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Abstract. In this paper, we explore extending association analysis to non-traditional
types of patterns and non-binary data by generalizing the notion of confidence. We
begin by describing a general framework that measures the strength of the connection
between two association patterns by the extent to which the strength of one association
pattern provides information about the strength of another. Although this framework
can serve as the basis for designing or analyzing measures of association, the focus in
this paper is to use the framework as the basis for extending the traditional concept
of confidence to Error-Tolerant Itemsets (ETIs) and continuous data. To that end, we
provide two examples. First, we (1) describe an approach to defining confidence for
ETIs that preserves the interpretation of confidence as an estimate of a conditional
probability, and (2) show how association rules based on ETIs can have better cover-
age (at an equivalent confidence level) than rules based on traditional itemsets. Next,
we derive a confidence measure for continuous data that agrees with the standard con-
fidence measure when applied to binary transaction data. Further analysis of this result
exposes some of the important issues involved in constructing a confidence measure for
continuous data.
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1. Introduction

Traditional association analysis (Agrawal et al. 1993) focuses on transaction
data, such as the data that results when customers purchase items in a store.
This market basket data can be represented as a binary matrix, where there is
one row for each transaction, one column for each item, and the ijth entry is 1
if the ith customer purchased the jth item, but is 0 otherwise.1 More recently,
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1 This representation does not capture multiple purchases of a single item, but is a simplifying
assumption commonly used in association analysis.
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the concept of association analysis has also been applied to continuous data and
non-traditional patterns (Steinbach et al. 2004).

A key task of association analysis is finding frequent itemsets, which are sets of
items that frequently occur together in a transaction. For example, baby formula
and diapers are items that may often be purchased together. The strength of a
frequent itemset is measured by its support (Agrawal et al. 1993), which is the
number (or fraction) of transactions in which all items of the itemset appear
together. Although frequent itemsets are interesting in their own right, the end
goal of association analysis is typically the efficient generation of association
rules (Agrawal et al. 1993, Agrawal & Srikant 1994), where an association rule
is of the form A → B (A and B itemsets) and represents the statement that the
items of B occur in a transaction that contains the items of A. The strength of an
association rule is measured by the confidence of the rule, conf(A → B), which
is the fraction of transactions containing all the items of A that also contain all
the items of B. This definition of confidence is an estimate of the conditional
probability of A given B.

As just described, the confidence of the association rule A → B is the ratio of
the support of A ∪ B to the support of A. Thus, traditional confidence depends
on two key elements. First, there must be a definition of support. Second, the
ratio of the supports of A ∪ B and A must have a meaningful interpretation.
However, the assumptions on which traditional confidence is based may fail to
hold. We provide two examples to illustrate this point.

First, consider the non-traditional association pattern, Error-Tolerant Item-
sets (ETIs) (Yang et al. 2001), which are itemsets in which a specified fraction
of the items can be missing from a transaction. (ETIs are useful when, for exam-
ple, real association patterns are distorted by noise.) To illustrate, if the specified
fraction is 0.2, then for a set of 5 items, a transaction supports this itemset if
it contains at least 4 out of the 5 items. As described later in this paper, the
traditional definition of confidence is not appropriate for ETIs because the ratio
of confidence is not meaningful in this case.

Second, consider data with continuous attributes.2 Association analysis can-
not be directly applied to such data Nonetheless, if discretization techniques
(Srikant & Agrawal 1996, Tan et al. 2005) are employed, then association analysis
can be used for such data sets. However, discretization complicates the analysis
procedure and the interpretation of its results, as well as potentially causing a
loss of information. An example of an approach that directly deals with contin-
uous data is Min-Apriori (Han et al. 1997), which uses the anti-monotone prop-
erty of the min function to produce a new version of support that also has the
anti-monotone property. For binary transaction data, the support computed by
Min-Apriori matches that of the standard approach if the data is pre-normalized.
However, as described later, when Min-Apriori is applied to binary transaction
data, the confidence that Min-Apriori computes for an association rule may not
match that of traditional confidence.

To handle issues, such as those illustrated by the previous two examples, this
paper presents an approach for generalizing the notion of confidence3 based on
a general framework for defining the strength of the connection between two
itemsets. Specifically, this framework views the strength of such a connection

2 We include count attributes in this category.
3 More generally, our goal is to provide a framework for association analysis that allows it to
be applied directly to both non-binary data and non-traditional types of association patterns.
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(association) as the composition of two functions: (1) a function that evaluates
the strength or presence of an association pattern for each transaction, producing
a pattern evaluation vector, and (2) a function that measures the strength of
the relationship between a pair of pattern evaluation vectors. The strength of
the relationship may, for example, be measured by the extent to which one
pattern evaluation vector predicts the other, or by the proximity (similarity or
dissimilarity) of the two pattern evaluation vectors. Note that the traditional
definition of confidence as an estimate of the conditional probability of one set
of items given another is an evaluation of how well one set of items predicts
another.

The following are specific contributions of this paper:4

1. We describe a general framework that measures the strength of the connection
between two association patterns by the extent to which the strength of one
association pattern provides information about the strength of another. The
traditional approach to confidence is based on support, which can be regarded
as a summarization of the strength of a pattern over all transactions, and rep-
resents only one way of measuring the strength of an association between sets
of items. In contrast, the proposed framework is based on directly evaluating
the relationship between the pattern evaluation vectors of two association pat-
terns. The main focus of this paper is to use this framework to generalize the
notion of confidence to non-traditional patterns and continuous data, but this
framework has a usefulness beyond that application. For example, the frame-
work allows any measure of association for two items to be used as a measure
of association between a pair of itemsets or ETIs that contain multiple items.

