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Abstract

This paper describes a new approach for clustering—pattern
preserving clustering—which produces more easily inter-
pretable and usable clusters. This approach is motivated by
the following observation: while there are usually strong pat-
terns in the data—patterns that may be key for the analysis
and description of the data—these patterns are often split
among different clusters by current clustering approaches.
This is, perhaps, not surprising, since clustering algorithms
have no built in knowledge of these patterns and may of-
ten have goals that are in conflict with preserving patterns,
e.g., minimize the distance of points to their nearest cluster
centroids. Also, patterns are typically overlapping, i.e., may
involve some of the same objects, and if the clustering al-
gorithm produces disjoint clusters, then some patterns must
be split when the objects are clustered. In this paper we
describe a technique for pattern preserving clustering that
first finds patterns composed of tightly connected groups
of objects or attributes and then, starting from these pat-
terns, performs agglomerative clustering using the Group
Average (UPGMA) technique.
some experiments on document data that compare our ap-

We present the results of

proach, HIerarchical Clustering with P Attern Preservation
(HICAP), to two other clustering techniques: bisecting K-
means and traditional UPGMA. These results show that,
despite the extra constraint of pattern preservation, HICAP
has performance very much like traditional UPGMA with
respect to the cluster evaluation criteria of entropy and F-
measure. More importantly, we also illustrate how patterns,
if preserved, can aid cluster interpretation.
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1 Introduction

Clustering and association analysis are important tech-
niques for analyzing data. Cluster analysis [10] provides
insight into the data by dividing the objects into groups
(clusters) of objects, such that objects in a cluster are
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more similar to each other than to objects in other clus-
ters. Association analysis [1], on the other hand, pro-
vides insight into the data by finding a large number of
strong patterns—frequent itemsets and other patterns
derived from them—in the data set. Frequent itemsets
identify strongly connected sets of items (attributes)
by finding attributes that occur together within a suf-
ficiently large set of transactions. Thus, noting that
clustering and association analysis can be performed ei-
ther on objects or attributes, and restricting our discus-
sion to binary transaction data, clustering and associa-
tion analysis are both concerned with finding groups of
strongly related objects or attributes, although at dif-
ferent levels. Association analysis finds strongly related
objects or attributes on a local level, i.e., with respect to
a subset of attributes or objects, while cluster analysis
finds strongly related objects or attributes on a global
level, i.e., by using all of the attributes or objects to
compute similarity values.

More recently, we have defined a new pattern for
association analysis—the hyperclique pattern [25]—that
demonstrates a particularly strong connection between
the overall similarity of a set of attributes (or objects)
and the itemset (local pattern) in which they are
involved. The hyperclique pattern is described in more
detail later, but possesses the high affinity property:
the attributes (objects) in a hyperclique pattern have
a guaranteed level of global pairwise similarity to one
another as measured by the cosine or Jaccard similarity
measures [21]. Since clustering depends on similarity,
it seems reasonable that the hyperclique pattern should
have some connection to clustering, and thus, we have
focused on answering the following two questions:

1. Can we use hyperclique patterns for clustering?

2. What happens to hyperclique patterns when data
is clusterd by standard clustering techniques, e.g.,
how are they distributed among clusters?

The first question was investigated in the the origi-
nal hyperclique paper [25], where an approach that used
hyperclique patterns for clustering was presented. This
paper will also pursue hyperclique based clustering, but
using an approach that is motivated by the answer to
the second question, which was investigated more re-



cently. We found that hypercliques are mostly destroyed
by standard clustering techniques, i.e., standard cluster-
ing schemes do not preserve the hyperclique patterns,
but rather, the objects or attributes comprising them
are typically split among different clusters.

To understand why this is not desirable, consider
a set of hyperclique patterns for documents. The
high affinity property of hyperclique patterns requires
that these documents must be similar to one another;
the stronger the hyperclique, the more similar the
documents. Thus, for strong hyperclique patterns, we
would hope that any documents in the same pattern
would end up in the same cluster in many or most cases.
As mentioned, however, this is not what happens for
traditional clustering algorithms.

There are two main reasons that hyperclique pat-
terns are not preserved by clustering. First, clustering
algorithms have no built in knowledge of these patterns
and may often have goals that are in conflict with pre-
serving patterns, e.g., minimize the distance of points
from their closest cluster centroid. Second, many clus-
tering techniques are non-overlapping, i.e., clusters can-
not contain the same objects. (For hierarchical cluster-
ing, clusters on the same level cannot contain the same
objects.) Since patterns are typically overlapping, clus-
tering algorithms that produce disjoint clusters must
split some patterns when the objects are clustered.

More generally, in many application domains, there
are fundamental patterns that dominate the description
and analysis of data within that area, e.g., in text min-
ing, collections of words that form a topic, and in ge-
nomics, sequences of nucleotides that form a functional
unit. If these patterns are not respected, then the value
of a data analysis is greatly diminished for end users.
In particular, if our interest is in patterns, such as hy-
perclique patterns, then we need a clustering approach
that preserves these patterns, i.e., puts the objects or
attributes of these patterns in the same cluster. Other-
wise, the resulting clusters will be harder to understand
since they must be interpreted solely in terms of objects
instead of well-understood patterns.

There are two important considerations for devel-
oping a pattern persevering clustering approach. First,
in any clustering scheme, we must take as our starting
point the sets of objects or attributes that comprise the
patterns of interest. If the objects or attributes of a
pattern of interest are not together when we start the
clustering process, they will often not be put together
during clustering, since this is not the goal of the clus-
tering algorithm. Second, if we start with the sets of
objects or attributes that comprise the patterns of in-
terest, we must not do anything in the clustering process
to breakup these sets.

