCAN clusters (Figure 14) we can find a
difference of two cluster centroids that correlates with SOI at a
level of 0.81, which is essentially the same correlation as the
difference of the centroids 15 and 20 from Figure 12. However,
no pairs of clusters from Figure 16 yield NAO. If we use the
DBSCAN clusters in Figure 15, we can find a pair of clusters that
correlates to NAO at a level of 0.77, which is almost as strong a
correlation as for the difference of centroids 13 and 25 from
Figure 12. However, the correlation to SOI has drops to 0.73.
In contrast, SNN clustering can find the less dense clusters
without compromising the tighter clusters.

For K-means, we attempted to find roughly the same number
of clusters as with our SNN approach, i.e., ~30. (For K-means
approach, we used the CLUTO package [1] with the bisecting K-
means algorithm and the refine parameter.) However, since K-
means naturally clusters all the data, we generated 100 clusters
and then threw out all but the 30 most cohesive clusters (as
measured by their average cluster correlation). Still, the clusters
shown in Figure 16 are not a very good match for clusters of
Figure 12, although they do show the same pattern of clusters
around the poles and along the equator. Note that cluster 13,
which is key to reproducing the NAO index, is missing from the
K-means clusters that we kept. Interestingly, one of the
discarded K-means clusters did correlate highly with cluster 13
(corr = 0.99), but it is the 57th least cohesive cluster with respect
to average cluster correlation.

For both DBSCAN and K-means the main problem is that
the “best” clusters are those which are the densest, i.e., tightest.

In this Earth science domain, clusters which are relatively dense
are also important. (We speculate that regions of the ocean that
are relatively uniform have more influence on the land, even if
their tightness is not as high as that of other regions.) For this
Earth science domain, it is well known that the equatorial SLP
clusters correlate highly to the El Nino phenomenon, which is the
strongest OCI. However, for K-means and DBSCAN, these
“strong” clusters tend to mask the weaker clusters.

5.3. KDD Cup ’99 Network Intrusion Data
In this section, we present experimental results from KDD Cup
’99 dataset which is widely used for benchmarking network
intrusion detection systems. The dataset consists of TCP sessions
and the attributes consist of TCP connection properties, network
traffic statistics using a 2 second window and several attributes
extracted from TCP packets. We also have access to the labels
for these sessions which take one of the 5 possible values: normal,
u2r, dos, r2l, probe. The original data is very large, therefore we
sampled the data using a simple scheme. We picked up all the
attack sessions from the training and the test data and put a cap of
10,000 records for each sub-attack type (there are 36 actual attack
types in the data that are grouped into 4 categories), and we
picked 10,000 normal sessions from both test and training sets.
We ended up with a dataset of approximately 97,000 records. We
then removed the duplicate sessions and the dataset size reduced
to 45,000 records. We clustered the data using our algorithm and
k-means (k=100, 300, 1000). The following tables show the
purity of the clusters for our algorithm and k-means (k=300).
Since our algorithm removes noise, for k-means results we
present a similar table constructed from the tightest clusters
whose size add up to total size of the shared nearest neighbor
clusters. For all of the following comparisons, we used CLUTO
to obtain k-way partitioning (using default values), which does a
better job than standard implementations of k-means. For
comparison, we used Clementine data mining software to cluster
the data using k-means and the comparison can be found in
appendix.

In the following tables we present results for our algorithm
and the results from k-means for 300-way partitioning. The
results for the other k-means runs can be found in the appendix.
We can clearly see that the level of impurity for k-means clusters
is considerably higher than the shared nearest neighbor clusters
even when we only consider the tightest k-means clusters. In
particular, for the rare class (user to root attack), k-means picks up
only 15 out of 267 correctly (using the majority rule) and our
algorithm picks up 101 out of 267. When we look at the tightest
k-means clusters, k-means doesn’t pick up anything from the rare
class. The clusters that our algorithm found were superior to k-
means clusters almost exclusively for different values of k. For
example, when we look at the tightest clusters of the 1000-way
partition, k-means was better only in identifying probe class; the
impurity of probe class was 5.63% as opposed to 5.95% for our
algorithm.