2. For traditional binary transaction data, we describe how to modify the stan-
dard definition of confidence for Boolean association patterns,5 including ETIs,
so that confidence can be viewed as an estimate of conditional probability. We
provide an example of how applying the standard definition of confidence to
ETI’s yields a nonsensical result, while the modified definition gives the intu-
itively desired result. Based on these results, we provide an example involving
a real-world data set that indicates of how association rules for ETIs can be
more powerful than traditional association rules.

3. Using an example based on Min-Apriori, we show (1) a limitation of trying
to apply the traditional definition of confidence to continuous data, and (2)
demonstrate how we can use our framework to derive an alternative approach
to confidence that overcomes this limitation. In doing so, we derive an inter-
esting relationship between cosine similarity and traditional confidence. The
confidence measure that we derived is further analyzed to expose some of the
important issues involved in constructing a confidence measure for continuous
data.

Overview Section 2 introduces the notation that will be used in this paper
and quickly reviews the traditional notions of support and confidence. The limi-
tations of confidence for non-traditional association patterns are then considered
in Section 3 through an example based on ETIs. In Section 4, we describe our

4 A preliminary version of this paper (Steinbach & Kumar 2005) appeared in the proceedings
of ICDM 2005.
5 A Boolean association pattern is a pattern that is either present in a transaction or not. A
more precise definition will be presented shortly.
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Table 1. Summary of Notation

Notation Description

D Data matrix of M rows and N columns
T = {t1, · · · , tM} Set of transactions (objects, rows) of D
I = {i1, · · · , iN} Set of items (attributes, columns) of D
t An object (transaction, row) or its index
i, j, k An item (attribute, column) or its index
X, Y A set of items (attributes)

general framework for defining association measures between two itemsets (two
sets of attributes). A brief discussion is provided to outline the more general
implications of this framework. Section 5 then uses this framework to derive
a general definition of confidence for Boolean association patterns that can be
interpreted in terms of conditional probability. This section also presents an ex-
ample (involving ETIs and a real-life data set) that shows that our new approach
to confidence can be useful for deriving association rules that are more power-
ful than traditional association rules. In Section 6, we discuss Min-Apriori, an
approach for defining confidence in a traditional manner for continuous data,
and demonstrate how this definition is not consistent with traditional confidence
when Min-Apriori is applied to binary data. We also show how our framework can
be used to derive a new definition for confidence that overcomes this limitation.
However, further analysis reveals that yet another approach may be preferable.
A discussion of related work is given in Section 7, and Section 8 provides a
conclusion and directions for future work.

2. Background

After introducing some notation, we state the formal definitions of concepts,
such as support and confidence, that are important to association analysis.

2.1. Notation

Table 1 provides an overview of the notation used in this and later sections. We
typically use the traditional terms ‘item’ and ‘transaction’ when dealing with
binary data, but commonly use the terms ‘attribute’ and ‘object’ when dealing
with continuous data. In some cases, these terms are used to refer to both binary
and continuous data.

2.2. Traditional Support and Confidence

Using the notation of Table 1, we briefly summarize the traditional concepts
of (1) the support of an itemset, (2) a frequent itemset, (3) the support of
an association rule, (4) the confidence of an association rule, and (5) the anti-
monotone property of support.

Definition 1. Support
For a binary transaction data matrix D with transactions T and items I, the
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support6 of an itemset, i.e., a set of binary attributes, X ⊆ I, is given by

σ(X) = |{t ∈ T : D(t, i) = 1,∀i ∈ X}|,
which is simply the count of transactions containing all the items of X.

Definition 2. Frequent Itemset
Given an itemset X ⊆ I and a specified minimum support threshold, minsup,
X is a frequent itemset if σ(X) > minsup.

Definition 3. Support of an Association Rule
The support of the association rule, X → Y , where X ⊆ I, Y ⊆ I, and X ∩Y =
∅, is given by

σ(X → Y ) = σ(X ∪ Y ).

Definition 4. Confidence
The confidence of the association rule X → Y , where X ⊆ I, Y ⊆ I, and
X ∩ Y = ∅, is given by

conf(X → Y ) =
σ(X ∪ Y )

σ(X)
=

σ(X → Y )

σ(X)
.

Definition 5. Anti-monotone Property of Support
If X and Y,X ⊆ Y , are two itemsets, then σ(Y ) ≤ σ(X).

The downward closure or anti-monotone property (Zaki & Ogihara 1998)
of standard support provides an efficient way to find frequent itemsets and is
the foundation of the well-known Apriori algorithm (Agrawal & Srikant 1994).
The anti-monotone property for the support of itemsets allows us to find its
corresponding patterns efficiently. However, as we show below, for many non-
traditional patterns, such as ETIs, the lack of an anti-monotone property of
support renders the notion of confidence problematic.

3. Limitations of Traditional Confidence

Here we provide an example involving ETIs to illustrate the problem with using
the standard definition of confidence. Since ETIs are a type of Boolean associa-
tion pattern, we begin by defining a that concept.

