
Scan Detection: A Data Mining Approach

György J. Simon

Computer Science

Univ. of Minnesota

gsimon@cs.umn.edu

Hui Xiong

MSIS Dept.

Rutgers Univ.

hui@rbs.rutgers.edu

Eric Eilertson

Computer Science

Univ. of Minnesota

eric@cs.umn.edu

Vipin Kumar

Computer Science

Univ. of Minnesota

kumar@cs.umn.edu

Abstract

A precursor to many attacks on networks is often
a reconnaissance operation, more commonly referred
to as a scan. Despite the vast amount of attention
focused on methods for scan detection, the state-of-
the-art methods suffer from high rate of false alarms
and low rate of scan detection. In this paper, we
formalize the problem of scan detection as a data mining
problem. We show how the network traffic data sets
can be converted into a data set that is appropriate
for running off-the-shelf classifiers on. Our method
successfully demonstrates that data mining models can
encapsulate expert knowledge to create an adaptable
algorithm that can substantially outperform state-of-
the-art methods for scan detection in both coverage and
precision.

1 Introduction

A precursor to many attacks on networks is often a
reconnaissance operation, more commonly referred to
as a scan. Identifying what attackers are scanning for
can alert a system administrator or security analyst to
what services or types of computers are being targeted.
Knowing what services are being targeted before an at-
tack allows an administrator to take preventative mea-
sures to protect the resources e.g. installing patches,
firewalling services from the outside, or removing ser-
vices on machines which do not need to be running
them.

Given its importance, the problem of scan detection
has been given a lot of attention by a large number of
researchers in the network security community. Initial
solutions simply counted the number of destination
IPs that a source IP made connection attempts to on
each destination port and declared every source IP a
scanner whose count exceeded a threshold [16]. Many
enhancements have been proposed [18, 5, 15, 9, 14, 13],
but despite the vast amount of expert knowledge spent
on these methods, current, state-of-the-art solutions
still suffer from high percentage of false alarms or low
ratio of scan detection.

For example, a recently developed scheme by Jung
[5] has better performance than earlier methods, but it
requires that scanners attempt connections to several
hosts on a destination port before they can be detected.
This constraint limits the scheme’s applicability because
a sizable portion of the scanners attempt connections
to only one host on each port in a typical observation
window giving a net result of poor coverage.

Data mining techniques have been successfully
applied to the generic network intrusion detection
problem[8, 2, 10], but not to scan detection.1In this pa-
per, we present a method for transforming network traf-
fic data into a feature space that successfully encodes
the accumulated expert knowledge. We show that an
off-the-shelf classifier, Ripper[3], can achieve outstand-
ing performance both in terms of missing only very few
scanners and also in terms of very low false alarm rate.
While the rules generated by Ripper make perfect sense
from the domain perspective, it would be very difficult
for a human analyst to invent them from scratch.

1.1 Contributions This paper has the following key
contributions:

• We formalize the problem of scan detection as a
data mining problem and present a method for
transforming network traffic data into a data set
that classifiers are directly applicable to. Specif-
ically, we formulate a set of features that encode
expert knowledge relevant to scan detection.

• We construct carefully labeled data sets to be used
for training and test from real network traffic data
at the University of Minnesota and demonstrate
that Ripper can build a high-quality predictive
model for scan detection. We show that our method
is capable of very early detection (as early as

1Scans were part of the set of attacks used in the KDD Cup ’99

[1] data set generated from the DARPA ’98/’99 data sets. Nearly

all of these scans were of the obvious kind that could be detected

by the simplest threshold-based schemes that simply look at the

number of hosts touched in a period of time or connection window.

the first connection attempt on the specific port)
without significantly compromising the precision of
the detection.

• We present extensive experiments on real-world
network traffic data. The results show that the
proposed method has substantially better perfor-
mance than the state-of-the-art methods both in
terms of coverage and precision.

