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ABSTRACT 
The problem of finding clusters in data is challenging when 
clusters are of widely differing sizes, densities and shapes, and 
when the data contains large amounts of noise and outliers.  Many 
of these issues become even more significant when the data is of 
very high dimensionality, such as text or time series data.  In this 
paper we present a novel clustering technique that addresses these 
issues.  Our algorithm first finds the nearest neighbors of each 
data point and then redefines the similarity between pairs of 
points in terms of how many nearest neighbors the two points 
share.  Using this new definition of similarity, we eliminate noise 
and outliers, identify core points, and then build clusters around 
the core points. The use of a shared nearest neighbor definition of 
similarity removes problems with varying density, while the use 
of core points handles problems with shape and size.  We 
experimentally show that our algorithm performs better than 
traditional methods (e.g., K-means) on a variety of data sets: 
KDD Cup '99 network intrusion data, NASA Earth science time 
series data, and two dimensional point sets.  While our algorithm 
can find the “dense” clusters that other clustering algorithms find, 
it also finds clusters that these approaches overlook, i.e., clusters 
of low or medium density which are of interest because they 
represent relatively uniform regions “surrounded” by non-uniform 
or higher density areas.  The run-time complexity of our 
technique is O(n2) since the similarity matrix has to be 
constructed.  However, we discuss a number of optimizations that 
allow the algorithm to handle large datasets efficiently.  For 
example, 100,000 documents from the TREC collection can be 
clustered within an hour on a desktop computer. 

Categories and Subject Descriptors 
I.5.3 [Pattern Recognition]: Clustering   

General Terms 
Algorithms, Experimentation 

Keywords 
cluster analysis, shared nearest neighbor, time series, network 
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1. INTRODUCTION 
Cluster analysis [8,11] divides data into groups (clusters) for the 
purposes of summarization or improved understanding.  For 
example, cluster analysis has been used to group related 
documents for browsing, to find genes and proteins that have 
similar functionality, or as a means of data compression.  While 
clustering has a long history and a large number of clustering 
techniques have been developed in statistics, pattern recognition, 
data mining, and other fields, significant challenges still remain.  
In part, this is because large, as well as high dimensional, data 
sets and the computational power to deal with them are relatively 
recent.  However, most of the clustering challenges, particularly 
those related to “quality,” rather than computational resources, are 
the same challenges that existed decades ago: how to handle to 
noise and outliers, how to determine the number of clusters, and 
how to find clusters with differing sizes, shapes and densities. For 
this reason, although scalability has been the main focus of much 
of the clustering work in data mining, clustering research has also 
focused on these other issues.  

1.1. The Challenges of Cluster Analysis and 
Related Work  

Finding clusters of different shapes and sizes, especially in 
the presence of noise is a problem that many recent clustering 
algorithms, have addressed.  For low dimensional data DBSCAN 
[3], CURE [5], and Chameleon [10] have shown good 
performance.  Chameleon first builds a list of the nearest 
neighbors of each point, constructs a weighted similarity graph 
using this nearest neighbor list, and then partitions the graph to 
obtain cluster fragments which are merged into clusters with  a 
hierarchical agglomerative clustering technique.   

The notion of a representative point is key to DBSCAN, 
although the term “core point” is used.   In DBSCAN, the density 
associated with a point is obtained by counting the number of 
points in a region of specified radius around the point.  Points 
with a density above a specified threshold are classified as core 
points, while noise points are defined as non-core points that 
don’t have a core points within the specified radius.  Noise points 
are discarded, while clusters are formed around the core points.   
If two core points are neighbors of each other, then their clusters 
are joined.  Non-noise, non-core points, which are called border 
points, are assigned to the clusters associated with any core point 
within their radius.  Thus, core points form the skeleton of the 
clusters, while border points flesh out this skeleton.   
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While DBSCAN can find clusters of arbitrary shapes, it 
cannot handle data containing clusters of differing densities, since 
its  density based definition of core points cannot identify the core 
points of varying density clusters. Consider Figure 1.  If the user 
defines the neighborhood of a point by specifying a particular 
radius and looks for core points that have a pre-defined number of 
points within that radius, then either the tight left cluster will be 
picked up as one cluster and the rest will be marked as noise, or 
else every point will belong to one cluster.   

In CURE, the concept of representative points is also 
employed to find non-globular clusters.  The use of representative 
points allows CURE to find many types of non-globular clusters. 
However, there are still many types of globular shapes that CURE 
cannot handle.   This is a result of the way the CURE algorithm 
finds representative points, i.e., it finds points along the boundary, 
and then shrinks those points towards the center of the cluster.   

While Chameleon does not explicitly use the notion of core 
points, all three approaches share the idea that the challenge of 
finding clusters of different shapes and sizes can be handled by 
finding points or small subsets of points and then building clusters 
around them.  This approach is especially important for spatial 
data, since non-globular clusters are not represented by their 
centroid, and thus, cannot be handled by centroid based schemes.  
Single link agglomerative clustering methods are most suitable for 
capturing clusters with non-globular shapes, but these methods 
are very brittle and cannot handle noise properly.   

Cure, DBSCAN and Chameleon also gave considerable 
attention to dealing with noise and outliers.  As mentioned, in 
DBSCAN noise points are not clustered.  Cure eliminates noise 
points by periodically eliminating small groups of points that are 
not growing very fast.  Chameleon does not eliminate any points, 
but by building the similarity graph from the nearest neighbor list, 
it does eliminate most of the influence of noise points on the 
clustering process.  Note that outliers are also eliminated by these 
approaches.   