3.1. Boolean Association Patterns

An itemset is supported by a transaction (i.e., the pattern defined by the co-
occurrence of all items in the itemset is present in a transaction) if all the items
in the itemset are contained by the transaction. If we treat the items as Boolean
attributes, then the process of evaluating whether a transaction supports an
itemset X = {i1, . . . , ık}, corresponds to evaluating the truth of the Boolean
formula, i1 ∧ i2 ∧ . . . ∧ ik. This approach can be generalized—see for example

6 A distinction is sometimes made between ‘support count’ and ‘support,’ with the latter being
defined by the ratio σ(X)/|T |. For simplicity, however, we will use ‘support’ to mean ‘support
count’ in this paper unless otherwise explicitly indicated.
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Table 2. Sample data set to illustrate confidence for ETIs.

i1 i2 i3 i4 i5 i6 i7 i8

t1 0 1 1 1 0 0 0 0
t2 1 0 1 1 0 0 0 0
t3 1 1 0 1 0 0 0 0
t4 1 1 1 0 0 0 0 0
t5 0 0 0 0 0 1 1 1
t6 0 0 0 0 1 0 1 1
t7 0 0 0 0 1 1 0 1
t8 0 0 0 0 1 1 1 1

Bollmann-Sdorra et al. 2001 or Srikant et al. 1997—in order to define more gen-
eral types of association patterns by using general Boolean formulas consisting of
the logical connectives ∧ (and), ∨ (or), and ¬ (not). For example, we could use
the Boolean formula, i1∨i2∨. . .∨ik as a pattern evaluation function. The key fea-
ture of Boolean association patterns is that, given a set of items (attributes) and
a transaction, there is a formula/function/procedure that indicates whether the
specified pattern is present in the transaction. As we will see, ETIs are Boolean
association patterns, even though they are not defined in terms of a Boolean
formula.

The computation of support for Boolean association patterns is analogous
to the standard computation of support. In particular, support is the number
of transactions in which the pattern occurs. Nothing has changed except the
means of evaluating whether a pattern is present in a transaction. However,
unlike traditional support, support for many Boolean association patterns does
not have the anti-monotone property. As we illustrate with ETI’s, the traditional
definition of confidence cannot be interpreted in terms of conditional probability
in such cases.

3.2. Applying Traditional Confidence to ETIs

Here we attempt to use traditional confidence for a binary association pattern
known as a strong ETI. Definition 6 provides a formal definition of a strong ETI
(Yang et al. 2001). For brevity, we will use the term ETI instead of strong ETI.

Definition 6. Strong Error Tolerant Itemset
A strong ETI consists of a set of items X ⊆ I, such that there exists a subset
of transactions R ⊆ T consisting of at least κ ∗ M transactions, and for each
t ∈ R, the fraction of items in X which are present in t is at least 1− ǫ. κ is the
minimum support expressed as fraction, M is the number of transactions, and ǫ
is the fraction of missing items.

Our first example uses the data shown in Table 2. Each transaction must
contain at least 3/8 of the specified items (ǫ = 5/8) and half the transactions
must support the pattern (κ = 0.5). If X = {i1, i2, i3, i4} and Y = {i5, i6, i7, i8},
then both X and Y are ETIs with a support of 4 transactions.

Computing conf (X → Y ) using the traditional definition of support yields

conf(X → Y ) =
σ(X ∪ Y )

σ(X)
=

8

4
= 2.
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Table 3. Another set of sample data set to illustrate confidence for ETIs.

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10

t1 1 1 1 0 1 1 1 1 1 1
t2 1 1 1 1 0 1 1 1 1 1
t3 1 1 1 1 0 1 1 1 1 1
t4 1 1 1 0 1 1 1 1 1 1
t5 0 0 1 1 1 1 1 1 1 1
t6 0 1 0 1 1 1 1 1 1 1
t7 0 0 1 1 1 1 1 1 1 1
t8 0 0 1 1 1 1 1 1 1 1

This seems quite odd because (1) the confidence is larger than 1 and (2) the ETI
pattern in X never co-occurs with the ETI pattern in Y . Thus, for ETIs, the
traditional notion of confidence does not seem appropriate. Later, we will indicate
how to define confidence for ETIs and other Boolean association patterns.

Our second examples shows that similar problems with confidence exist for
ETIs with lower values of ǫ. Consider the data shown in Table 3. Each trans-
action must contain at least 4/5 of the specified items (ǫ = 1/5) and half the
transactions must support the pattern (κ = 0.5). If X = {i1, i2, i3, i4, i5} and
Y = {i6, i7, i8, i9, i10}, then X (Y ) is an ETI with a support of 4 (8), and X ∪Y

has a support of 8. Thus, conf(X → Y ) = σ(X∪Y )
σ(X) = 8

4 = 2.

Again, the problem with confidence that is illustrated by these two examples
results from the fact that ETIs do not have the anti-monotone property of sup-
port defined on page 5. Many other non-traditional Boolean association patterns
have similar problems.

4. A General Framework for Association Measures

Between Sets of Attributes

4.1. Pattern Evaluation Functions

To generalize the notion of confidence, we created a general framework for as-
sociation measures between sets of attributes. The key to this framework is the
notion of evaluating, in each transaction, the strength of a pattern involving a
specified set of items. The evaluation of the strength of a pattern can take various
forms. Most commonly, and this is the case for traditional association analysis,
the pattern is either present, i.e., the pattern strength is 1, or it is absent, i.e.,
the pattern strength is 0. (As noted, we call such patterns Boolean association
patterns.) More generally, the evaluation of strength can be a real number. This
will be particularly relevant when we discuss confidence for continuous data.