Hence, for pattern preserving clustering, the pat-
tern must become the basic object of the clustering pro-
cess. In theory, we could then use any clustering tech-
nique, although modifications would be needed to use
sets of objects instead of objects as the basic starting
point. However, agglomerative hierarchical clustering—
described more fully later— has this property automat-
ically, and thus, initially, we pursue an approach based
on the Group Average (UPGMA) hierarchical cluster-
ing technique: HlIerarchical Clustering with PAttern
Preservation (HICAP). Furthermore, we use hyper-
clique patterns as our patterns of interest, since they
have some advantages with respect to frequent itemsets
for use in pattern preserving clustering: hypercliques
have the high affinity property, which guarantees that
keeping objects together makes sense, and finding hy-
percliques is computationally much easier than finding
frequent itemsets.

It is difficult to compare our approach to other
clustering techniques, since a) HICAP preserves pat-
terns and other clustering techniques do not, and b)
HICAP produces overlapping clusters and most other
clustering approaches do not. Also, as we briefly ex-
plain, both entropy and F-measure, which are common
cluster evaluation methods for documents, have certain
limitations that complicate comparisons among cluster-
ing techniques. Nonetheless, we present the results of
some experiments on document data that compare our
approach to two other clustering techniques, bisecting
K-means and traditional UPGMA. These results show
that, despite the extra constraint of pattern preserva-
tion, HICAP has performance very much like traditional
UPGMA with respect to the cluster evaluation criteria
of entropy and F-measure. Finally, we demonstrate how
hyperclique patterns, if preserved, can help cluster in-
terpretation.

Outline: Section 2 provides some background in
clustering and also describes related work. Section
3 discusses the hyperclique pattern, while Section 4
presents the details of the HICAP algorithm. Results
based on applying HICAP to three document data sets
are given in Section 5, and are accompanied by an
illustration of how patterns, if preserved, can aid cluster
interpretation. Section 6 provides a brief conclusion and
an indication of our plans for future work.

2 Clustering Background and Related Work

Cluster analysis has been the focus of considerable work,
both within data mining and in other fields such as
statistics, psychology, and pattern recognition. Several
recent surveys may be found in [6, 9, 11], while more
extensive discussions of clustering are provided by the
following books [3, 10, 13]. The discussion in this section



is, of necessity, quite limited.

While there are innumerable clustering algorithms,
almost all of them can be classified as being either
partitional, i.e., producing an un-nested set of clusters
that partitions the objects in a data set into disjoint
groups, or hierarchical, i.e., producing a nested sequence
of partitions, with a single, all-inclusive cluster at the
top and singleton clusters of individual points at the
bottom. While this standard description of hierarchical
versus partitional clustering assumes that each object
belongs to a single cluster (a single cluster within one
level, for hierarchical clustering), this requirement can
be relaxed to allow clusters to overlap. Thus, in this
paper we will describe algorithms as hierarchical or
partitional and as overlapping or non-overlapping.*

Perhaps the best known and widely used partitional
clustering technique is K-means [16], which aims to clus-
ter a dataset into K clusters—K specified by the user—
so as to minimize the sum of the squared distances of
points from their closest cluster centroid. (A cluster cen-
troid is the mean of the points in the cluster.) K-means
is simple and computationally efficient, and a modifi-
cation of it, bisecting K-means [20], can also be used
for hierarchical clustering. Indeed, K-means is one of
the best ways for generating a partitional or hierarchi-
cal clustering of documents [20, 26]. We use K-means,
as implemented by CLUTO [12], as one of the methods
to compare with our approach.

Traditional hierarchical clustering approaches [10]
build a hierarchical clustering in an agglomerative man-
ner by starting with individual points or objects as clus-
ters, and then successively combining the two most sim-
ilar clusters, where the similarity of two clusters can
be defined in different ways and is what distinguishes
one agglomerative hierarchical technique from another.
These techniques have been used with good success for
clustering documents and other types of data. In par-
ticular, the agglomerative clustering technique known as
Group Average or UPGMA, which defines cluster simi-
larity in terms of the average pairwise similarity between
the objects in the two clusters, is widely used because it
is more robust than many other agglomerative cluster-
ing approaches. Furthermore, a recent study [26] found
UPGMA to be the best of the traditional agglomera-
tive clustering techniques for clustering text. UPGMA
is the basis of our HICAP clustering algorithm, and we
use traditional UPGMA as another method to compare
with our approach.

As far as we know, there are no other clustering
methods based on the idea of preserving patterns.

*We admit that it is a bit strange to use the phrase, overlapping

partitional, but in this case, we take partitional to mean un-
nested.

However, we mention two other types of clustering
approaches that share some similarity with what we are
doing here: constrained clustering and frequent item set
based clustering. Constrained clustering [23] is based on
the idea of using standard clustering approaches, but
restricting the clustering process. Qur approach can be
viewed as constraining certain objects to stay together
during the clustering process. However, our constraints
are automatically enforced by starting with hyperclique
patterns as our original clusters and then applying
agglomerative hierarchical clustering, and thus, the
general framework for constrained clustering is not
necessary for our approach.