However, both CURE and DBSCAN have problems with 
clusters of different density.  Chameleon can handle clusters of 
varying density, partly because of its nearest neighbor approach, 
but does not work well for high dimensional data, e.g., 
documents. 

While DBSCAN, CURE, and Chameleon focused on solving 
clustering problems for low dimensional data, data of high 
dimensionality brings new challenges. In particular, the 
dimensionality of the data typically makes its influence felt 
through its affect on the similarity function.  For example, in high 
dimensional data sets, distances or similarities between points 
become more uniform, making clustering more difficult.  Also, 

sometimes the similarity between individual data points can be 
misleading, i.e., a point can be more similar to a point that 
“actually” belongs to a different cluster than to points in its own 
cluster.   A shared nearest neighbor approach to similarity, as 
proposed in ROCK [5] and earlier by Jarvis and Patrick in [9], is a 
promising way to deal with this issue.  Specifically, the nearest 
neighbors of each point are found, and then a new similarity 
between points is defined in terms of the number of neighbors 
they share.  Given the new similarity, ROCK performs 
agglomerative hierarchical clustering , while the Jarvis-Patrick 
approach simply groups all points with non-zero similarity, i.e., 
finds connected components. 

Our discussion of how several recent clustering approaches 
handle some of the important challenges of cluster analysis is far 
from complete.  For example, DENCLUE [6] and OptiGrid [7] 
are more recent density based schemes that are likely to 
outperform DBSCAN.  However, we believe that we have 
identified the key issues: using representative points to deal with 
differing shapes and sizes, the difficulty of dealing with clusters 
of differing densities, the importance of eliminating outliers and 
noise, and the problems with similarity that can arise, particularly 
in higher dimensions. 

1.2. Our Contribution  
Here we present a clustering approach that can 

simultaneously address several important clustering challenges for 
a wide variety of data sets. In particular, our algorithm first finds 
the nearest neighbors of each data point and then redefines the 
similarity between pairs of points in terms of how many nearest 
neighbors the two points share.  Using this new definition of 
similarity, we eliminate noise and outliers, identify core points, 
and then build clusters around the core points. These clusters do 
not contain all the points, but rather represent relatively uniform 
groups of points. The use of a shared nearest neighbor definition 
of similarity removes problems with varying density and the 
unreliability of distance measures in high dimensions, while the 
use of core points handles problems with shape and size.  
Furthermore, the number of clusters is automatically determined, 
although there are parameters that allow for the adjustment of the 
algorithm. 

A novel aspect of our algorithm is that it finds clusters that 
other approaches would overlook.  In particular, many clustering 
algorithms only find “dense” clusters.  However, this approach 
ignores sets of points that represent relatively uniform regions 
with respect to their surroundings.  Another novel aspect of our 
approach is that a cluster consisting of a single data point can be 
significant, since this data point may be representative of a large 
number of other data points.  (Unfortunately , there is not room in 
this paper to illustrate this idea and we refer the reader to [4].) 

Much of the strength of our approach comes from ideas (core 
or representative points, defining similarity in terms of near 
neighbors, noise removal) that are found in several recent 
clustering algorithms, i.e., CURE, Chameleon, and DBSCAN, 
although our basic inspiration derives from the Jarvis-Patrick 
clustering technique, which was proposed in 1973. Our 
contributions include extending the Jarvis-Patrick clustering 
technique to encompass the notion of representative points, 
creating a complete clustering algorithm which incorporates a 
variety of recent and old ideas,  relating this approach to the 
approaches of other researchers, and importantly, showing that 

Neighborhood of a point 

Figure 1. Density based neighborhoods. 
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our approach works better than current algorithms for a variety of 
different types of data.   

While our algorithm has many good characteristics, it has a 
few characteristics that may be liabilities in some situations.  
First, the algorithm does not cluster all the points.  Generally, this 
is a good thing, as often much of the data is noise and should be 
eliminated.   However, if a complete clustering is desired, the 
unclustered data can be added to the core clusters found by our 
algorithm by assigning them to the cluster containing the closest 
representative point.  Secondly, the algorithm is basically 
partitional, although we have experimented some with producing 
a hierarchy of clusters.  Finally, The run-time complexity is 
O(n2), where n is the number of points, since the similarity matrix 
has to be constructed.  However, we discuss a number of 
optimizations that allow the algorithm to handle large datasets 
efficiently.     

1.3. Outline of the Paper  
The rest of the paper is organized as follows.  Sections 2 and 

3, respectively, describe our approaches to the definition of 
similarity and density (or connectedness), which are key to our 
clustering algorithm.  The actual clustering algorithm itself is 
described in Section 4.  Section 5 follows up with three case 
studies: two dimensional point data, NASA Earth Science time 
series data, and the KDD cup ’99 network intrusion data.  Section 
8 discusses the complexity of our clustering algorithm and 
strategies for improving the run-time, while Section 7 presents a 
short conclusion and directions for future work. 

2. A BETTER DEFINITION OF 
SIMILARITY  

The most common distance metric used in low dimensional 
datasets is Euclidean distance, or the L2 norm.  While Euclidean 
distance is useful in low dimensions, it doesn’t work as well in 
high dimensions.  Consider the pair of ten-dimensional data 
points, 1 and 2, shown below, which have binary attributes. 

Poin
t 

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 

1 1 0 0 0 0 0 0 0 0 0 

2 0 0 0 0 0 0 0 0 0 1 

If we calculate the Euclidean distance between these two points, 
we get √2.   Now, consider the next pair of ten-dimensional 
points, 3 and 4. 