Formally, a pattern is defined by a pattern evaluation function. In particular,
an evaluation function, eval, is a function that takes a set of items X ⊆ I as
an argument, and returns a pattern evaluation vector, v, whose ith component
is the strength of the pattern in the ith transaction. Thus, we can write

v(t) = eval(t,X), ∀t ∈ T or v = eval(X) (1)

If there are several sets of items under consideration, e.g., X and Y , then
we will distinguish between their pattern evaluation vectors by using subscripts,
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Table 4. Pattern evaluation functions.

eval function Definition

1 ∧ (and) eval∧(t, X) = D(t, i1) ∧ . . . ∧ D(t, ik)

2
∏

(product) eval∏ (t, X) = D(t, i1) ∗ . . . ∗ D(t, ik)

3 min evalmin(t, X) = min1≤j≤k {D(t, ij)}
4 max evalmax(t, X) = max1≤j≤k {D(t, ij)}
5 range evalrange(t, X) = evalmax(t, X) − evalmin(t, X)

6 strong ETI evaleti,ǫ(t, X) =
∑

i∈X D(t,i)

|X|
≥ 1 − ǫ

Table 5. Computation of eval vectors using eval∧ and eval min.
(a) eval∧.

item 1 item 2 v

1 1 0 0
2 0 1 0
3 1 1 1
4 1 1 1
5 1 0 0

(b) evalmin.

attr 1 attr 2 v

1 0.37 0.25 0.25
2 0.22 1.00 0.22
3 0.81 0.11 0.11
4 0.19 0.05 0.05
5 0.33 0.55 0.33

e.g., vX and vY . Various eval functions are shown in Table 4. Note that X =
{i1, i2, · · · , ik} ⊆ I and that some of the eval functions are valid for both binary
and continuous data. An illustration of the operation of evaluation functions for
binary and continuous data is provided by Tables 5(a) and 5(b), respectively.

Conceptually an itemset (set of attributes in the continuous case) is replaced
by a vector, whose length is the number of transactions. Each component of
this pattern vector measures the strength of the pattern in a particular trans-
action. This mapping of each itemset to a pattern vector creates a collection of
pattern vectors and further analysis involves only these vectors. This is analo-
gous to computing a similarity matrix from a data matrix and then performing
the clustering using only this similarity matrix. For clustering, pairs of objects
(transactions) are transformed into values in a similarity space, while for our
framework, itemsets (sets of attributes) are transformed into vectors in a pat-
tern space. This approach can also be used to create a framework for generalizing
support by equating support with measures of the magnitude of a pattern vector
(Steinbach et al. 2004).

4.2. Association Measures Between Sets of Attributes

Most generally, the strength of a connection (association) between two associ-
ation patterns can be viewed as a measure of the information that one associ-
ation pattern provides about another, where by association pattern, we mean
any pattern involving an itemset (set of attributes) that is defined by a pattern
evaluation vector. Specifically, the strength of an association is a function that
quantifies the relationship between the evaluation vectors of a pair of itemsets
(pair of sets of attributes). This is captured by the following definition.
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Definition 7. A General Definition of the Strength of an Association
If X ⊆ I and Y ⊆ I, X ∩ Y = ∅, are itemsets (sets of attributes), then the
strength of the association between them can be defined in terms of a function π
that maps the evaluation vectors of the two association patterns to a real value.
More formally, assoc : (ℜM ,ℜM ) → ℜ, where ℜ is the set of real numbers and
M is the number of transactions (objects).

assoc(X,Y ) = π(eval(X), eval(Y )) = π(vX ,vY ) (2)

We are not interested in just any function, π, but rather those functions
that meaningfully capture the strength of a relationship between two association
patterns. For example, π may (1) capture the extent to which the strength of one
association pattern can be used to predict another, or (2) capture the proximity
(similarity or dissimilarity) between the two association patterns. Although our
focus in this paper will be on using this framework to extend the notion of
confidence, we briefly describe some of the possible alternatives to confidence and
then discuss some of the more general implications of this framework. After, this
brief discussion, the remainder of this paper will focus on using the framework
to generalize the notion of confidence.

4.2.1. Examples of Association Measures

We begin by describing association measures, which are called interestingness
or objective measures, that have been developed to address the issue that as-
sociation measures with properties different from that of traditional confidence
can be useful. A list of many such measures is given in Table 6. Note that these
measures are given in terms of two binary variables i1 and i2 and the frequencies
with which their 0 and 1 values co-occur, as defined in Table 7. These measures
have been extensively investigated by numerous researchers. A survey of these
measures, their properties, and related issues is provided in Tan et al. 2002, Tan
et al. 2004, and Tan et al. 2005.

More specifically, the measures in Table 6 can be characterized in a number
of different ways. For example, there are several, including confidence, that have
an interpretation in terms of conditional probability or related notions involving
statistical independence or information theory. All-confidence is the minimum of
the confidence measured for all possible rules that can be created from the union
of the two itemsets. Lift is the confidence divided by the support of the second
itemset, while interest is, conceptually, the probability that the two items co-
occur divided by the probability that would be observed if they are independent.
Mutual information is an information theoretic measure that quantifies the de-
gree of information that the first itemset (the antecedent) provides about second
itemset (the consequent). As an example of measures of a different sort, some
of the other measures in Table 6 correspond to similarity measures, namely, the
cosine measure, correlation, and the Jaccard coefficient.

Indeed, when the pattern evaluation vectors vX and vY are continuous, it
seems especially useful to consider confidence measures based on some of the simi-
larity or distance measures that have been developed for evaluating the strength
of a connection between two continuous vectors. Some of these measures are
the continuous analogues of similarity measures in Table 6, such as the cosine,
correlation, and the extended Jaccard (Strehl et al. 2000) measures. Other alter-
natives include Euclidean distance and a relatively new set of measures, known
as Bregman divergences (Banerjee et al. 2004).



10 Steinbach and Kumar

Table 6. Examples of objective (interestingness) measures for the itemset {i1, i2}.