Our clustering technique is based on an association
pattern, the hyperclique pattern, but there have been
other clustering approaches that have used frequent
itemsets or other patterns derived from them. One of
these approaches is Frequent Itemset-based Hierarchical
Clustering (FIHC) [5], which starts with clusters built
around frequent itemsets. However, while our approach
to clustering objects finds hypercliques of objects, and
then uses them as initial clusters, FIHC uses selected
itemsets—sets of binary attributes—to group objects
(transactions), i.e., any object that supports an itemset
goes into the same cluster. Thus, the approach of FIHC
is quite different from that of HICAP, as is the approach
of other clustering algorithms that are also based on
frequent itemsets, e.g., [4, 17, 24]. More importantly,
all the above pattern-based clustering approaches are
not pattern preserving.

Finally, the hypergraph clustering approach [8] cre-
ates a hypergraph based on frequent itemsets and as-
sociation rules, and then uses a hypergraph partition-
ing technique for finding clusters. Although hypergraph
clustering inspired the clustering approach in the origi-
nal hyperclique paper, this approach is not pattern pre-
serving.

3 Basic Concepts of Association Patterns

The hyperclique pattern was the inspiration for pattern
preserving clustering, and thus, the pattern that we
use to explore this idea. In this section, we describe
the concept of hyperclique patterns [25] after first
introducing the concepts on which it is based: the
frequent itemset and the association rule [1].

3.1 Frequent Itemsets and Association Rules

We quickly review some standard definitions re-
lated to association rule mining, which is an important
technique for mining market basket data [1, 2].

Let I = {i1,%2,.-- ,im} be a set of items. Let T be
a set of transactions, where each transaction t is a set



of items ¢ C I. An itemset is a set of items X C I,
and the support of X, supp(X), is the fraction of
transactions containing X. If the support of X is above a
user-specified minimum, i.e., supp(X) > minsup, then
we say that X is a frequent itemset.

An association rule captures the fact that the
presence of one set of items may imply the presence of
another set of items, and is of the form X — Y, where
XCI,YCI,and XNY = ¢. The confidence of the
rule X — Y is written as conf(X — Y) and is defined
as conf(X — Y) = supp(X UY)/supp(X), where
supp(X UY) is the support of the rule. For example,
suppose 70% of all transactions contain bread and milk,
while 50% of the transactions contain bread, milk, and
cookies. Then, the support of the rule {bread, milk} —
{cookies} is 50% and its confidence is 50%/70% = 71%.

3.2 Hyperclique Patterns

A hyperclique pattern [25] is a new type of asso-
ciation pattern that contains items that are highly
affiliated with each other. By high affiliation, we mean
that the presence of an item in a transaction strongly
implies the presence of every other item that belongs
to the same hyperclique pattern. The h-confidence
measure [25] is specifically designed to capture the
strength of this association.

DEFINITION 3.1. The h-confidence of an itemset P =
{i1,%2, -+ ,im}, denoted as hconf(P), is a mea-
sure that reflects the overall affinity among items
within the itemset. This measure is defined as
min{conf{i; — d2,...,im}, conf{ia — i1,i3,...,
im}y -+ cONf{iym — 41, ... ,0m_1}}, where conf is the
conventional definition of association rule confidence as
given above.

For instance, consider an itemset P = {4, B,C}.
Assume that supp({A}) = 0.1, supp({B}) = 0.1,
supp({C}) = 0.06, and supp({A, B,C}) = 0.06, where
supp is the support of an itemset. Then

conf{A— B,C} supp({4, B,C})/supp({A}) = 0.6
conf{B — A,C} supp({A, B,C})/supp({ B}) = 0.6
conf{C — A, B} supp({4, B,C})/supp({C}) = 1
Hence, hconf(P) = min{conf{B — A,C}, conf{A —
B,C}, conf {C — A,B}} = 0.6.

DEFINITION 3.2. Given a transaction database and the
set of all items I = {I,I5,...,I,}, an itemset P is a
hyperclique pattern if and only if

1. PC I and |P| > 0.
2. hconf(P) > h., where h. is the minimum h-
confidence threshold.

Table 1: Examples of Hyperclique Patterns from words
of the LA1 Data set

LA1 Dataset
Hyperclique patterns Support H-confidence
{gorbachev, mikhail} 1.4% 93.6%
{photo, graphic, writer} 14.5% 42.1%
{sentence, convict, prison} 1.4% 32.4%
{rebound, score, basketball} 3.8% 40.2%
{season, team, game, play} 7.1% 31.4%

Table 1 shows some hyperclique patterns identified
from words of the LA1 dataset, which is part of the
TREC-5 collection [22] and includes articles from vari-
ous news categories such as ‘financial,’” ‘foreign,” ‘metro,’
‘sports,” and ‘entertainment.” One hyperclique pattern
in that table is {mikhail, gorbachev}, who is the ex-
president of the former Soviet Union. Certainly, the
presence of mikhail in one document strongly implies
the presence of gorbachev in the same document and
vice-versa.

DEFINITION 3.3. A hypercliqgue pattern is a maximal
hyperclique pattern if no superset of this pattern is
a hyperclique pattern.

In this paper, we use maximal hyperclique patterns
as the patterns that we wish to preserve.

3.3 Properties of the H-confidence measure

The h-confidence measure has three important
properties, namely the anti-monotone property, the
cross-support property, and the strong affinity property.
Detailed descriptions of these three properties were
provided in our earlier paper [25]. Here, we provide
only the following brief summaries.