Poin
t 

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 

3 1 1 1 1 1 1 1 1 1 0 

4 0 1 1 1 1 1 1 1 1 1 

If we calculate the distance between points 3 and 4, we again 
find out that it’s √2.  Notice that points 1 and 2 do not share any 
common attributes, while points 3 and 4 are almost identical.  
Clearly Euclidean distance does not capture the similarity of 
points with binary attributes.  The problem with Euclidean 
distance is that missing attributes are as important as the present 
attributes.  However, in high dimensions, the presence of an 
attribute is typically  a lot more important than the absence of an 
attribute, provided that most of the data points are sparse vectors, 
and in high dimensions, it is often the case that the data points 

will be sparse vectors, i.e., they will only have a handful of non-
zero attributes (binary or otherwise).   

Different measures, such as the cosine measure and Jaccard 
coefficient, have been suggested to address this problem.  The 
cosine similarity between two data points is equal to the dot 
product of the two vectors divided by the individual norms of the 
vectors.  (If the vectors are already normalized the cosine 
similarity simply becomes the dot product of the vectors.)  The 
Jaccard coefficient between two points is equal to the number of 
common attributes divided by the number of attributes in either 
vector (if attributes are binary).  (There is also an extension of the 
Jaccard coefficient to handle non-binary attributes.)  If we 
calculate the cosine similarity or Jaccard coefficient between data 
points 1 and 2, and 3 and 4, we see that the similarity between 1 
and 2 is equal to zero, but is almost 1 between 3 and 4. 

Nonetheless, even though both of these measures give more 
importance to the presence of a term than to its absence, there are 
cases where using such similarity measures still does not 
eliminate all problems with similarity in high dimensions.  For 
example, for several TREC datasets which had class labels, we 
found that 15-20% of the time a document’s most similar 
document (according to the cosine measure) is of a different class 
[15].  The “unreliability” of direct similarity is also illustrated in 
[5] using a synthetic market basket data set.  Note that this 
problem is not due to the lack of a good similarity measure.  
Instead, the problem is that direct similarity in high dimensions 
cannot be trusted when the similarity between pairs of points are 
low.  In general, data in high dimensions is sparse and the 
similarity between data points, on the average, is low. 

Another very important problem with similarity measures in 
high dimensions is that, the triangle inequality doesn’t hold.  
Here’s an example: 

Poin
t 

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 

A 1 1 1 1 1 0 0 0 0 0 

B 0 0 1 1 1 1 1 1 0 0 

C 0 0 0 0 0 1 1 1 1 1 

Point A is close to point B, point B is close to point C, and 
yet, points A and C are infinitely far apart.  The similarity 
between points A and B, and points C and B come from different 
sets of attributes.  

An alternative to direct similarity is to define the similarity 
between a pair of points in terms of their shared nearest 
neighbors.  That is, the similarity between two points is 
“confirmed” by their common (shared) nearest neighbors.  If point 
A is close to point B and if they are both close to a set of points C 
then we can say that A and B are close with greater confidence 
since their similarity is “confirmed” by the points in set C.  The 
shared nearest neighbor approach was first introduced by Jarvis 
and Patrick [9].  A similar idea was later presented in ROCK [5]. 

In the Jarvis–Patrick scheme, a shared nearest neighbor 
graph is constructed from the similarity matrix as follows. A link 
is created between a pair of points, p and q, if and only if p and q 
have each other in their closest k nearest neighbor lists.  This 
process is called k-nearest neighbor sparsification.  The weights 
of the links between two points in the SNN graph can either be 
simply the number of nearest neighbors the two points share, or 
can take the ordering of the nearest neighbors into account. Let i 
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and j be two points.  The strength of the link between i and j is 
now defined as: 

strength( i, j ) = ∑ (k+1-m) (k + 1 – n), where im = jm 
In the equation above, k is the nearest neighbor list size, m and n 

are the positions of a shared nearest neighbor in i and j’s lists.  At 
this point, clusters can be obtained by removing all edges with 
weights less than a user specified threshold and taking all the 
connected components as clusters [9]. 

Figures 2 illustrates two key properties of the shared nearest 
neighbor graph in the context of a 2-D point data set.  In Figure 2, 
(left) links to the five most similar neighbors are drawn for each 
point.  Figure 2 (right) shows the unweighted shared nearest 
neighbor graph.  In the graph, there is a link between points A and 
B, only if A and B have each other in their nearest neighbor lists. 

There are two important issues to note in this 2-D point set 
example.  First, noise points and outliers end up having most, if 
not all, of their links broken.  The point on the lower right corner 
ended up losing all its links, because it wasn’t in the nearest 
neighbor lists of its own nearest neighbors.  Thus, by looking at 
the number of surviving links after constructing the SNN graph, 
we can remove a lot of noise. Second, the shared nearest neighbor 
graph is “density” invariant, i.e. it keeps the links in uniform 
regions and breaks the ones in the transition regions.  This is an 
important property, since widely varying density (tightness) of 
clusters is one of the hardest problems in cluster analysis. 

3. A BETTER DEFINITION OF DENSITY 
In high dimensional datasets, the traditional Euclidean notion of 
density, which is the number of points per unit volume, is 
meaningless.  To see this, consider that as the number of 
dimensions increases, the volume increases rapidly, and unless 
the number of points grows exponentially with the number of 
dimensions, the density tends to 0.  Thus, in high dimensions, it is 
not possible to use a (traditional) density based method such as 
DBSCAN which identifies core points as points in high density 
regions and noise points as points in low density regions.  (To be 
fair, it is possible to use DBSCAN if you abandon Euclidean 
density, i.e., use a similarity measure such as the cosine measure, 
instead of Euclidean distance.) 