Measure (Symbol) Definition

Correlation (φ)
Nf11−f1+f+1√
f1+f+1f0+f+0

Odds ratio (α)
(

f11f00

)/(

f10f01

)

Kappa (κ)
Nf11+Nf00−f1+f+1−f0+f+0

N2−f1+f+1−f0+f+0

Interest (I)
(

Nf11

)/(

f1+f+1

)

Cosine (IS)
(

f11

)/(

√

f1+f+1

)

Piatetsky-Shapiro (PS) f11

N
− f1+f+1

N2

Collective strength (S) f11+f00

f1+f+1+f0+f+0
× N−f1+f+1−f0+f+0

N−f11−f00

Jaccard (ζ) f11

/(

f1+ + f+1 − f11

)

All-confidence (h) min
[

f11

f1+
, f11

f+1

]

Goodman-Kruskal (λ)
(

∑

j maxk fjk − maxkf+k

)/(

N − maxk f+k

)

Mutual Information (M)
(

∑

i

∑

j

fij

N
log

Nfij

fi+f+j

)/(

− ∑

i

fi+

N
log

fi+

N

)

J-Measure (J) f11

N
log Nf11

f1+f+1
+ f10

N
log Nf10

f1+f+0

Gini index (G)
f1+

N
× ( f11

f1+
)2 + ( f10

f1+
)2] − (

f+1

N
)2

+
f0+

N
× [( f01

f0+
)2 + ( f00

f0+
)2] − (

f+0

N
)2

Laplace (L)
(

f11 + 1
)/(

f1+ + 2
)

Conviction (V )
(

f1+f+0

)/(

Nf10

)

Certainty factor (F )
(

f11

f1+
− f+1

N

)/(

1 − f+1

N

)

Added Value (AV ) f11

f1+
− f+1

N

4.2.2. General Usefulness of the Framework

We mention three general uses for this framework. First, the framework allows
any binary measure of association, i.e., any measure is defined only for two items
(attributes), to be used when the itemsets, X and Y , contain more than two
items. Specifically, we first compute the pattern evaluation vectors of X and Y
and then calculate the strength of the association in terms of this pair of pattern
evaluation vectors. Although some binary measures, including those of Table 6,
have natural extensions to the case where X and Y contain multiple items, many
do not. Second, using the framework, the measures of Table 6 can be automat-
ically applied for non-traditional patterns, such as ETIs. As we show below, a
generalized version of confidence for ETIs seems quite useful, and thus, gener-
alized versions of other association measures for ETIs may also prove valuable.
Third, our framework provides a way of defining various measures of association
when the pattern evaluation functions that are applied to the data (continuous,
binary, etc.) produce continuous pattern evaluation vectors. In particular, any of
the many similarity and dissimilarity measures that have been defined for pairs
of continuous vectors can be used as association measures between two sets of
continuous attributes.
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Table 7. Contingency table for two binary variables, i1 and i2.
i1 = 1 i1 = 0

i2 = 1 f11 f10

i2 = 0 f01 f00

5. Confidence for Boolean Evaluation Functions

In this section, we use the framework described above to generalize the inter-
pretation of confidence as conditional probability to the case of general Boolean
association patterns. We then show how this generalized version of confidence
provides a reasonable value of confidence for the first example of Section 3. Fi-
nally, we provide an example with a real-life data set that demonstrates the
practical value of association rules based on ETIs.

5.1. Derivation of Confidence from Conditional Probability

Given two attributes X and Y , and a Boolean pattern evaluation function, what
we are seeking is a measure of the strength of the connection between the pattern
evaluation vectors of X and Y that corresponds to traditional confidence in the
sense that it is can be interpreted as an estimate of conditional probability. For
any Boolean pattern evaluation function, evalb, the resulting pattern evaluation
vectors, vX = evalb(X) and vY = evalb(Y ), are binary vectors. Furthermore,
we assume that only the presence of a pattern (a value of 1) is important. This
reduces the problem to one of computing, Prob(vY (t) = 1|vX(t) = 1), which is
the probability that an entry of vY is 1 when the corresponding entry of vX is
1. An estimate of this conditional probability is the fraction of entries where vX

and vY are both 1; i.e., Prob(vY (t) = 1 ∧ vX(t) = 1), divided by the fraction
of entries where vX(t) is 1, i.e., Prob(vX(t) = 1). This discussion leads to the
following general definition of the confidence of an association rule when using a
Boolean association pattern:

Definition 8. Confidence of an Association Rule for Boolean Associa-
tion Patterns
Given two disjoint sets of attributes X and Y , the traditional support function,
σ, and a Boolean pattern evaluation function evalb that defines the Boolean as-
sociation pattern and generates pattern evaluation vectors, evalb(X) = vX and
evalb(Y ) = vY , the generalized confidence, gconf(X → Y ), of the association
rule X → Y with respect to the Boolean association pattern is given by

gconf(X → Y ) = Prob(Y |X)

=
Prob(X ∧ Y )

Prob(X)

=
|{t ∈ T : vX(t) = 1 ∧ vY (t) = 1}|

|{t ∈ T : vX(t) = 1}|

=
σ({vX ,vY })

σ({vX})
= conf({vX} → {vY })
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where we have used the fact that |{t ∈ T : vX(t) = 1}| = σ({vX}) and |{t ∈ T :
vX(t) = 1 ∧ vY (t) = 1}| = σ({vX ,vY }).

Thus, we obtain a generalized version of confidence which can be interpreted
as conditional probability for the case of a general Boolean association pattern.
However, our results also show that the standard approach for computing confi-
dence cannot be used in the general case. In particular, the approach employed
in standard association analysis would use a numerator of σ(X ∪ Y ) = |{t ∈ T :
vX∪Y (t) = 1}| instead of σ({vX ,vY }) = |{t ∈ T : vX(t) = 1 ∧ vY (t) = 1}|, as
given in Definition 8. The equivalence of σ(X ∪ Y ) and σ({vX ,vY }) is a special
case and does not hold in general.