2 Background and Related Works

Until recently, scan detection has been thought of as
the process of counting the distinct destination IPs
talked to by each source on a given port in a certain
time window [16]. This approach is straightforward to
evade by decreasing the frequency of scanning. With
a sufficiently low threshold (to allow capturing slow
scanners), the false alarm rate can become high enough
to render the algorithm useless. On the other hand,
higher thresholds can leave slow and stealthy scanners
undetected. A number of more sophisticated methods
[9, 18, 15, 5, 4] have been developed to address the
limitations of the basic method.

Robertson [15] assigns an anomaly score to a source
IP based on the number of failed connection attempts it
has made. This scheme is more accurate than the ones
that simply count all connections since scanners tend
to make failed connections more frequently. However,
the scanning results still vary greatly depending on the
definition of a failed connection and how the threshold
is set. Lickie [9] uses a statistical approach to determine
the likelihood of a connection being normal versus being
part of a scan. The main flaw of this algorithm is
that it generates too many false alarms when access
probabilities are highly skewed (which is often the case.)
SPICE [18] is another statistical-anomaly based system
which sums the negative log-likelihood of destination
IP/port pairs until it reaches a given threshold. One
of the main problems with this approach is that it will
declare a connection to be a scan simply because it is
to a destination that is infrequently accessed.

The intuition behind SPICE is partly correct. It
is true that destinations that are accessed only by
scanners are rare, but the converse is not true. A scheme
proposed by Ertöz et al. [4] assigns a scan score to each
source IP on each destination. If the requested service
is offered – regardless of how infrequently it is used –
the score is not increased. If the requested service does
not exist, the score is increased by the reciprocal of the
log frequency of the destination. This scheme achieves
fairly good performance, and is generally comparable to
the TRW scheme in precision and recall that we describe
next.

The current state-of-the-art for scan detection is
Threshold Random Walk (TRW) proposed by Jung et
al. [5]. It traces the source’s connection history per-
forming sequential hypothesis testing. The hypothesis
testing is continued until enough evidence is gathered to
declare the source either scanner or normal. Assuming
that the source touched k distinct hosts, the test statis-
tics (the likelihood ratio of the source being scanner or
normal) is computed as follows:

Λ =

k
∏

i=1

γ0 if the first connection to
host i fails

1

γ1

otherwise,

where γ0 and γ1 are constants. The source is declared a
scanner, if Λ is greater than an upper threshold; normal,
if Λ is less than a lower threshold. The thresholds
are computed from the nominal significance level of the
tests.

It is worth pointing out that in a logarithmic space,
when log γ0 = 1, then log Λ is increased by one every
time a first connection fails and is decreased by one
every time a first connection succeeds. The threshold in
this logarithmic space (the log of the threshold in the
original space) is number of consecutive first-connection
failures required for a source to be declared a scanner.
For simplicity, in the rest of the paper, when we say
threshold, we will refer to the log-threshold.

The authors of TRW recommend using a threshold
of 4 (that is TRW is going to declared an IP scanner
only after having made at least 4 observations). At this
threshold, TRW can achieve high precision. Reducing
the threshold to 1 will result in an unacceptably high
rate of false alarms rendering TRW unable to reliably
detect scans that only make one connection attempt
within the observation period.

These false alarms are primarily caused by P2P
and backscatter traffic. In recent years when the
legality of certain uses of file sharing networks (based
on P2P) has been questioned in the courtrooms, P2P
networks started increasingly utilizing random ports
to avoid detection. Peers agree upon a (practically)
randomly chosen destination port that they conduct
their communications on. They also maintain a list
of the <IP address, destination port> pairs of their
peers. Upon trying to re-connect to a P2P network,
the host makes connection attempts to the hosts on its
list of peers. The hosts on the list may not offer the
service any more – e.g. they may be turned off or their
dynamic IP address changed. To a scan detector, a P2P
host unsuccessfully trying to to connect to its peers may
appear as a scan [7, 6].