The anti-monotone property guarantees that if an
itemset {i1,...,%,} has an h-confidence value of h,,
then every subset of size m — 1 also has an h-confidence
value of h.. This property is analogous to the anti-
monotone property of the support measure used in
association-rule mining [1] and allows us to use h-
confidence-based pruning to speed the search for hy-
perclique patterns in the same way that support-based
pruning is used to speed the search for frequent item-
sets.

The cross-support property provides an upper
bound for the h-confidence of itemsets that contain
items from different levels of support. The computation
of this upper bound is much cheaper than the compu-
tation of the exact h-confidence value, since the it only
relies on the support values of individual items in the
itemset. Using this property, we can design a partition-



based approach that allows us to efficiently eliminate
patterns involving items with different support levels.

The strong affinity property guarantees that if a
hyperclique pattern has an h-confidence value above
the minimum h-confidence threshold, h., then every
pair of items within the hyperclique pattern must have
a cosine similarity [19] greater than or equal to h.. As
a result, the overall affinity of hyperclique patterns can
be controlled by setting an h-confidence threshold.

As demonstrated in our previous paper [25], the
anti-monotone and cross-support properties form the
basis of an efficient hyperclique mining algorithm that
has much better performance than frequent itemset
mining algorithms, particularly at low levels of support.
Also, the number of hyperclique patterns is significantly
less than the number of frequent itemsets.

4 HICAP: Hierarchical
Pattern Preservation

In this section, we present the details of the HICAP
algorithm. We also discuss why hyperclique patterns
are better than frequent itemsets for pattern preserving
clustering.

Clustering With

4.1 Overview of HICAP

HICAP is based on the Group Average agglom-
erative hierarchical clustering technique, which is also
known as UPGMA [10]. However, unlike the traditional
version of UPGMA, which starts from clusters consist-
ing of individual objects or attributes, HICAP uses
hyperclique patterns to define the initial clusters, i.e.,
the objects or attributes of each hyperclique pattern
become an initial cluster.

4.2 Algorithm Description

Figure 1 shows the pseudocode of the HICAP
algorithm. This algorithm consists of two phases. In
phase I, HICAP finds maximal hyperclique patterns,
which are the patterns we want to preserve in the
HICAP algorithm. We use only maximal hyperclique
patterns since any non-maximal hyperclique will, dur-
ing the clustering process, tend to be absorbed by its
corresponding maximal hyperclique pattern and will,
therefore, not affect the clustering process significantly.
Thus, the use of non-maximal hypercliques would
add complexity without providing any compensating
benefits.

In phase IT, HICAP conducts hierarchical clustering
and outputs the clustering results. We highlight several

HICAP Algorithm

Input: D: a document data set.
0: a minimum h-confidence threshold.
a: a minimum support threshold.
Output: CR: the hierarchical clustering result.

Variables: S: the hyperclique pattern set.
MS: the maximal hyperclique pattern set.
PD: The output set of preprocessing
LS: a set of objects which are not covered by
identified maximal hyperclique patterns
CS: a set containing target clustering objects

Method

Phase I: Maximum Hyperclique Dattern Discovery
1. S = hyperclique_miner(6, o, D)

2. MS = maximal hyperclique_pattern(S)

Phase II: Hierarchical Clustering

3. PD = preprocessing(D)

4. LS = uncovered_objects(MS, D)

5. CS = LS UMS

6. for i=1 to |CS|-1

7. find the pair of elements with max group
average cosine value from the set CS,

8. merge the identified pair, and update
CS and CR accordingly

9. endfor

10. OUTPUT CR

11. End

Figure 1: The HICAP Algorithm

important points. First, since hyperclique patterns can
be overlapping, some of the resulting clusters will be
overlapping. Second, identified maximal hyperclique
patterns typically cover only 10 to 20% of all objects,
and thus, HICAP also includes each uncovered object as
a separate initial cluster, i.e., the hierarchial clustering
starts with maximal hyperclique patterns and uncovered
objects. Finally, the similarity between clusters is
calculated using the average of the pairwise similarities
between objects, where the similarity between objects
is computed using the cosine measure.

Hyperclique Patterns Vs. Frequent Itemsets As
mentioned, there has been some prior work that uses
frequent itemsets as the basis for clustering algorithms
[4, 5, 24]. While the goals and methods of that
work are different from our own, we could have used
frequent itemsets instead of hypercliques in HICAP.
We chose hypercliques because we feel that they have
several advantages for pattern preserving clustering.
First, since hyperclique patterns are strong affinity



patterns, they include objects which are strongly similar
to each other with respect to the cosine measure and
which should, therefore, naturally be within the same
cluster. In contrast, many pairs of objects from a
frequent itemset may have very poor similarity with
respect to the cosine measure. Second, the hyperclique
pattern mining algorithm has much better performance
at low levels of support than frequent itemset mining
algorithms. Thus, capturing patterns occurring at low
levels of support is much easier for hyperclique patterns
than frequent itemsets. Finally, the size of maximal
hyperclique patterns is significantly smaller than the
size of maximal frequent itemsets. In summary, a
version of HICAP that uses hypercliques is far more
computationally efficient that a version of HICAP that
uses frequent patterns, and is more likely to produce
meaningful clusters.

5 Experimental Evaluation

In this section, we present an experimental evaluation
of HICAP. After a brief description of our document
data sets and cluster evaluation measures, we first elab-
orate on why the hyperclique pattern is a good can-
didate for pattern preserving clustering. We then il-
lustrate the poor behavior of traditional clustering ap-
proaches in terms of pattern preservation, and show how
hyperclique patterns can be used to interpret the clus-
tering results produced by HICAP. Finally, we evaluate
the clustering performance of HICAP, UPGMA, and K-
means with respect to the F-measure and entropy, in-
cluding in our evaluation, a brief discussion on the lim-
itations of each of these evaluation measures.