The size of the largest k-means clusters for k=300 was 300
and the largest cluster we obtained using our algorithm was 479
where we had 521 clusters. Even though our algorithm had many
more clusters in the output, the largest cluster was much bigger
than the largest k-means cluster. This shows that our algorithm is
able to find more unbalanced clusters if they’re present in the
data.

 8

Table 1 Purity across classes - K-means (k=300)

 total correct incorrect Impurity
normal 18183 17458 725 3.99%
u2r 267 15 252 94.38%
dos 17408 17035 373 2.14%
r2l 3894 3000 894 22.96%
probe 4672 4293 379 8.11%

Table 2 Purity across classes - Tightest K-means Clusters

(k=300)

total correct incorrect missing impurity
normal 18183 9472 520 8191 5.20%
u2r 267 0 113 154 100.00%
dos 17408 16221 186 1001 1.13%
r2l 3894 2569 471 854 15.49%
probe 4672 3610 302 760 7.72%

Table 3 Purity across classes - SNN Clusters

total correct incorrect missing impurity
normal 18183 12708 327 5148 2.51%
u2r 267 101 67 99 39.88%
dos 17408 13537 53 3818 0.39%
r2l 3894 2654 257 983 8.83%
probe 4672 3431 217 1024 5.95%

6. COMPLEXITY ANALYSIS
Our SNN clustering algorithm requires O(n2) time (n is the
number of data points), although since it only requires the K
nearest neighbors, the space complexity is O(Kn). The K nearest
neighbor list can be computed once and used repeatedly, for
different runs of the algorithm with different parameter values,
but the initial computation of the nearest neighbor list can become
a bottleneck. For low dimensional data, the complexity of
computing the nearest neighbor list can be reduced to n log(n) by
the use of a data structure such as a k-d tree or an R* tree.

While there is no completely general technique for finding
nearest neighbors efficiently (in time less than O(n2)) in high
dimensions, the technique of canopies [12] is applicable in many
cases. This approach first cheaply partitions a set of data points
by repeatedly selecting a point and then forming a group around
that point of all other points that are within a certain similarity
threshold. The closest of these points are removed from further
consideration, and the process is repeated until the set of points is
exhausted. (If the actual similarity measure is expensive, an
approximate similarity measure can be used to further increase
efficiency.) The result of this process is a set of (possibly
overlapping) groups of points which are much smaller than the
original set and which can then be processed individually. In our
case, canopies would reduce the computation required for finding
the nearest neighbors of each point since each point’s nearest
neighbors will only be selected from it’s canopy. The rest of the
SNN algorithm, which is linear in the number of points, would
proceed as before.

While canopies represent a general approach for speeding up
nearest neighbor list computation, other, more domain specific
approaches are also possible. In the remainder of this section we

present a couple of approaches that, respectively, substantially
reduce the amount of computation required for documents and for
NASA Earth science time series. For documents efficiency is
enhanced by using an inverted index and the fact that documents
vectors are rather sparse. For times series associated with
physical points, efficiency can be enhanced by realizing that the
most similar time series are almost always associated with
physical points that are geographically close.

For document clustering, every document contains a fraction
of the words from the vocabulary and the document vectors are
quite sparse. One of the most widely used similarity measures in
document clustering is the cosine measure. According to the
cosine measure, for two documents to have a non-zero similarity,
they have to share at least one word. Thus, for a given document
i, we can find the list of documents that have a non-zero similarity
to i by keeping a list of all the documents that contain at least one
of the terms in document i. The transpose of the document-term
matrix (inverted index) consists of word vectors that are lists of
documents that contain each word. If we maintain the inverted
index for the data we’re trying to cluster, then we can construct
the list of similar documents for a given document by taking the
union of the word vectors for each word in that particular
document. After this list is constructed, we only need to calculate
the similarity of the given document to the documents in this list
since all other documents will have a zero similarity. This avoids
unnecessary computation.