Backscatter traffic is another type of network traffic
that can be easily mistaken for scan. Backscatter

traffic typically originates from a server under denial-
of-service (DoS) attack. In the course of a DoS attack,
attackers send a server (the victim) such a large amount
of network packets that the server becomes unable to
render its usual service to its legitimate clients. The
attackers also falsify the source IP and source port fields
in these packets, so when the server responds,it sends
its replies to the falsified (random) addresses. For a
sufficiently large network, there can be enough falsified
addresses that fall within the network space, such that
replies from the victim will make it seem like a scanner:
the victim is unsolicitedly sending packets to hosts that
may not even exist [11].

3 Definitions and Method Description

In the course of scanning, the attacker aims to map the
services offered by the target network. There are two
general types of scans (1) horizontal scans, where the
attacker has an exploit at his disposal and aims to find
hosts that are exploitable by checking many hosts for
a small set of services; and (2) vertical scan, where
the attacker is interested in compromising a specific
computer or a small set of specific computers. They
often scan for dozens or hundreds of services.

Source IP, destination port pairs (SIDPs) are the
basic units of scan detection; they are the potential
scanners. Assume that a user is browsing the Web (des-
tination port 80) from a computer with a source IP S.
Further assume that S is infected and is simultaneously
scanning for port 445. Our definition of a scanner allows
us to correctly distinguish between the user surfing the
Web (whose SIDP < S, 80 > is not a scanner) from the
SIDP < S, 445 > which is scanning.

Scan Detection Problem Given a set of network
traffic records (network traces) each containing the fol-
lowing information about a session (source IP, source
port, destination IP, destination port, protocol, num-
ber of bytes and packets exchanged and whether the
destination port was blocked), scan detection is a clas-
sification problem in which each SIDP, whose source
IP is outside the network being observed, is labeled as
scanner if it was found scanning or non-scanner oth-
erwise.

Overview of the Solution The essence of our
proposed method is the assumption that given a prop-
erly labeled training data set and the right set of
features, data mining methods can be used to build
a predictive model to classify SIDPs (as scanner or
non-scanner).

In case of the scan detection problem, we will ob-
serve SIDPs over as long a time period as our computa-
tional resources allow and label them with high preci-

sion2. We will train a classifier – any off-the-shelf classi-
fier – on this precisely labeled data and let the classifier
learn the patterns characteristic of scanning behavior.
Then we can apply this classifier to unlabeled data col-
lected over a much shorter observation period and (as
we will demonstrate later) successfully detect scanners.

The success of this method depends on (1) whether
we can label the data accurately and (2) whether we
have derived the right set of features that facilitate
the extraction of knowledge. Section 3.1 and 3.2 will
elaborate on these points.

Choice of classifier. Although most classifiers are
applicable to our problem, some classifiers are better
suited than others.

Our understanding of data mining classifier algo-
rithms guided us towards choosing Ripper. We chose
Ripper, because (a) the data is not linearly separable,
(b) most of the attributes are continuous, (c) the data
has multiple modes and (d) the data has unbalanced
class distribution. Ripper can handle all of these prop-
erties quite well. Furthermore, it produces a relatively
easily interpretable model in the form of rules allow-
ing us to assess whether the model reflects reality well
or if it is merely coincidental. An additional benefit
is that classification is computationally inexpensive 3.
The drawback of Ripper is its greedy optimization al-
gorithm and its tendency to overfit the training data at
times. These drawbacks did not set us back too much;
we encountered the overfit problem with visible effect
only on one occasion.

3.1 Features The key challenge in designing a data
mining method for a concrete application is the neces-
sity to integrate the expert knowledge into the method.
A part of the knowledge integration is the derivation of
the appropriate features. Table 1 provides the list of
features that we derived.

The first set of features (srcip, scrport,

dstport) serve to identify a record; these features are
not used for classification.

The second set of features contains statistics about
the destination IPs and ports. These features provide an
overall picture of the services and hosts involved in the
source IP’s communication patterns. The first feature in
this group, ndstips, is the revered heuristic that defined
early scan detection schemes. In addition, we provide
features to show whether the source IP was using a few

2As we will explain in Section 3.2, despite our claims about the

poor performance of the current scan detection schemes, labeling

at a very high precision is possible under certain circumstances.
3Building the model is computationally expensive, but it can

be performed off-line. It is the actual classification that needs to

be carried out in real-time.