Experimental Data Sets. For our experiments, we
used three real data sets—from several different appli-
cation domains—that are widely used in document clus-
tering research. Some characteristics of these data sets
are shown in Table 2.

Table 2: Characteristics of document data sets.

Data Set LA1 REO WAP
Number of Documents 3204 1504 1560
Number of Words 31472 11465 8460
Number of Classes 6 13 20
Min Class Size 273 11 5
Max Class Size 943 608 341
Min Class Size/Max Class Size 0.29 0.018 0.015
Source TREC-5 Reuters | WebAce

The LA1 data set is part of the TREC-5 collection
[22] and contains news articles from the Los Angeles
Times. The REO data set is from the Reuters-21578 text
categorization test collection Distribution 1.0 [15]. The
data set WAP is from the WebACE project (WAP) [7];

each document corresponds to a web page listed in the
subject hierarchy of Yahoo!. For all data sets, we used a
stop-list to remove common words, and the words were
stemmed using Porter’s suffix-stripping algorithm [18].

Evaluation Methods. To evaluate the quality of the
clusters produced by the different clustering techniques,
we employed two commonly used measures of clustering
quality: entropy and the F-measure [14]. Both entropy
and the F-measure are ‘external’ criteria, i.e., they use
external information—class labels in this case. Entropy
measures the purity of the clusters with respect to
the given class labels. Thus, if all clusters consist of
objects with only a single class label, the entropy is
0. However, as the class labels of objects in a cluster
become more varied, the entropy increases. The F-
measure also measures cluster quality, but attains its
maximum value when each class is contained in a single
cluster, i.e., clusters are pure and contain all the objects
of a given class. The F-measure declines as we depart
from this ‘ideal’ situation. Formal definitions of entropy
and the F-measure are given below.

Entropy. To compute the entropy of a set of clusters,
we first calculate the class distribution of the objects in
each cluster, i.e., for each cluster j we compute p;;, the
probability that a member of cluster j belongs to class i.
Given this class distribution, the entropy, E;, of cluster
7 is calculated using the standard entropy formula

(5.1) Ej = = pijlog(pij)

i
where the sum is taken over all classes and the log is
log base 2. The total entropy for a set of clusters is
computed as the weighted sum of the entropies of each
cluster, as shown in the equation

E = 2 xFE;

where n; is the size of cluster j, m is the number of
clusters, and n is the total number of data points.

(5.2)

F-measure. The F-measure combines the precision
and recall concepts from information retrieval [19]. We
treat each cluster as if it were the result of a query and
each class as if it were the desired set of documents for
a query. We then calculate the recall and precision of
that cluster for each given class as follows:

(5.3) Recall(i, j) = nij/n;

(5.4) Precision(i, j) = ni;j/n;



where n;; is the number of objects of class 7 that are in
cluster j, n; is the number of objects in cluster j, and
n; is the number of objects in class ¢. The F-measure of
cluster j and class 7 is then give by the equation

F(i,j) = 2 x Recall(i, j) * Precision(i, )
1) = “Precision(i, j) + Recall(i, j)

(5.5)

For an entire hierarchical clustering, the F-measure
of any class is the maximum value it attains at any
node (cluster) in the tree, and an overall value for
the F-measure [14] is computed by taking the weighted
average the F-measures for each class, as given by the
equation

(5.6) F=3" “tmaz{F(i,j)}

where the max is taken over all clusters at all levels.
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Figure 2: Illustration of the high-affinity property of
hyperclique patterns on the LA1 data set.

5.1 High-Affinity Hyperclique Patterns

In this section, we present the results of an ex-
periment that illustrates why the hyperclique pattern is
a good pattern to use for pattern preserving clustering.
Figure 2 shows, for the LAl data set, the entropy
of the discovered hyperclique patterns for different
minimum h-confidence and support thresholds. Note
that when the minimum h-confidence threshold is zero,
we actually have frequent itemset patterns instead
of hyperclique patterns. As Figure 2 shows, as the
minimum h-confidence threshold increases, the entropy
of hyperclique patterns decreases dramatically. For
instance, when the h-confidence threshold is higher
than 0.25, the entropy of hyperclique patterns is less
than 0.1 for all the given minimum support thresholds.
This indicates that hyperclique patterns are very ‘pure’

patterns for certain h-confidence thresholds. In other
words, a hyperclique pattern includes objects which are
naturally from the same class category. In contrast, the
entropy of frequent patterns is high—close to 1—for all
the given minimum support thresholds. This means
that frequent patterns include objects from different
class categories. Thus, with respect to purity, the
hyperclique pattern is a better candidate than frequent
patterns for pattern preserving clustering.

Another trend that we can observe in Figure 2
is that, as the minimum support threshold decreases,
the entropy of hyperclique patterns from the LA1 data
set trends downward. This indicates that high affinity
patterns can appear at very low levels of support. As
mentioned, frequent itemset mining algorithms have
difficulty identifying frequent itemsets at low levels of
support. In contrast, the hyperclique pattern mining
algorithm has much better performance at low levels of
support [25]. Hence, if we want to discover the high-
affinity patterns occurring at low levels of support, the
hyperclique pattern is a better choice than frequent
itemset patterns.