However, there is another notion of density that does not 
have the same problem, i.e., the notion of the probability density 
of a point. In the k-nearest neighbor approach to multivariate 
density estimation [2], if a point that has a lot of close near 
neighbors, then it is more likely to be in a region which has a 
relatively high probability density.  Thus, when we look at the 
nearest neighbors of a point, points with a large number of close 
(highly similar) neighbors are in more “dense” regions than are 
points with distant (weakly similar) neighbors.   

In practice, we take the sum of the similarities of a point’s 
nearest neighbors as a measure of this density.  The higher this 
density, the more likely it is that a point is a core or representative 
points.  The lower the density, the more likely, the point is a noise 
point or an outlier.  Note that while our motivation is to identify 
those points which have the highest probability density, from a 
graph point of view we are identifying the points that have the 
strongest connectivity.  Also note that since we are using an SNN 
graph as our starting point, our densities do not correspond to an 
absolute probability density or connectivity strength, but rather 
correspond to values that are “normalized” to a local 
neighborhood. 

The importance of this approach is that it gives us a density 
invariant method for identifying core or representative points, 
which, in turn, are the key to handling clusters of differing sizes 
and shapes.   

4. A SHARED NEAREST NEIGHBOR 
CLUSTERING ALGORITHM 

  We now present an algorithm that builds on the Jarvis–Patrick 
method.  This algorithm uses a density based approach to find 
core or representative points.  However, this approach is based on 
the notion of density introduced in Section 3, which is based on 
the idea of probability density (or alternatively, the graph 
connectivity in a similarity graph).  However, since we are using 
similarity based on a shared nearest neighbor approach, which 
automatically compensates for different densities (see Section 2), 
this density approach is not be subject to the problem illustrated in 
Figure 1. 

4.1. Identifying Core Points and Removing 
Noise 

Figure 3 illustrates how we can find representative points 
and effectively remove noise using the SNN graph.  In this 2D 
point dataset, there are 8000 points and a nearest neighbor list of 
size of 20 is used.  Figure 3b shows all the points that have 15 or 
more links remaining in the SNN graph.  In Figure 3c, all points 
have 10-14 links surviving and Figure 3d shows the remaining 
points.  As we can see in these figures, the points that have high 
connectivity in the SNN graph are candidates for representative or 

a)  All points                             b) Core Points                           c) Border Points                       d) Noise Points 
Figure 3.  Two Dimensional Point Set Example 

Figure 2. Near Neighbor Graph (left) and 
Unweighted Shared Nearest Neighbor Graph 
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core points since they tend to be located well inside the natural 
cluster, and the points that have low connectivity are candidates 
for noise points and outliers as they are mostly in the regions 
surrounding the clusters.  Note that all the links in the SNN graph 
are counted to get the number of links that a point has, regardless 
of the strength of the links.  An alternative way of finding 
representative points is to consider only the strong links in the 
count.  Similarly we can find the representative points and noise 
points by looking at the sum of link strengths for every point in 
the SNN graph.  The points that have high total link strength then 
become candidates for representative points, while the points that 
have very low total link strength become candidates for noise 
points. 

4.2. The SNN Clustering Algorithm 
The steps of the SNN clustering algorithms are as follows: 

1. Compute the similarity matrix.  (This corresponds to a 
similarity graph with data points for nodes and edges whose 
weights are the similarities between data points.) 

2. Sparsify the similarity matrix by keeping only the k most 
similar neighbors.  (This corresponds to only keeping the k 
strongest links of the similarity graph.) 

3. Construct the shared nearest neighbor graph from the 
sparsified similarity matrix.  (Each link is assigned a strength 
according to the formula in Section 3.) 

4. For every node (data point) in the graph, calculate the total 
strength of links coming out of the point. (Steps 1-4 are 
identical to the Jarvis – Patrick scheme.) 

5. Identify representative points by choosing the points that 
have high density, i.e., high total link strength.   

6. Identify noise points by choosing the points that have low 
density (total link strength) and remove them. 

7. Remove all links between points that have weight smaller 
than a threshold. 

8. Take connected components of points to form clusters, 
where every point in a cluster is either a representative point 
or is connected to a representative point. 
The number of clusters is not given to the algorithm as a 

parameter.  Depending on the nature of the data, the algorithm 
finds the natural number of clusters for the given set of 
parameters.  Also note that not all the points are clustered using 
out algorithm.  Depending on the application, we might actually 
want to discard many of the points. 

 

5. EXPERIMENTAL STUDIES  

5.1. 2D Data 
We first illustrate the superiority of our SNN clustering 

algorithm with respect to the Jarvis-Patrick approach. A major 
drawback of the Jarvis–Patrick scheme is that the threshold needs 
to be set high since otherwise two distinct set of points can be 
merged into same cluster even if there is only one link between 
them. On the other hand, if the threshold is too high, then a 
natural cluster may be split into small clusters due to natural 
variations in the similarity within the cluster.  Indeed, there may 
be no right threshold for some data sets.  This problem is 
illustrated in the following example that contains clusters of 
points sampled from Gaussian distributions of two different 
means and variances. 

In Figure 4, there are two Gaussian samples.  (Note that 
these clusters cannot be correctly separated by K-means due to 
their different sizes and densities). Figure 5 shows the clusters 
obtained by Jarvis–Patrick method using the smallest possible 
threshold. (Any threshold smaller than this puts all points in the 
same cluster.)  Even this smallest possible threshold breaks the 
data into many different clusters.  In Figure 5, different clusters 
are represented with different shapes and colors, where the 
discarded points / background points are shown as tiny squares. 
Even with a better similarity measure, it is hard to obtain the two 
apparent clusters. Figure 6 shows the connected components that 
result from SNN clustering. 