Table 1: The List of Features Extracted from the Network
Trace Data

Feature Description

srcip Source IP
srcport Source port or 0 for multiple source ports
dstport Destination port

Destination IP and Port Statistics

ndstip Number of distinct destination IPs touched
by the source IP

ndstports Number of distinct destination ports
touched by the source IP

avgdstips Number of distinct destination IPs aver-
aged over all destination ports touched by
the source IP.

maxdstips Maximum number of distinct destination
IPs over all destination ports that the
source IP touched.

Statistics Aggregated over All Destination Ports

server The ratio of (distinct) destination IPs that
provided the service that the source IP
requested.

client The ratio of (distinct) destination IPs that
requested service from the source IP on
the destination port during the 24 hours
preceding the experiment time.

nosrv The ratio of (distinct) destination IPs
touched by the source IP that offered no
service on dstport to any source during the
observation period.

dark The ratio of (distinct) destination IPs that
has been inactive for at least 4 weeks prior
to the experiment date.

blk The ratio of (distinct) destination IPs
that were attempted connections to by the
source IP on a blocked port during the ex-
periment.

p2p The ratio of (distinct) destination IPs that
have actively participated in P2P traffic
over the 3 weeks prior to the test date.

Statistics on Individual Destination Ports

i ndstips }

Same definitions as above except
measured on a single dstport.

i none

i dark

i blk

services on many hosts, or many services on a few hosts
(avgdstips, maxdstips).

The third set of features have two goals. First, they
help determine the role of the source IP: high values
of client (percentage of inside IPs that are clients of
the source IP) and low values of server (percentage of
inside IPs that offer service to the source IP) indicate
that the source IP is a server, otherwise it is a client.
The remaining features nosrv, dark, blk, p2p allow
us to assess the source IP’s behavior.

The fourth set of features describe the role and
behavior of the source IP on a specific destination port.
The individual features serve the same purpose as their
siblings in the third set. The importance of including
the fourth group lies in the observation that certain
source IPs exhibit vastly different behavior on some
ports than on the majority of the ports they touch. An
example could be a P2P host which is infected by a
worm: the host is engaged in its usual P2P activity on
a number of ports and it is also scanning on some ports.

3.2 Labeling the Data Set The goal of labeling
is to assign each < source IP, destination port >
pair (SIDP) a label that describes its behavior best.
We distinguish between the following broad behavior
classes (1) scanning (labeled as SCAN), (2) traditional
client/server applications (NRML), (3) P2P (P2P) and
(4) Internet noise (NOISE) [12].

While general scan detection schemes have been
criticized for their high false alarm rates or low cov-
erages, we claim that we are able to reliably label a
set of SIDPs that appear within a short time window
by observing their behavior over a long period. This is
possible because our labeling scheme is different from
earlier scan detection methods in the following key re-
spects.

The most crucial difference lies in the length of
the observation period. The sharp-eyed Readers may
have noticed that some of the features in Table 1
include information about inactive IPs and P2P hosts.
Automatically constructing an accurate list of inactive
IPs or P2P hosts requires very long observations. We
use 22 days of traffic data (95 GB of compressed netflow
data) to construct these lists. Fortunately, the changes
to these lists are marginal and hence they can be
continuously updated during normal operation.

In sharp contrast to the above lists, features in
Table 1 are so dynamic that under the performance
constraints of production use (real-time classification),
we can only maintain information within a 20-minute
window: scan detection must be done based on 20
minutes of observation. On the other hand, the labeling
of the training set can be performed off-line. Upon
training, we select a 20-minute window and observe the
source IPs that were active in that 20-minute window
for 3 days. The extra observations we obtained by
watching the IPs for 3 days enables us to label them
at considerably higher confidence.