5.2 Preserving Patterns

By design, HICAP preserves all hyperclique pat-
terns throughout the clustering process. However,
as we show in this experiment, traditional clustering
algorithms—UPGMA and bisecting K-means—tend
to break hyperclique patterns. Figure 3 shows, for
different number of clusters, the ratio of hyperclique
patterns being split by the UPGMA and bisecting
K-means algorithms. For every data set, the minimum
number of clusters is specified as the original number
of classes in that data set. In the figure, we observe
that the ratio of patterns being split for both algo-
rithms increases as the number of clusters increases.
Furthermore, even when the number of clusters equals
the number of classes, UPGMA and bisecting K-means
still break patterns. Finally, bisecting K-means breaks
more patterns than UPGMA, because its preference
for relatively uniform cluster sizes tends to break long
hyperclique patterns.

5.3 Interpretation of Clusters Using Hyper-
clique Patterns

In this experiment, we provide two types of ev-
idence to illustrate the usefulness of patterns for
interpreting clustering results: specific examples and
an analysis of the clusters on one level of the cluster
hierarchy. For the first approach, we picked two clusters
at random from the hierarchical clustering generated
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Figure 3: The ratio of pattern being split by UPGMA and bisecting k-means.

4045 47 50 74 83 84 89 90 123 151 155 165 170
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516519 569 581 586 588 591 617 619 629 638
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1403 1407 1467 1470

40490 569 617 674 798 857 1274 1341

(money money money money money
money money money money)

302 569 617 798 857
(money money money money money)

Figure 4: Cluster Interpretation I

Table 3: Classes of Documents in an Example Cluster
from the REO data set.

money money money money
money money money money
money money money money
money money money money money
money money money money money
money money money money interest
money money money money money
money money money money money
money money money money money
money money money money money
money money money money money
money money money money money
money money money money money

money
money
money

money
money
money
money money money
money money money
money money interest
money money money
money money money
money money money
money money money
money money money
money money money

money
money
money

money
money
money

by HICAP, and then looked at the hyperclique patterns
that they contained to see if the nature of these hyper-
cliques, which include only a fraction of the documents
or words in the cluster, are useful for understanding
the nature of the cluster. As we show below, this was
the indeed the case.

Cluster Contains Hypercliques of the Same
Class Figure 4 shows a cluster randomly selected from
the HICAP clustering results on the REO data set. One
cluster with document IDs is presented. On further
analysis, we found that two hyperclique patterns are
in this cluster, and, as shown in the figure, both hyper-

clique patterns belong to the ‘money’ category. Since
HICAP is based on the Group Average agglomerative
clustering approach, it is natural to expect that other
documents in the given cluster should have a significant
level of similarity to the documents in two hyperclique
patterns. In other words, if these two hyperclique pat-
terns act as a ‘kernel,” the documents merged into this
cluster are likely to have the same class label as the doc-
uments in these two hyperclique patterns. As a result,
we might expect that a large population of documents
in this cluster would have the class, ‘money.’

To verify this, we show the class labels of the cluster
objects in Table 3. As suggested by the two hyperclique
patterns, all of the documents, except two, belong to
the class, ‘money.’

2312395461 718595106 114 154 167 192
201202 210 224 235 286 317 347 352 354 372
381 386 391 406 424 453 477 491 492 502 535
537 555 557 560 565 571585 586 587 591 598
611 616 634 643 645 650 672 676 681 704 710
721723 733 735 747 752 774 782 787 788 790
792 798 814 824 839 851 859 877 884 888 907
918 920 941 964 977 981 982 1004 1019 1029
1031 1036 1053 1062 1067 1093 1113 1125
1126 1130 1147 1176 1177 1178 1182 1193
11951216 1217 1218 1231 1243 1247 1264
1267 1277 1279 1284 1296 1313 1315 1319
1374 1377 1390 1394 1427 1434 1435 1460
1468 1491 1511 1512 1516 1517 1518 1523 1524

E—

586 710 859 982 1195
(Film Film Film Film Film)

Figure 5: Cluster Interpretation II

354 391 424 704 1460
(Television Television Television
Television Television)

Cluster Contains Hypercliques of Different
Classes Figure 5 shows another cluster randomly
picked from the HICAP clustering of the WAP data set.
This cluster contains two hyperclique patterns with doc-
uments from two different categories: ‘Film’ and ‘Tele-
vision.” As a result, we would expect that this clus-
ter should be a hybrid cluster with documents mainly
from two categories: ’Film’ and ’Television.” Table 4



Table 4: Classes of Documents in an Example Cluster
from the WAP data set.

Television Television Television Film Film Television Stage
Television Television Television Film Cable Television Televi-
sion Television Variety Film Television Film Television Stage
Television Film Television Film Television Film Television
Film Television Television Film Cable Television Stage Film
Television People Television Film People Television Cable
Film Television Television Media Stage Television Film Tele-
vision Film Television Television Stage Film Television Film
Television Television Stage Film Television Film Television
Television Film Film Television Television Cable Television
Television People Television Film Television Film Television
Television Film Television Variety Variety Television Film
Film Cable Film Television Television Film Television Tele-
vision Film Television Television Television Film Film Tele-
vision Film Film Television Television Television Film Tele-
vision Television Television Film Television Film Television
Film Television Film Television Film Variety Film Television
Film Industry Television Film Television Art Television Tele-
vision Film Media Industry Stage Television Television Tele-
vision Television Television

shows the class labels of the cluster objects in this clus-
ter. Once again, the interpretation based on hyperclique
patterns matches the classes found in the cluster.

Table 5: Statistics of interpretable clusters.