A second optimization can be performed by exploiting the
fact that for a given document, only the top few words contribute
substantially to the norm. If we only keep the high-weighted
terms that make up most of the norm (90% or so), we can reduce
the number of similar documents considerably, but not lose much
information. Using this optimization resulted in a speedup of 30
over the case where only the first optimization was used. We
clustered 3200 documents in 2 seconds on a Pentium 3, 600MHz.

For our Earth science data the O(n2) complexity has not been
a problem yet since the current data sets, which consist of data
sets of < 100,000 records with dimensionality of roughly 500 can
be handled in less than a day on a single processor. However,
Earth scientists are collecting data using smaller and smaller grid
sizes. For example, if the grid size at which data is collected is
halved, the number of data points, n, increases by a factor of 4,
and the SNN computation increases by a factor of 16. Thus, in
the future computational issues may be more important.

Fortunately it is possible to take advantage of the spatial
autocorrelation of the data to significantly reduce the time
complexity of SNN to O(n). The basic idea is as follows:
because of spatial autocorrelation, time series from two different
physical points on the globe that are geographically close tend to
be more similar than those from points that are geographically
more distant. (Please note the distinction between physical points
on the globe and the data points, which are time series associated
with those points.) Consequently, if we look at the nearest
neighbors (most similar time series) of a particular time series,
then they are quite likely to be time series corresponding to points
that are spatially very close, and we can compute the nearest
neighbor list of a time series – at least to a high accuracy - by
looking only at the time series associated with a relatively small
number of surrounding locations, e.g., a few hundred. This
reduces the complexity of the computation to O(n). Of course,
this improvement in complexity is not useful, unless the resulting
clusters are about the same. However, in preliminary experiments

 9

this seems to be the case. Figure 17 shows the clusters resulting
for this “local” SNN clustering approach, which are quite similar
to those in Figure 12. For this experiment, we built the nearest
neighbor list (of size 100) of each time series by looking only at
the time series for the 200 closest physical locations.

7. CONCLUSIONS AND FUTURE WORK
In this paper we described a novel shared nearest neighbor
clustering algorithm that can find clusters of varying shapes,
sizes, and densities, even in the presence of noise and outliers.
The algorithm can simultaneously handle data of varying
densities, and automatically determines the number of clusters.
Thus, we believe that our algorithm provides a robust alternative
to many other clustering approaches that are more limited in the
types of data and clusters that they can handle.

In particular, our SNN clustering algorithm can find clusters
that represent relatively uniform regions with respect to their
“surroundings,” even if these clusters are of low or medium
density. We presented an example of this in the context of NASA
Earth science time series data, where our SNN clustering
approach was able to simultaneously find clusters of different
densities that were important for explaining how the ocean
influences the land. DBSCAN could only find the “weaker”
cluster by sacrificing the quality of the “stronger” clusters. K-
means could find the weaker cluster, but only as one of a large
number of clusters. Furthermore, since the quality of this cluster
was low in K-means terms, there was no way to identify this
cluster as being anything special.

In addition to the NASA time series data example, we also
presented an example of the superior performance of our
algorithm on two dimensional point data sets with respect to
Jarvis-Patrick, K-means, and DBSCAN. In particular, SNN
clustering is consistently able to overcome problems with
differing cluster densities that cause other techniques (even
Jarvis-Patrick) to fail. For the KDD Cup ’99 network intrusion
data SNN clustering was able to produce purer clusters than the
clusters produced by K-means.

While our clustering algorithm has a basic time complexity
of O(n2), there are a number of possible optimizations that
provide reasonable run-time for many domains. The basic idea in
all cases is to find a cheaper way of computing the nearest
neighbors of a points by restricting the number of points
considered. The most general approach to accomplish this is to
use method of canopies to split the data into smaller sets and find
a points nearest neighbors only among the points in its canopy.
However, for documents and Earth science data, several domain
specific approaches are possible that can reduce the required
computation by one or two orders of magnitude.