5.2. Example: Strong Error-Tolerant Itemsets (Continued)

Computing conf(X → Y ), as given in Definition 8, requires computing σ({vX ,vY }).
In turn, this requires us to ‘and’ the pattern evaluation vectors of X and Y and
then sum the entries of the resultant vector. The ETI pattern of X occurs only
in the first four transactions, while that of Y occurs only in the last four trans-
actions. If ∧ denotes the componentwise ‘and’ function, then
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and consequently, σ({vX ,vY }) = 0.
Therefore,

gconf(X → Y ) =
σ({vX ,vY })

σ({vX}) = 0/4 = 0,

which is much more intuitive than the previous result: conf(X → Y ) = 2.

5.3. An Example of the Application of Generalized Confidence
to the Mushroom Data Set

Here we present an example of the power of confidence for ETIs. We use the
mushroom dataset from the FIMI website (Goethals & Zaki 2003), which has
binary attributes.7. In the binary format, the data set consists of 119 binary
attributes (items) and 8124 rows (transactions). Each transaction represents a
mushroom and each item an attribute, e.g., odor or color. The first item, denoted
by p, indicates whether a mushroom is poisonous, while the second item, e,
indicates a mushroom is edible. There were 3916 poisonous mushrooms and 4208
edible ones.

For a complete analysis, it would be desirable to seek rules involving any
number of attributes, but here the focus is on illustrating the practical usefulness

7 The mushroom data set with categorical attributes is available from the UCI machine leaning
repository (Newman et al. 1998).
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of confidence involving ETIs versus regular itemsets. Thus, we restrict ourselves
to rules involving only three items on the left hand side and the item p on the
right hand side. Specifically, we found all itemsets of three items (excluding p
and e) and computed the confidence between these itemsets and the p item, both
by treating the itemset as a standard itemset and as an ETI.

First, we computed confidence in the traditional manner, as described by
Definition 4. Second, we treated each itemset as an ETI that had to have at
least two of the three items and calculated confidence of the rule as given in
Definition 8. We kept only those rules that had a confidence of 1. We give two
examples.

One rule was {29, 48, 90} → p. With traditional association analysis, this rule
has a confidence of 1 and a support of 576. On the other hand, if we require only
two of the three items, i.e., treat {29, 48, 90} as an ETI, then we still have a
confidence of 1, but the support is 3312. Thus, in this case, using ETIs, with the
modified approach to confidence, results in a rule of equal quality, but expanded
coverage.

Another rule was {48, 85, 95} → p. With traditional association analysis, this
rule has a confidence and support of 0. However, if we require only two of the
three items, i.e., treat {48, 85, 95} as an ETI, then the confidence is 1 and the
support is 3024. The reason for this is that items 48 and 95 never co-occur with
one another, but they do frequently co-occur individually with item 85. This
type of disjunctive rule (Elble et al. 2003, Nanavati et al. 2001, Zelenko 1999)
would not be produced by standard association analysis.

In summary, generalizing the notion of confidence allows us to meaningfully
use association rules based on ETIs. In turn, as this example has illustrated, such
rules can provide better coverage (at an equivalent level of confidence) than rules
based on traditional itemsets. Furthermore, rules based on ETIs automatically
incorporate disjunctive characteristics.

6. Confidence for Continuous Data

In this section, we consider, for continuous data, the traditional notion of con-
fidence as defined as a ratio of supports. The basis for this discussion will be
the Min-Apriori algorithm Han et al. (1997), which we will describe next. On
the surface, this algorithm defines support and confidence for continuous data
in a way that seems almost identical to the way these concepts are defined for
binary data. However, when applied to binary data, Min-Apriori’s definition of
confidence produces results that differ from those of traditional confidence ap-
plied to the same data. Using the framework introduced in Section 4, we analyze
this issue and produce a new measure of confidence for Min-Apriori that agrees
with traditional confidence for binary data. This result is further analyzed to
highlight some of the important issues in constructing a confidence measure for
continuous data.

6.1. Min Apriori

The Min-Apriori algorithm operates as follows. First, to adjust for possible dif-
ferences in the scales of attributes, Min-Apriori normalizes the data in each
column (attribute) of the data matrix by dividing each column entry by the
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Table 8. Computation of support for con-
tinuous data.

i1 i2 min({i1, i2})

t1 0.45 0.55 0.45
t1 0.25 0.05 0.05
t1 0.30 0.25 0.25
t1 0.00 0.15 0.00

Support 1.00 1.00 0.75

Table 9. Data for confidence calculations of Min-Apriori.
(a) Sample data.

A B C D

1 1 1 1
1 1 1 1
1 0 1 1
1 0 1 1
1 1 0 0
1 0 1 0

(b) Normalized data.

A B C D

1/6 1/3 1/5 1/4
1/6 1/3 1/5 1/4
1/6 0 1/5 1/4
1/6 0 1/5 1/4
1/6 1/3 0 0
1/6 0 1/5 0

(c) Eval vectors.

AB CD ABCD

1/6 1/5 1/6
1/6 1/5 1/6
0 1/5 0
0 1/5 0

1/6 0 0
0 0 0

sum of the column entries. Given this normalization, the support of a set of
attributes is computed by taking the minimum value in each row and summing
the resultant values. In what follows, we will indicate this support function with
the notation, σmin to distinguish this support function from the standard one.8

The Min-Apriori process of computing the support of already normalized data
is illustrated in Table 8.