CNo | size | #unmatch | #hyperclique| Classes of hypercliques
1 49 5 16 People/Online

2 66 0 9 Sports

3 169 | 59 10 Business/Tech /Politics
4 313 | 2 49 Health

5 33 3 4 Film

6 61 9 9 Politics

7 18 0 7 Culture

8 44 2 1 Television

9 25 0 7 Sports

10 22 4 1 People

11 8 0 2 Television/Stage

Total| 808 | 84 115

Analyzing Clusters on one Level of the Clus-
ter Hierarchy To further validate the hypothesis that
the nature of the hyperclique patterns contained in a
cluster tells us something about the nature of the clus-
ter, we decided to look at the clusters on one level of the
cluster hierarchy. We first identified the class of each of
the hyperclique patterns—there were 115 of these pat-
terns in the WAP data set, which together covered 265
out of 1560 documents. Finding the class of each hy-
perclique was an easy task since the hypercliques al-
most always consisted of objects of a single class, and if
not, were predominantly of one class. Then, we found
which of the 128 clusters contained hypercliques—there
were 11 such clusters, which covered 808 of the 1560
documents (The skewed distribution of cluster sizes is a
result of the skewed distribution of class sizes.). We fur-
ther analyzed each cluster with respect to the classes of
documents that it contained and whether the classes of
the documents in the cluster matched the classes of the

hypercliques in the cluster. The results of this analysis
are contained in Table 5. (‘CNo’ is cluster number, ‘size’
is the number of objects in the cluster, ‘#unmatch’ is
the number of objects in the cluster that do not match a
class of the hypercliques in the cluster, ‘# hyperclique’
is the number of hypercliques in the cluster, and ‘Classes
of hypercliques’ is the classes of the hypercliques.)

The results confirm the observations suggested by
the previous two examples. If the hypercliques in a
cluster are of one class, then the objects in that cluster
are predominantly of the same class. On the other hand,
if the hypercliques in a cluster are of mixed classes,
then the objects in the cluster are also of mixed class,
although they tend to be very heavily composed of the
classes of the hypercliques. The worst case in the table
is cluster 3, which has hyperclique patterns from three
classes, and has 59 out of 169 documents that are not of
these three classes. The documents in the other clusters
almost always match the labels of the corresponding
hyperclique patterns.

5.4 Clustering Evaluation using F-measure

In a previous study, [20] we compared bisecting
K-means and UPGMA with respect to the (hierarchi-
cal) F-measure. These results are shown in Table 6.
The F-score for bisecting K-means is slightly higher
than that for UPGMA, a result that was also confirmed
in a later study [26].

Table 6: F-Score for LA1, REO, and WAP

Data Set | Bisecting K-means | UPGMA
re0 0.5863 0.5859
wap 0.6750 0.6434
lal 0.7856 0.6963

To see if we could find more of a distinction be-
tween techniques, we applied the F-measure only to the
resulting clusters, not the whole hierarchy. (We later
discuss the merits or demerits of doing this, and the
limitations of the F-measure.) Figure 6 shows the F-
measure values of the clustering results from HICAP,
UPGMA, and bisecting K-means. In terms of the F-
measure, HICAP significantly outperforms bisecting K-
means in most cases for the three given data sets. Also,
as the number of clusters increases, bisecting K-means
tends to have even worse F-measure values since the
given data sets have classes with widely different class
sizes as is shown in Table 2. For instance, the minimum
class size for the WAP data set is 5 and the maximum
class size is 341. Because bisecting K-means splits the
clusters with low average similarity, it tends to produce
clusters of relatively uniform size, and hence, it is dif-
ficult for bisecting K-means to produce a cluster that
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accurately represents one of the larger classes when the
data set has classes of widely varying sizes. However,
we also observe that bisecting K-means has a better F-
measure value on the LA1 data set when the number of
clusters is 16. A possible reason for this is that the class
distribution of the LA1 data set is not very skewed. As
can be see in Table 2, the ratio of minimum class size
and maximum class size is 0.29, which is much higher
than the ratios for the REQ and WAP data sets.

Another observation involving Figure 6 is that
HICAP performs slightly better than UPGMA in most
cases for the given three data sets. It is not surprising
to observe this, since the difference between these two
approaches is that HICAP starts from patterns, while
UPGMA starts from individual objects. Thus, as com-
pared to UPGMA, HICAP may reduce early stage merg-
ing errors, since it considers the affinity among all items
within a pattern instead of only considering pair-wise
similarity. However, the performance difference between
HICAP and UPGMA is small, probably because the hy-
perclique patterns cover only 10-20% of the documents
in a data set.

The Limitations of the F-measure The F-measure
emphasizes both precision, i.e., does the cluster contain
only objects of the same class, and recall, i.e., does the
cluster contain all the objects of a class. Thus, the
F-measure would seem to penalize methods, such as

bisecting K-means that tend to split the objects in a
class into many (almost equal size) subclusters, which
would each have poor recall (class coverage) and thus, a
poor F-measure. Bisecting K-means does so well on the
F-measure defined over the entire hierarchy because it
produces relatively large and pure clusters at the early
levels of the splitting. However, as the above results also
show, the F-measure evaluated on a single level gives
better values for UPGMA versus bisecting K-means on
a wide range of levels. This is because UPGMA has
clusters that reflect the true classes on a much wider
range of levels of the cluster hierarchy. Thus, a straight
comparison of values of the F-measure does not capture
the full story.