The most important goal of our future research will be to
investigate the behavior of our SNN clustering approach on other
types of data, e.g., transaction data and genomic data. We feel
that looking at a wide variety of data sets and comparing the
performance of our algorithm to that of other clustering
algorithms is the best way to better understand our algorithm and
to discover its strengths and weaknesses. Finally, we have made
our SNN clustering algorithm publicly available so that others can
try it for themselves. It can be download from
http://www.cs.umn.edu/~ertoz/snn/

8. ACKNOWLEDGMENTS
This work was partially supported by Army High Performance
Computing Research Center cooperative agreement number
DAAD19-01-2-0014. The content of this work does not
necessarily reflect the position or policy of the government and no
official endorsement should be inferred. Access to computing
facilities was provided by the AHPCRC and the Minnesota
Supercomputing Institute.

9. REFERENCES
[1] CLUstering Toolkit. http://www-users.cs.umn.edu/~karypis/
[2] Richard Duda, Peter Hart, and David Stork, Pattern

Classification, Wiley-Interscience (2001).
[3] Martin Ester, Hans-Peter Kriegel, Jorg Sander, Xiaowei Xu, “A

Density-Based Algorithm for Discovering Clusters in Large
Spatial Databases with Noise,” KDD 96, Portland, OR, pp.
226-231 (1996).

[4] L. Ertöz, M. Steinbach, and V. Kumar, " A New Shared
Nearest Neighbor Clustering Algorithm and its Applications,"
Workshop on Clustering High Dimensional Data and its
Applications,” Second SIAM International Conference on Data
Mining, Arlington, VA, (2002).

[5] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim, “ROCK: A
Robust Clustering Algorithm for Categorical Attributes,” In
Proceedings of the 15th International Conference on Data
Engineering (1998).

[6] Alexander Hinneburg and Daniel. A. Keim, “An Efficient
Approach to Clustering in Large Multimedia Databases with
Noise,” Proceedings of the 4th International Conference on
Knowledge Discovery and Data Mining, AAAI Press (1998).

[7] Hinneburg and D. Keim. “Optimal grid-clustering: Towards
breaking the curse of dimensionality in high-dimensional
clustering.” VLDB ’99, Edinburgh, Scotland (1999).

[8] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data,
Prentice Hall (1988).

[9] R. A. Jarvis and E. A. Patrick, “Clustering Using a Similarity
Measure Based on Shared Nearest Neighbors,” IEEE
Transactions on Computers, Vol. C-22, No. 11, November
(1973)

[10] George Karypis, Eui-Hong Han, and Vipin Kumar,
“CHAMELEON: A Hierarchical Clustering Algorithm Using
Dynamic Modeling,” IEEE Computer, Vol. 32, No. 8,. pp. 68-
75, August (1999).

[11] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: an
Introduction to Cluster Analysis, John Wiley and Sons (1990).

[12] A, McCallum, K. Nigam, L. Ungar, “Efficient Clustering of
High-Dimensional Data Sets with Application to Reference
Matching,” KDD 2000, pp. 169-178 (2000).

[13] M. Steinbach, P. N. Tan, V. Kumar, C. Potter, S. Klooster, A.
Torregrosa, “Clustering Earth Science Data: Goals, Issues and
Results”, In Proc. of the Fourth KDD Workshop on Mining
Scientific Datasets (2001).

[14] M. Steinbach, P. N. Tan, V. Kumar, C. Potter, S. Klooster, A.
Torregrosa, “Data Mining for the Discovery of Ocean Climate
Indices”, Mining Scientific Datasets Workshop, 2nd Annual
SIAM International Conference on Data Mining, April (2002).

[15] Michael Steinbach, George Karypis, and Vipin Kumar, “A
Comparison of Document Clustering Algorithms,” KDD-2000
Text Mining Workshop, (2000).