Even existing schemes are capable of scan detection
at high precision – at high thresholds. High thresholds
require more observations, causing the coverage to
become intolerably small. By drastically increasing the
time window (from 20 minutes to 3 days), we provide

additional observations that helps increase the coverage.
Second, existing scan detection methods observe the

behavior of the source IPs on specific ports separately.
In our labeling scheme, on top of examining the ac-
tivities of a source IP on each individual destination
port separately, we also correlate their activities across
ports. Certain types of traffic, most prominently P2P
and backscatter, can only be recognized when informa-
tion is correlated across destination ports.

Third, practical scan detection schemes have re-
quirements such as being able to run in real-time. As
we have discussed before, training (labeling the train-
ing data and building the data mining model) can be
performed off-line. This allows us to perform more ex-
pensive computations including tracing the connection
history of source IPs for 3 days instead of 20 minutes.

For the details of the labeler, the Reader is referred
to [17].

4 Evaluation

4.1 Description of the Data Set For our experi-
ments, we used real-world network trace data collected
at the University of Minnesota between the 1st and
the 22nd March, 2005. The University of Minnesota
network consists of 5 class-B networks with many au-
tonomous subnetworks. Most of the IP space is allo-
cated, but many subnetworks have inactive IPs. We
collected information about inactive IPs and P2P hosts
over 22 days and we used 03/21/2005 and 03/22/2005
for the experiments. To test generalizability (in other
words to reduce possible dependence on a certain time of
the day), we took samples every 3 hours and performed
our experiments on each sample.

As far as the length of each observation period (sam-
ple) is concerned, longer observations result in better
performance but delayed detection of scans. Therefore,
in production use, the scan detector will operate in a
streaming mode, where the periods of observation will
vary in length across SIDPs: lengths will be kept to the
minimal amount sufficient for conclusive classification
of each SIDP. Now, the system works in batch mode, so
we keep as many observations as possible. Our memory
(1 GB) allows us to store and process 4 million flows,
which approximately corresponds to 20 minutes of traf-
fic.

Table 2 describes the traffic in terms of number
of <source IP, destination port> (SIDP) combinations
pertaining to scanning-, P2P- and normal traffic and
Internet noise.

The proportion of normal traffic appears small.
This has two reasons: (a) arguably the dominant traffic
of today’s Internet is P2P [7] and (b) even though P2P
is also “normal” traffic, according to our definition,

Table 2: The distribution of (source IP, destination ports)
(SIDPs) over the various traffic types for each traffic sample

ID Day.Time Total scan p2p normal noise dnknw

01 0321.0000 67522 3984 28911 6971 4431 23225

02 0321.0300 53333 5112 19442 9190 1544 18045

03 0321.0600 56242 5263 19485 8357 2521 20616

04 0321.0900 78713 5126 32573 10590 5115 25309

05 0321.1200 93557 4473 38980 12354 4053 33697

06 0321.1500 85343 3884 36358 10191 5383 29527

07 0321.1800 92284 4723 39738 10488 5876 31459

08 0321.2100 82941 4273 39372 8816 1074 29406

09 0322.0000 69894 4480 33077 5848 1371 25118
10 0322.0300 63621 4953 26859 4885 4993 21931

11 0322.0600 60703 5629 25436 4467 3241 21930

12 0322.0900 78608 4968 33783 7520 4535 27802

13 0322.1200 91741 4130 43473 6319 4187 33632

the normal behavior class consists of the traditional
client/server type traffic which excludes P2P.

Other than the distribution of the SIDPs over
the different behavior classes, the traffic distribution
is as expected. The proportion of normal traffic is
highest during business hours, P2P – for the largest part
attributed to students living in the residential halls –
peaks late afternoon and during the evening, and scans
are most frequent in the early morning hours. The
number of “don’t know”s, that is traffic with insufficient
observation, seems to be more correlated with normal
and P2P traffic than with scanning traffic. The patterns
repeat during the next day.

Evaluation Measures The performance of a clas-
sifier is measured in terms of precision, recall and F-
measure. For a contingency table of

classified as classified as
Scanner not Scanner

actual Scanner TP FN
actual not Scanner FP TN

prec =
TP

TP + FP

recall =
TP

TP + FN

Fm =
2 ∗ prec ∗ recall

prec + recall
.