 
Figure 4. Gaussian Data Set. 

 
 

Figure 5. Connected components, JP Clustering. 

 

Figure 6. Connected components SNN Clustering. 
In order to visualize how the SNN clustering algorithm described 
in this paper compares to other clustering algorithms, we created a 
2-D point dataset and ran our algorithm, as well as CURE, 
DBSCAN, and K-means, on this dataset.  The dataset consists of 
6 globular clusters of varying densities. Figure 6 shows the 
clusters obtained from the Gaussian dataset shown in Figure 4 
using the SNN clustering method described here.  We can see that 
by using noise removal and the representative points, we can 
obtain two clusters.  The points that do not belong to any of the 
two clusters can be brought in by assigning them to the cluster 
that has the closest core point. 
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In Figure 7, we see that CURE failed to detect the clusters 
correctly; it almost identified one cluster correctly (the middle 
one), but merged the four rightmost clusters into one,  and split 
the leftmost cluster into several parts. 

 
Figure 7. Clusters Produced by Cure. 

For one parameterization (shown in Figure 8), DBSCAN 
found three different clusters, two that were genuine, and one that 
combined four “real” clusters.  For a different choice of 
parameters (Figure 9), DBSCAN was able to separate the three 
tightest clusters, but classified everything else as noise. This 
example clearly illustrates DBSCAN's problems with clusters of 
varying density. 

K-means' performance (Figure 10) was very poor even 
though the clusters were globular and the right value of K was 
specified.  This is due to the fact that the clusters are of very 
different sizes and densities.  Clusters found by K-means were 
either a mixture of two real clusters or a portion of one real 
cluster. 

Figure 11 shows that our SNN clustering algorithm was able 
to identify each of the clusters in the dataset, although 15% of the 
points were not assigned to any cluster.   

The performance of our SNN clustering algorithm on the 
datasets used in CHAMELEON can be found in the appendix. 

 
Figure 8. DBSCAN (MinPts=4, Eps=9.75). 

 
Figure 9. DBSCAN (MinPts=4, Eps=9.92). 

5.2. NASA Earth Science Data 
In this section, we consider an application of our SNN clustering 
technique to Earth science data.  In particular, our data consists of 
monthly measurements of sea level pressure for grid points on a  

 

 

Figure 10. K-means Clustering. 

 

Figure 11. SNN Clustering. 

2.5° longitude-latitude grid (144 horizontal divisions by 72 
vertical divisions) from 1950 to 1994, i.e., each time series is a 
540 dimensional vector.  These time series were preprocessed to 
remove seasonal variation.  For a more complete description of 
this data and the clustering analysis that we have performed on it, 
please see [13] and [14]. 

Briefly, Earth scientists are interested in discovering areas of 
the ocean, whose behavior correlates well to climate events on the 
Earth’s land surface.  In terms of pressure, Earth scientists have 
discovered that the difference in pressure between two points on 
the Earth’s surface often yields a time series that correlates well 
with certain weather phenomena on the land.  Such time series are 
called Ocean Climate Indices (OCIs).  For example, the Southern 
Oscillation Index  (SOI) measures the sea level pressure (SLP) 
anomalies between Darwin, Australia and Tahiti and is associated 
with El Nino, the anomalous warming of the eastern tropical 
region of the Pacific that has been linked to climate phenomena 
such as droughts in Australia and heavy rainfall along the Eastern 
coast of South America [16].  Our goal in clustering SLP is to see 
if the difference of cluster centroids can yield a time series that 
reproduces known OCIs and to perhaps discover new indices. 

Our SNN clustering approach yields the clusters shown in 
Figure 12.  These clusters have been labeled for easy reference. 
(Note that cluster “1” is the background or “junk” cluster, and that 
while we cluster pressure over the entire globe, we focus on the 
ocean.)  Although we cluster the time series independently of any 
spatial information, the resulting clusters are typically 
geographically contiguous because of the underlying spatial 
autocorrelation of the data.   

Using these clusters, we have been able to reproduce SOI as 
the difference of the centroids of clusters 15 and 20.  We have 
also been able to reproduce another well-known OCI, i.e., NAO, 
which are the normalized SLP differences between Ponta 
Delgada, Azores and Stykkisholmur, Iceland.  NAO corresponds 
to the differences of the centroids of clusters 25 and 13.  For more 



 7

details, see [14].  This success gives us confidence that the 
clusters discovered by SNN have real physical significance. 

The reader might wonder how we know that these are the 
“real” set of clusters, i.e., is it possible that the clusters we find 
might change significantly if we change the parameters for the 
SNN clustering algorithm.  However, that is not the case, and 
basically the same clusters are produced for different 
parameterizations.   We illustrate why this is so by plotting the 
SNN density (as discussed in Section 4) at each point – see Figure 
13.  The densest (reddest, darkest) points correspond to time 
series that will be the core points, although exactly which ones are 
chosen will depend on a threshold.  The time series merged with 
any given core point will typically be the time series of the 
surrounding points since the spatial autocorrelation makes the 
time series of physically close points be highly similar.  Thus, for 
this data, the SNN clusters can be picked out visually and are in 
good agreement with those produced by our clustering algorithm.  