Min-Apriori uses the traditional, support-based definition of confidence, al-
though with the definition of support as defined above, i.e., conf(X → Y ) =
σmin(X ∪Y )/σmin(Y ). However, if Min-Apriori is given binary transaction data,
it does not always yield the same confidence values as the standard definition of
confidence on the original data. This is illustrated by the data shown in Table 9.
The original data is shown in Table 9(a), Table 9(b) shows the data after it has
been normalized, and Table 9(c) shows the evaluation vectors. Using traditional
confidence, we obtain

conf(CD → AB) = σ(ABCD)/σ(CD) = 2/4 = 0.5.

However, using Min-Apriori’s definition of support, we get

conf(CD → AB) =
σmin(ABCD)

σmin(CD)
= (2/6)/(4/5) = 5/12 = 0.42.

6.2. A New Confidence Measure for Continuous Data

To illustrate the utility of our framework when applied to continuous data, we
derive a confidence measure for continuous data that agrees with traditional

8 In Steinbach et al. 2004, we use slightly different notation and provide a more formal descrip-
tion of support in terms of summarizing a pattern evaluation vector. To enable this discussion
to stand on its own, we simplify both the notation and discussion.



Generalizing the Notion of Confidence 15

confidence when used on binary transaction data. We first prove a supporting
theorem that relates the cosine measure and traditional confidence and then use
this result to derive a new confidence measure that is consistent with confidence
for binary data. An example illustrates that this new measure achieves the desired
consistency. However, a further analysis of the new measure of confidence more
clearly reveals a key issue involved in extending confidence to continuous data,
namely, the need to normalize continuous data to remove dependencies of scale
and the fact that the confidence measure is not invariant to such a normalization.

6.2.1. Relationship Between the Cosine Measure and Traditional
Confidence

We begin by proving Theorem 6.1, which indicates that the traditional confi-
dence of the association rule X → Y for binary data equals the cosine measure
between the evaluation vectors of X and Y multiplied by a factor that depends
on the relative support of the two itemsets. This theorem serves as the basis
for our approach, as well as being interesting in its own right. Note that if both
association patterns have the same support, then the confidence simply reduces
to the cosine of their pattern evaluation vectors, i.e., cos(eval∧(X), eval∧(Y )).
In this case, confidence is also symmetric, i.e., conf(X → Y ) = conf(Y → X).

Theorem 6.1. Given traditional support and the corresponding evaluation func-
tion, eval∧, we get

conf(X → Y ) = cos(eval∧(X), eval∧(Y ))

√

σ(Y )

σ(X)
(3)

Proof.

conf(X → Y ) =
σ(X ∪ Y )

σ(X)

=
eval∧(X) · eval∧(Y )

||eval∧(X)||22
= cos(eval∧(X), eval∧(Y ))

||eval∧(Y )||2
||eval∧(X)||2

= cos(eval∧(X), eval∧(Y ))

√

σ(Y )

σ(X)

where eval∧(X) · eval∧(Y ) is the dot product of evaluation vectors of X and Y ,
respectively. We have used the definition of the cosine measure, cos(x,y) = x ·
y/||x||2||y||2, as well as the following pair of facts: σ(X∪Y ) = eval∧(X)·eval∧(Y )
and σ(X) = ||eval∧(X)||1 = ||eval∧(X)||22. Note that || ||1 and || ||2 are the L1

and L2 vector norms, respectively.

6.2.2. A Measure Consistent With Traditional Confidence

If two vectors are multiplied by (potentially different) non-zero constants, their
cosine measure is unchanged. As a result, if each attribute of a binary trans-
action matrix is normalized to have an L1 norm of 1, then the cosine measure
between attributes does not change. Thus, if we can express

√

σ(Y )/σ(X) in
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terms of support based on the Min-Apriori support function, σmin, then we will
have an alternative definition of confidence that matches the standard definition
of confidence for binary transaction data and works for continuous data. The
following theorem provides the details.

Theorem 6.2. For traditional binary transaction data whose attributes have
been normalized to have an L1 norm of 1 (the Min-Apriori normalization) and
an itemset X, σmin(X)/m = σ(X), where m is the mean of the non-zero entries
of evalmin(X) and σ(X) is the traditional support of the attributes X for the
original, unnormalized data.

Proof. First, notice that when attribute i is normalized, its non-zero entries
become 1/σ(i). Thus, all the non-zero entries of evalmin(X) have the value
mini∈X(1/σ(i)). Trivially, the average of the non-zero values of evalmin(X) will
be m = mini∈X 1/σ(i). Furthermore, evalmin(X) will have σ(X) such entries,
one for each transaction where all the attributes of X are all non-zero. Thus,
σmin(X) = mini∈X 1/σ(i) σ(X) = m σ(X), and the theorem follows.

Using the previous two results, we get a new definition of confidence for
continuous data that is normalized to have an L1 norm of 1.

Definition 9. New Definition of Confidence for Continuous Data

conf(X → Y ) = cos(evalmin(X), evalmin(Y ))

√

σmin(Y )/mY

σmin(X)/mX

,

where mX (mY ) is the mean of the non-zero values of evalmin(X) (evalmin(Y )).

6.2.3. Example: Confidence for Continuous Data Using Min-Apriori
(Continued)

We provide a numerical illustration of the result that we have just derived,
using the data in Table 9. Recall that conf(CD → AB) = 0.5 when traditional
confidence is used. Using Table 9(c), we apply Definition 9 with X = {C,D}, and
Y = {A,B}. Summing column AB of Table 9(c), we obtain σmin(AB) = 3/6.
Summing column CD of Table 9(c), we get σmin(CD) = 4/5. From Table 9(c),
we see mAB = 1/5 and mCD = 1/6. Finally, cos(evalmin(CD), evalmin(AB)) =

1/
√

3. Thus, the confidence given by Definition 9 is

conf(CD → AB) =
1√
3

√

(3/6)/(1/6)

(4/5)/(1/5)
=

1√
3

√

3

4
=

√

1

4
= 0.5.