Less formally, precision measures the percentage
of scanning (source IP, destination port)-pairs (SIDPs)
among the SIDPs that got declared scanners; recall
measures the percentage of the actual scanners that
were discovered; F-measure balances between precision
and recall.

4.2 Comparison to the State-of-the-Art To ob-
tain a high-level view of the performance of our scheme,
we built a model on the 0321.0000 data set (ID 1) and
tested it on the remaining 12 data sets. The perfor-
mance results were compared to that of Threshold Ran-
dom Walk (TRW), which is considered to be the state-
of-the-art. Figure 1 depicts the performance of our pro-
posed scheme and that of TRW on the same data sets.

Prec Rec F−m Prec Rec F−m
0

0.2

0.4

0.6

0.8

1

Ripper TRW

Performance Comparison

Figure 1: Performance comparison between the pro-
posed scheme and TRW. From left to right, the six box
plots correspond to the precision, recall and F-measure
of our proposed scheme and the precision, recall and
F-measure of TRW. Each box plot has three lines corre-
sponding (from top downwards) to the upper quartile,
median and lower quartile of the performance values ob-
tained over the 13 data sets. The whiskers depict the
best and worst performance.

One can see that not only does our proposed scheme
outperform the competing algorithm by a wide margin,
it is also more stable: the performance varies less from
data set to data set (the boxes on Figure 1 appear much
smaller).

Figure 2 shows the actual values of precision, recall
and F-measure for the different data sets. The perfor-
mance in terms of F-measure is consistently above 90%
with very high precision, which is important, because
high false alarm rates can rapidly deteriorate the us-
ability of a system. The only jitter occurs on data set
7 and it was caused by a single source IP that scanned
a single destination host on 614(!) different destination
ports meanwhile touching only 4 blocked ports. Not
only is such behavior uncharacteristic of our network
(the only other vertical scanner we saw was the result of
a ’ScanMyComputer’ service touching as many blocked
ports as expected), but it is more characteristic of P2P
traffic causing the misclassification of this scanner.

3 5 7 9 11 13
0

0.2

0.4

0.6

0.8

1

Test Set ID

Performance of Ripper

Precision

Recall

F−measure

Figure 2: The performance of the proposed scheme on
the 13 data sets in terms of precision (topmost line),
F-measure (middle line) and recall (bottom line). The
model was built on data set ID 1.

As discussed earlier, the authors of TRW recom-
mend a threshold of 4. In our experiments, we found,
that TRW can achieve better performance (in terms of
F-measure) when we set the threshold to 2, this is the
threshold that was used in Figure 1, too.

In Figure 3, we examine how the TRW’s perfor-
mance depends on the threshold. The five box plots
represent the performance at the five thresholds between
1 and 5. The horizontal lines of the boxes correspond
to the upper quartile, median and lower quartile of the
13 performance measurements (one for each of the 13
data sets) and whiskers extend out to the extreme per-
formance values.

Figure 3 shows that the threshold balances between
precision and recall. At low thresholds (such as 1),
TRW achieves high recall by declaring anything a
scanner that makes one failed connection more than
successful connections. As a consequence, a lot of false
alarms are generated, typically caused by P2P and
backscatter. The other extreme is the high threshold
of 5, where only the most obvious scanners are caught.
P2P and backscatter are not declared scanners at such
high thresholds, because the chances of them making
connection attempts to 5 distinct destination IPs on the
same random destination port are slim.

In the followings we show that the success of the
data mining approach stems from its ability to correlate
the behavior of a source IP on multiple hosts. This
allows both early detection and accurate categorization
of scanning-like non-scanning traffic.

To illustrate the benefits of data mining and to ex-
plain the above results, let us consider the concrete ex-

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Treshold

Performance of TRW (Precision)

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Treshold

Performance of TRW (Recall)

1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

Treshold

Performance of TRW (F−measure)

Figure 3: Box plots of the precision (left), recall (middle) and F-measure (right) of TRW at five different thresholds
(horizontal axis).

ample of the data set 0321:1200, where our proposed ap-
proach achieved close to median of the 13 performance
values.