5.5 Clustering Evaluation using Entropy

Figure 7 shows the entropy values of the cluster-
ing results from HICAP, UPGMA, and bisecting
K-means at different user-specified numbers of clusters.
Bisecting K-means yields significantly better entropy
values than HICAP and UPGMA for all three data sets
since the entropy measure favors clustering algorithms,
such as bisecting K-means, that produce clusters which
have relatively uniform cluster size. (Further discussion
of the limitations of entropy is provided later.) Also,
for all three clustering algorithms, entropy values tend
to decrease as the number of cluster increases since



the resulting clusters tend to be more pure. Thus,
the difference in entropy among the three algorithms
decreases as the number of clusters increases.

Another observation from Figure 7 is that HICAP
performs slightly better than UPGMA in most cases for
the given data sets, although this performance difference
is small. It is not surprising to observe this since
UPGMA starts from individual objects, while HICAP
starts from hyperclique patterns (and the uncovered
objects).

Table 7: An Example Document Data Set

Target document data set

Sports, Sports, Sports, Sports, Sports, Sports, Sports, Sports,
Sports, Sports, Sports, Sports, Sports, Entertainment, En-
tertainment, Entertainment, Entertainment, Foreign, Foreign,
Foreign, Foreign, Metro, Metro, Metro, Metro, Metro, Metro,
Metro, Metro, Metro, Metro, Metro, Politics, Politics, Politics

Table 8: Two Clustering Results.

Document Clustering Entropy | F-measure

Clustering I 1: Sports Sports Sports | 0.153
Sports

2: Sports Sports Sports
Sports

3: Sports Sports Sports
4: Sports Sports Enter-
tainment

5: Entertainment Enter-
tainment Entertainment
Entertainment

6: Foreign Foreign For-
eign

7: Metro Metro Metro
Metro

8: Metro Metro Metro
Metro Metro

9: Metro Metro Foreign
10: Politics Politics Pol-
itics

0.663

Clustering IT 1: Sports 0.272 0.816
2: Sports

3: Sports Sports Sports
Sports Sports Sports
Sports Sports Sports
Sports Sports Entertain-
ment

4: Entertainment Enter-
tainment

5: Entertainment Enter-
tainment

6: Foreign Foreign

7: Foreign Foreign

8: Metro

9: Metro Metro Metro
Metro Metro Metro
Metro Metro Metro
Metro Politics

10: Politics Politics

The Limitations of Entropy We observed that the
entropy measure tends to favor clustering algorithms,
such as bisecting K-means, which produce clusters with
relatively uniform size. To illustrate this, we created
the example document data set shown in Table 7. This

data set consists of 18 documents with class labels.
Two clustering results are shown in Table 8. The
entropy of clustering result II is almost twice as large as
the entropy of clustering result I. (The F-values give
an opposite evaluation of these clusters.) Certainly,
according to entropy, clustering result I is much better
than clustering result II. However, this result is due to
the fact that the entropy measure more heavily penalizes
a large impure cluster, such as cluster 9. Consequently,
for clustering algorithms that tend to produce clusters
of widely different sizes, e.g., UPGMA and HICAP,
entropy may not be a good measure.

6 Conclusion

In this paper, we have introduced a new goal for clus-
tering algorithms, namely, the preservation of patterns,
such as the hyperclique pattern, that capture strong
connections between groups of objects. Without such
an explicit goal, clustering algorithms tend to find clus-
ters that split the objects or attributes in these patterns
between different clusters. However, keeping these pat-
terns together aids cluster interpretation.

Agglomerative hierarchical clustering is naturally
pattern preserving if it takes the objects or attributes of
the patterns of interest as the starting clusters. Thus,
we introduced a new clustering approach, Hlerarchical
Clustering with PAttern Preservation (HICAP), which
is based on the Group Average (UPGMA) agglomera-
tive clustering technique, and which uses maximal hy-
perclique patterns to define the initial clusters. We
used hyperclique patterns for pattern preserving cluster-
ing because they have the high-affinity property, which
guarantees that the objects or attributes in a hyper-
clique pattern are highly similar. Thus, it makes sense
to put these objects or attributes in the same cluster. In
contrast, frequent itemsets do not have the high-affinity
property and are more expensive to find.

While HICAP, by construction, preserves patterns,
we showed experimentally that K-means and the stan-
dard UPGMA clustering approaches tend to break pat-
terns in many or most cases. We also provided some
experimental results that showed that the entropy and
F-measure values of clusters produced by HICAP are
similar to those of clusters produced by the standard
UPGMA approach. Thus, apparently it did not cost
us anything to use maximal hyperclique patterns to de-
fine our starting clusters, thereby ensuring that these
patterns are preserved. Finally, we demonstrated how
hyperclique patterns, if preserved, can be used for in-
terpreting clustering results.

While this paper showed, for document data sets,
the potential usefulness of pattern preserving cluster-
ing based on a hierarchical clustering approach, more



work is necessary to further expand the experimental
results that we provided and to show the broad applica-
bility and usefulness of a pattern preserving approach to
clustering. We plan to apply HICAP to additional docu-
ment data sets and to other types of data, e.g., genomics
and spatial data. We also hope to investigate how pat-
tern preserving clustering might be incorporated into
non-hierarchical clustering schemes.

Finally, while HICAP can be made more general
by using patterns other than hyperclique patterns, we
need to investigate what conditions these patterns must
meet for this to be meaningful. In particular, do
patterns need to possess the high affinity property?
More generally, we hope to understand what must be
done to modify clustering techniques to be compatible
with the goal of preserving patterns.
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