This new value agrees with that produced by traditional confidence as illus-
trated in the example in Section 6.1.

6.2.4. Further Analysis

Although we have produced a measure of confidence that addresses a potential
limitation of the Min-Apriori version of confidence, further analysis is warranted
to better understand the meaning of the this measure. In particular, at first
glance, division by the mean of the non-zero entries seems mysterious. However,
the role of this factor is clear if we realize that its effect is to counteract the
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normalization of the data performed by Min-Apriori as an initial preprocessing
step. An examination of the previous example provides an illustration of this.

However, a more formal understanding of this situation is possible. In Tan
et al. 2004, various properties of association measures were considered, including
invariance with respect to the scaling of the data. The normalization performed
by Min-Apriori corresponds to an independent scaling of the columns of the data,
and, as was indicated in Tan et al. 2004, confidence is not invariant to such a
transformation. In light of this, the formula for confidence that we derived above
becomes much more understandable; i.e., to match confidence for unnormalized
binary data, the effects of normalization must be counteracted. It is worth not-
ing that if the normalization step of Min-Apriori is omitted, then Min-Apriori
produces confidence results for binary data that are consistent with traditional
confidence.9

In summary, there are two approaches that extend the traditional confidence
measure to continuous data in a way that yields the same value as traditional
confidence for the original binary data. However, both approaches run counter
to the purpose of normalization, which may be desirable in situations involving
continuous data. Indeed, despite the fact that Min-Apriori is not always con-
sistent with traditional confidence on binary data, the Min-Apriori approach to
confidence may be preferable for continuous data because of the normalization
issue. However, other types of association measures should also be considered.
More investigation is needed into these issues.

6.3. A Final Observation

Here we make the observation, which some may find interesting, that the Min-
Apriori approach to confidence is only partially inconsistent with confidence
for binary data. Consider the following example that again uses Tables 9a-c,
but computes conf(AB → CD) instead of conf(CD → AB). Using traditional
confidence, we obtain

conf(AB → CD) = σ(ABCD)/σ(AB) = 2/3 = 0.67.

Using Min-Apriori’s definition of support, we get

conf(AB → CD) =
σmin(ABCD)

σmin(AB)
= (2/6)/(3/6) = 2/3 = 0.67.

In this case, the traditional confidence of unnormalized binary data matches
that obtained from Min-Apriori. Indeed, when using Min-Apriori, the confidence
of one of the association rules conf(X → Y ) or conf(Y → X) will always
match that of traditional confidence when applied to binary data. We omit a
formal proof, but this is readily established using the relationship, σmin(X) =
mini∈X 1/σ(i) σ(X), that was used in the previous proof.

9 This depends on the fact that, for binary data, the min evaluation function is equivalent to
an evaluation function based on and. In this case, the support corresponds to a count not a
fraction, but this changes nothing important.
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7. Related Work

Although there has been considerable work on various association measures (Tan
et al. 2002, 2004), we are unaware of any work similar to ours in constructing
a framework for such measures or in generalizing confidence. The most rele-
vant previous work concerns interestingness/objective measures. These alterna-
tive association measures and their connection to the framework were discussed
in Section 4 and are surveyed in Tan et al. 2002, Tan et al. 2004, and Tan et al.
2005.

Another area that has some connection to our work is quantitative association
rules (Aumann & Lindell 1999, Okoniewski et al. 2003, Srikant & Agrawal 1996,
Webb 2001), which try to predict the values of one set of attributes from another.
There has also been some work in integrating regression with association analysis
(Ozgur et al. 2004). However, both these approaches are distinct from our view
of association rules and confidence, which involves only the prediction of the
strength/presence of one pattern from another.

Finally, we mention our previous work on generalizing support (Steinbach
et al. 2004), which provides a framework for generalizing support. The work
in this paper, although independent of the support work, is complementary to
that work. Our previous work on Min-Apriori (Han et al. 1997) also played an
important role in this work by providing a concrete example of confidence for
continuous data.

8. Conclusions and Future Work

We described a general framework for measures of the strength of an association
between two itemsets (sets of attributes) and showed how this framework could
be used to generalize confidence. First, we showed how to define confidence for
Boolean association patterns, including ETIs, in a way that preserves the in-
terpretation of confidence as an estimate of conditional probability. Second, we
constructed an estimate of confidence for continuous data that agrees with tra-
ditional confidence when applied to binary data. However, a further analysis of
this measure showed that its approach runs counter to the normalization that
may be desirable for continuous data.

With respect to future work, there is a need for efficient algorithms for find-
ing high confidence association rules for non-traditional patterns and non-binary
data sets. Also, more experiments are needed to evaluate the usefulness of such
association rules. Although preliminary, the results of using ETIs to form associ-
ation rules for the mushroom data set were very promising and need to be further
investigated. In particular, we would like to conduct an extensive comparison of
the usefulness of rules based on ETIs and traditional association rules. Also, the
connection of rules based on ETIs to disjunctive rules and more general Boolean
patterns needs to be further explored. In the context of Boolean association pat-
terns, it would be worthwhile to explore using various objective (interestingness)
measures (Tan et al. 2002) as association measures, particularly in the context
of ETIs or other Boolean association patterns. Finally, more research is needed
to understand the appropriate association measures for continuous association
analysis.
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