It is also reasonable to wonder whether other clustering 
techniques could also discover these clusters.  To answer that 
question, we clustered the same data using DBSCAN  and K-
means.  The best results for DBSCAN clustering are shown in 
Figure 14, while Figure 15 shows the results for a less optimal 
parameter choice for DBSCAN clustering.  Note that the colors 
have no meaning except to distinguish the different clusters and 
are not coordinated between any of the different figures.  While 
there are similarities between the two figures, it seems that to find 
the less dense clusters, e.g.., 15 and 23,  which are the clusters not 
on the equators or at the poles, it is necessary to relax the 
parameterization.  These less dense clusters are present in Figure 
15, but it is also clear that we have “blurred” the other clusters in 
our attempt to find the “weaker” clusters.   

We can see this blurring effect even better if we try to 
reproduce the SOI and NAO indices using the DBSCAN clusters.  
For the first set of DBSCAN clusters (Figure 14)  we can find a 
difference of two cluster centroids that correlates with SOI at a 
level of 0.81, which is essentially the same correlation as the 
difference of the centroids 15 and 20 from Figure 12.  However,  
no pairs of clusters from Figure 16 yield NAO.  If we use the 
DBSCAN clusters in Figure 15, we can find a pair of clusters that 
correlates to NAO at a level of 0.77, which is almost as strong a 
correlation as for the difference of centroids 13 and 25 from 
Figure 12.  However,  the correlation to SOI has drops to 0.73.   
In contrast, SNN clustering can find the less dense clusters 
without compromising the tighter clusters. 

For K-means, we attempted to find roughly the same number 
of clusters as with our SNN approach, i.e., ~30.  (For K-means 
approach, we used the CLUTO package [1] with the bisecting K-
means algorithm and the refine parameter.) However, since K-
means naturally clusters all the data, we generated 100 clusters 
and then threw out all but the 30 most cohesive clusters (as 
measured by their average cluster correlation).  Still, the clusters 
shown in Figure 16 are not a very good match for clusters of 
Figure 12,  although they do show the same pattern of clusters 
around the poles and along the equator.  Note that cluster 13, 
which is key to reproducing the NAO index, is missing from the 
K-means clusters that we kept.   Interestingly, one of the 
discarded K-means clusters did correlate highly with cluster 13 
(corr = 0.99), but it is the 57th least cohesive cluster with respect 
to average cluster correlation.   

For both DBSCAN and K-means the main problem is that 
the “best” clusters are those which are the densest, i.e., tightest.  

In this Earth science domain, clusters which are relatively dense 
are also important.  (We speculate that regions of the ocean that 
are relatively uniform have more influence on the land, even if 
their tightness is not as high as that of other regions.)  For this 
Earth science domain, it is well known that the equatorial SLP 
clusters correlate highly to the El Nino phenomenon, which is the 
strongest OCI.  However, for K-means and DBSCAN, these 
“strong” clusters tend to mask the weaker clusters. 

5.3. KDD Cup ’99 Network Intrusion Data 
In this section, we present experimental results from KDD Cup 
’99 dataset which is widely used for benchmarking network 
intrusion detection systems.  The dataset consists of TCP sessions 
and the attributes consist of TCP connection properties, network 
traffic statistics using a 2 second window and several attributes 
extracted from TCP packets.  We also have access to the labels 
for these sessions which take one of the 5 possible values: normal, 
u2r, dos, r2l, probe.  The original data is very large, therefore we 
sampled the data using a simple scheme.  We picked up all the 
attack sessions from the training and the test data and put a cap of 
10,000 records for each sub-attack type (there are 36 actual attack 
types in the data that are grouped into 4 categories), and we 
picked 10,000 normal sessions from both test and training sets.  
We ended up with a dataset of approximately 97,000 records.  We 
then removed the duplicate sessions and the dataset size reduced 
to 45,000 records.  We clustered the data using our algorithm and 
k-means (k=100, 300, 1000).  The following tables show the 
purity of the clusters for our algorithm and k-means (k=300).  
Since our algorithm removes noise, for k-means results we 
present a similar table constructed from the tightest clusters 
whose size add up to total size of the shared nearest neighbor 
clusters.  For all of the following comparisons, we used CLUTO 
to obtain k-way partitioning (using default values), which does a 
better job than standard implementations of k-means.  For 
comparison, we used Clementine data mining software to cluster 
the data using k-means and the comparison can be found in 
appendix. 

In the following tables we present results for our algorithm 
and the results from k-means for 300-way partitioning.  The 
results for the other k-means runs can be found in the appendix.  
We can clearly see that the level of impurity for k-means clusters 
is considerably higher than the shared nearest neighbor clusters 
even when we only consider the tightest k-means clusters.  In 
particular, for the rare class (user to root attack), k-means picks up 
only 15 out of 267 correctly (using the majority rule) and our 
algorithm picks up 101 out of 267.  When we look at the tightest 
k-means clusters, k-means doesn’t pick up anything from the rare 
class.  The clusters that our algorithm found were superior to k-
means clusters almost exclusively for different values of k.  For 
example, when we look at the tightest clusters of the 1000-way 
partition, k-means was better only in identifying probe class; the 
impurity of probe class was 5.63% as opposed to 5.95% for our 
algorithm. 