 10

[16] G. H. Taylor, “Impacts of the El Niño/Southern Oscillation on
the Pacific Northwest” (1998)

 http://www.ocs.orst.edu/reports/enso_pnw.html

26 SLP Clusters via Shared Nearest Neighbor Clustering (100 NN, 1982-1994)

longi tude

la
tit

ud
e

-180 -150 -120 -90 -60 -30 0 30 6 0 9 0 1 20 1 50 1 80

9 0

6 0

3 0

0

-3 0

-6 0

-9 0

13 26

24
25

22

14

16 20 17 18

19

15

23

1 9

6
4

7 10 12 11

3

5 2

8

21

Figure 12. SNN Clusters of SLP.

SNN Density of SLP T ime Series Data

longitude

la
tit

ud
e

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

90

60

30

0

-30

-60

-90

Figure 13. SNN Density of Points on the Globe.

DBSC AN Clusters of SLP Time Series (Eps=0.985, MinPts=10)

longitude

la
tit

ud
e

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

90

60

30

0

-30

-60

-90

Figure 14. DBSCAN Clusters of SLP.

DBSCAN Clusters of SLP T ime Series (Eps=0.98, MinPts=4)

longitude

la
tit

ud
e

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

90

60

30

0

-30

-60

-90

Figure 15. DBSCAN Clusters of SLP.

K-means Cluste rs of SLP T ime Series (Top 30 o f 100)

longitude

la
tit

ud
e

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

90

60

30

0

-30

-60

-90

Figure 16. K-means Clusters of SLP.

"Local" SNN Clusters of SLP (1982-1993)

longitude

la
tit

ud
e

-180 -150 -120 -90 -60 -30 0 30 60 90 120 150 180

90

60

30

0

-30

-60

-90

13 26

24
25

22

14

16 20 17 18

19

15

23

1 9

6
4

7 10 12 11

3

5 2

8

21

Figure 17. “Local” SNN Clusters of SLP.

 11

APPENDIX

A.1 KDD Cup ’99 Data
Following tables show the performance of K-means
clustering on the network intrusion data. The results for
k=300 were presented in the paper. The results for k=100,
1000 are presented here in the appendix as well as the
results for a standard implementation of K-means for
k=300.

Purity across classes - K-means (k=100)

 total
correc

t
incorrec

t impurity

norma
l 18183 17014 1169 6.43%
u2r 267 0 267 100.00%
dos 17408 16620 1188 6.67%
r2l 3894 2840 1054 27.07%
probe 4672 4309 363 7.77%

Purity across classes - Tightest K-means Clusters
(k=100)

 total
correc

t
incorrec

t missing impurity

norma
l 18183 12817 512 4854 3.84%
u2r 267 0 102 165 100.00%
dos 17408 14346 305 2757 2.08%
r2l 3894 1179 390 2325 24.86%
probe 4672 2948 192 1532 6.11%

Purity across classes - K-means (k=1000)

 total correct incorrect impurity

norma
l 18183 17504 679 3.73%
u2r 267 91 176 65.92%
dos 17408 17231 177 1.02%
r2l 3894 3238 656 16.85%
probe 4672 4348 324 6.93%

Purity across classes - Tightest K-means Clusters
(k=1000)

 total correct incorrect missing impurity

norma
l 18183 8293 448 9442 5.13%
u2r 267 68 132 67 66.00%
dos 17408 16664 122 622 0.73%

r2l 3894 2533 511 850 16.79%
probe 4672 4291 256 125 5.63%

Purity across classes - Clementine K-means (k=300)

 total correct incorrect impurity

norma
l 18183 17222 960 5.28%
u2r 267 81 186 69.66%
dos 17408 16373 1035 5.95%
r2l 3894 1694 2200 56.50%
probe 4672 4198 474 10.15%

A.2 Chameleon Datasets
Following figures show the performance of our algorithm
on the datasets used in Chameleon

 12