The size of the largest k-means clusters for k=300 was 300 
and the largest cluster we obtained using our algorithm was 479 
where we had 521 clusters.  Even though our algorithm had many 
more clusters in the output, the largest cluster was much bigger 
than the largest k-means cluster.  This shows that our algorithm is 
able to find more unbalanced clusters if they’re present in the 
data. 
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Table 1  Purity across classes - K-means (k=300) 

 total correct incorrect Impurity
normal 18183 17458 725 3.99%
u2r 267 15 252 94.38%
dos 17408 17035 373 2.14%
r2l 3894 3000 894 22.96%
probe 4672 4293 379 8.11%

 
Table 2 Purity across classes - Tightest K-means Clusters 

(k=300) 

total correct incorrect missing impurity
normal 18183 9472 520 8191 5.20%
u2r 267 0 113 154 100.00% 
dos 17408 16221 186 1001 1.13% 
r2l 3894 2569 471 854 15.49% 
probe 4672 3610 302 760 7.72% 

 
Table 3 Purity across classes - SNN Clusters 

total correct incorrect missing impurity
normal 18183 12708 327 5148 2.51% 
u2r 267 101 67 99 39.88% 
dos 17408 13537 53 3818 0.39% 
r2l 3894 2654 257 983 8.83% 
probe 4672 3431 217 1024 5.95% 

6. COMPLEXITY ANALYSIS  
Our SNN clustering algorithm requires O(n2) time (n is the 
number of data points), although since it only requires the K 
nearest neighbors, the space complexity is O(Kn).  The K nearest 
neighbor list can be computed once and used repeatedly, for 
different runs of the algorithm with different parameter values, 
but the initial computation of the nearest neighbor list can become 
a bottleneck.  For low dimensional data, the complexity of 
computing the nearest neighbor list can be reduced to n log(n) by 
the use of a data structure such as a k-d tree or an R* tree.   

While there is no completely general technique for finding 
nearest neighbors efficiently (in time less than O(n2) ) in high 
dimensions, the technique of canopies [12] is applicable in many 
cases.  This approach first cheaply partitions a set of data points 
by repeatedly selecting a point and then forming a group around 
that point of all other points that are within a certain similarity 
threshold. The closest of these points are removed from further 
consideration, and the process is repeated until the set of points is 
exhausted.  (If the actual similarity measure is expensive, an 
approximate similarity measure can be used to further increase 
efficiency.)  The result of this process is a set of (possibly 
overlapping) groups of points which are much smaller than the 
original set and which can then be processed individually.  In our 
case, canopies would reduce the computation required for finding 
the nearest neighbors of each point since each point’s nearest 
neighbors will only be selected from it’s canopy.  The rest of the 
SNN algorithm, which is linear in the number of points, would 
proceed as before. 

While canopies represent a general approach for speeding up 
nearest neighbor list computation, other, more domain specific 
approaches are also possible. In the remainder of this section we 

present a couple of approaches that, respectively, substantially 
reduce the amount of computation required for documents and for 
NASA Earth science time series.  For documents efficiency is 
enhanced by using an inverted index and the fact that documents 
vectors are rather sparse.  For times series associated with 
physical points, efficiency can be enhanced by realizing that the 
most similar time series are almost always associated with 
physical points that are geographically close.  

For document clustering, every document contains a fraction 
of the words from the vocabulary and  the document vectors are 
quite sparse.  One of the most widely used similarity measures in 
document clustering is the cosine measure.  According to the 
cosine measure, for two documents to have a non-zero similarity, 
they have to share at least one word.  Thus, for a given document 
i, we can find the list of documents that have a non-zero similarity 
to i by keeping a list of all the documents that contain at least one 
of the terms in document i.  The transpose of the document-term 
matrix (inverted index) consists of word vectors that are lists of 
documents that contain each word.  If we maintain the inverted 
index for the data we’re trying to cluster, then we can construct 
the list of similar documents for a given document by taking the 
union of the word vectors for each word in that particular 
document.  After this list is constructed, we only need to calculate 
the similarity of the given document to the documents in this list 
since all other documents will have a zero similarity.  This avoids 
unnecessary computation. 

A second optimization can be performed by exploiting the 
fact that for a given document, only the top few words contribute 
substantially to the norm.  If we only keep the high-weighted 
terms that make up most of the norm (90% or so), we can reduce 
the number of similar documents considerably, but not lose much 
information.  Using this optimization resulted in a speedup of 30 
over the case where only the first optimization was used.  We 
clustered 3200 documents in 2 seconds on a Pentium 3, 600MHz. 

For our Earth science data the O(n2) complexity has not been 
a problem yet since the current data sets, which consist of data 
sets of < 100,000 records with dimensionality of roughly 500 can 
be handled in less than a day on a single processor. However,  
Earth scientists are collecting data using smaller and smaller grid 
sizes.  For example, if the grid size at which data is collected is 
halved, the number of data points, n, increases by a factor of 4, 
and the SNN computation increases by a factor of 16.  Thus, in 
the future computational issues may be more important. 

Fortunately it is possible to take advantage of the spatial 
autocorrelation of the data to significantly reduce the time 
complexity of SNN to  O(n).  The basic idea is as follows: 
because of spatial autocorrelation, time series from two different 
physical points on the globe that are geographically close tend to 
be more similar than those from points that are geographically 
more distant.  (Please note the distinction between physical points 
on the globe and the data points, which are time series associated 
with those points.)  Consequently, if we look at the nearest 
neighbors (most similar time series) of a particular time series, 
then they are quite likely to be time series corresponding to points 
that are spatially very close, and we can compute the nearest 
neighbor list of a time series – at least to a high accuracy - by 
looking only at the time series associated with a relatively small 
number of surrounding locations, e.g., a few hundred.  This 
reduces the complexity of the computation to O(n).   Of course, 
this improvement in complexity is not useful, unless the resulting 
clusters are about the same.  However, in preliminary experiments 
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this seems to be the case.  Figure 17 shows the clusters resulting 
for this “local” SNN clustering approach, which are quite similar 
to those in Figure 12.  For this experiment, we built the nearest 
neighbor list (of size 100) of  each time series  by looking only at 
the time series for the 200 closest physical locations. 

7. CONCLUSIONS AND FUTURE WORK  
In this paper we described a novel shared nearest neighbor 
clustering algorithm that can find clusters of varying shapes, 
sizes, and densities, even in the presence of noise and outliers.  
The algorithm can simultaneously handle data of varying 
densities, and automatically determines the number of clusters.  
Thus, we believe that our algorithm provides a robust alternative 
to many other clustering approaches that are more limited in the 
types of data and clusters that they can handle.   

In particular, our SNN clustering algorithm can find clusters 
that represent relatively uniform regions with respect to their 
“surroundings,” even if these clusters are of low or medium 
density.  We presented an example of this in the context of NASA 
Earth science time series data, where our SNN clustering 
approach was able to simultaneously find clusters of different 
densities that were important for explaining how the ocean 
influences the land.  DBSCAN could only find the “weaker” 
cluster by sacrificing the quality of the “stronger” clusters.  K-
means could find the weaker cluster, but only as one of a large 
number of clusters.  Furthermore, since the quality of this cluster 
was low in K-means terms, there was no way to identify this 
cluster as being anything special. 

In addition to the NASA time series data example, we also 
presented an example of the superior performance of our 
algorithm on two dimensional point data sets with respect to 
Jarvis-Patrick, K-means, and DBSCAN.  In particular, SNN 
clustering is consistently able to overcome problems with 
differing cluster densities that cause other techniques (even 
Jarvis-Patrick) to fail.  For the KDD Cup ’99 network intrusion 
data SNN clustering was able to produce purer clusters than the 
clusters produced by K-means.   

While our clustering algorithm has a basic time complexity 
of O(n2), there are a number of possible optimizations that 
provide reasonable run-time for many domains.  The basic idea in 
all cases is to find a cheaper way of computing the nearest 
neighbors of a points by restricting the number of points 
considered.  The most general approach to accomplish this is to 
use method of canopies to split the data into smaller sets and find 
a points nearest neighbors only among the points in its canopy.  
However, for documents and Earth science data, several domain 
specific approaches are possible that can reduce the required 
computation by one or two orders of magnitude. 

The most important goal of our future research will be to 
investigate the behavior of our SNN clustering approach on other 
types of data, e.g., transaction data and genomic data.  We feel 
that looking at a wide variety of data sets and comparing the 
performance of our algorithm to that of other clustering 
algorithms is the best way to better understand our algorithm and 
to discover its strengths and weaknesses.  Finally, we have made 
our SNN clustering algorithm publicly available so that others can 
try it for themselves.  It can be download from  
http://www.cs.umn.edu/~ertoz/snn/ 
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26 SLP Clusters via Shared Nearest Neighbor Clustering (100 NN, 1982-1994) 
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Figure 12. SNN Clusters of SLP. 

SNN Density of SLP T ime Series Data
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Figure 13. SNN Density of  Points on the Globe. 

DBSC AN Clusters of SLP Time Series  (Eps=0.985, MinPts=10)
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Figure 14. DBSCAN Clusters of SLP. 

DBSCAN  Clusters  of SLP T ime Series (Eps=0.98, MinPts=4)
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Figure 15. DBSCAN Clusters of SLP. 

K-means  Cluste rs  of SLP T ime Series (Top 30 o f 100)
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Figure 16. K-means Clusters of SLP. 

"Local" SNN Clusters of SLP (1982-1993) 
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Figure 17. “Local” SNN Clusters of SLP. 
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APPENDIX 
 
A.1 KDD Cup ’99 Data 
Following tables show the performance of K-means 
clustering on the network intrusion data.  The results for 
k=300 were presented in the paper.  The results for k=100, 
1000 are presented here in the appendix as well as the 
results for a standard implementation of K-means for 
k=300. 

Purity across classes - K-means (k=100) 

  total 
correc

t 
incorrec

t impurity 

norma
l 18183 17014 1169 6.43% 
u2r 267 0 267 100.00%
dos 17408 16620 1188 6.67% 
r2l 3894 2840 1054 27.07% 
probe 4672 4309 363 7.77% 

Purity across classes - Tightest K-means Clusters 
(k=100) 

  total 
correc

t 
incorrec

t missing impurity

norma
l 18183 12817 512 4854 3.84% 
u2r 267 0 102 165 100.00% 
dos 17408 14346 305 2757 2.08% 
r2l 3894 1179 390 2325 24.86%
probe 4672 2948 192 1532 6.11% 
 

Purity across classes - K-means (k=1000) 

  total correct incorrect impurity

norma
l 18183 17504 679 3.73%
u2r 267 91 176 65.92%
dos 17408 17231 177 1.02%
r2l 3894 3238 656 16.85%
probe 4672 4348 324 6.93%

Purity across classes - Tightest K-means Clusters 
(k=1000) 

  total correct incorrect missing impurity 

norma
l 18183 8293 448 9442 5.13% 
u2r 267 68 132 67 66.00% 
dos 17408 16664 122 622 0.73% 

r2l 3894 2533 511 850 16.79% 
probe 4672 4291 256 125 5.63% 
 
 

Purity across classes - Clementine K-means (k=300) 

  total correct incorrect impurity 

norma
l 18183 17222 960 5.28% 
u2r 267 81 186 69.66% 
dos 17408 16373 1035 5.95% 
r2l 3894 1694 2200 56.50% 
probe 4672 4198 474 10.15% 
 
A.2 Chameleon Datasets 
Following figures show the performance of our algorithm 
on the datasets used in Chameleon 
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