Claim 1. The correlation of evidence across destina-
tion ports allows the data mining approach to detect
scanners earlier, in some cases as early as the first con-
nection attempt on a destination port (provided that the
same source IP previously made connection attempts to
other ports).

Intuitively, this claim is true, since positive evi-
dences from different data sources can certainly increase
the confidence in our decisions. This is widely recog-
nized as joint learning.

In order to experimentally demonstrate our claim,
we look at a portion of the traffic that made connection
attempts to no more than one destination IP on any
destination port within the 20-minute window.

Out of the 93,557 SIDPs, 66,872 satisfy this condi-
tion, which is a very large portion of the traffic. Out of
the 66,872 SIDPs, we were unable to label 29,397. The
SIDPs that we were able to label have the following dis-
tribution:

SCAN P2P NRML NOISE Total
3,014 28,078 5,995 388 37,475

In Table 3, we present the results of our proposed
scheme and that of TRW at a threshold of 1. Since
no SIDP made connection attempts to two distinct
destination IPs on the same port, TRW at higher
thresholds would not find scanners.

The results show that TRW1 found more scanners,
but its false alarm rate was unacceptably high. Most of
the false alarms are due to P2P and Internet noise.

For completeness, in Table 4 we show the number
of SIDPs that we were unable to label but got declared
scanners by the two schemes.

Table 3: The performance of the data mining approach and
some competing schemes on the portion of the data set that
contains source IPs that never made connection attempts to
more than 1 destination IP on a single destination port. ’TP’
denotes the number of SIDPs classified correctly as scanner,
’FN’ the scanning SIDPs that did not get identified and ’FP’
the SIDPs that were predicted to scan but they did not.
Scheme TP FN FP Prec Rec Fm

TRW1 2908 106 23760 0.1090 0.9648 0.1959
Ripper 2630 384 54 0.9799 0.8726 0.9231

Table 4: The number of SIDPs whose true nature is
unknown classified as scanner by the different schemes

Scheme TRW1 Ripper

Unlabeled
17,407 1,144

Classified as Scanner

Although not directly relevant to proving Claim
1, in order to present the Reader with a full set of
results, in Table 5, we show the performance of the
above schemes on the complementary data set, namely
the portion of the data set that contains the SIDPs
that made connection attempts to at least two distinct
destination IPs on at least one port.

There are 26,685 SIDPs satisfying this condition,
out of which we managed to label 22,385. The distri-
bution of traffic classes over these 22,385 SIDPs is as
follows.

SCAN P2P NRML NOISE Total
1,459 10,902 6,359 3,665 22,385

Since it can be advantageous for TRW to use higher
thresholds on this portion of the data, we present results
for TRWk, where the threshold is k, k = 1, . . . , 5.

TRW exhibits the behavior described earlier: higher
thresholds result in increasing precisions but rapidly

Table 5: The performance of the data mining approach and
the competing schemes on the complementary (to Table 3)
portion of the data set.
Scheme TP FN FP Prec Rec Fm

TRW1 1389 70 8952 0.1343 0.9520 0.2354
TRW2 1304 155 1760 0.4256 0.8938 0.5766
TRW3 645 814 261 0.7119 0.4421 0.5455
TRW4 485 974 45 0.9151 0.3324 0.4877
TRW5 447 1012 18 0.9613 0.3064 0.4647
Ripper 1406 53 23 0.9839 0.9637 0.9737

deteriorating coverage. In terms of F-measure, it
achieved its peak performance at a threshold of 2, but
still falling behind Ripper by a wide margin.

Claim 2. Through correlating evidence across destina-
tion ports, the data mining approach is capable of filter-
ing out scanning-like non-scanning traffic types such as
P2P or backscatter.

Certain types of traffic, including P2P and Internet
noise – most prominently backscatter – apart from some
obvious cases (touching only P2P hosts on a certain
ports) can only be recognized by observing the behavior
of the source IP across ports. Table 6 presents the
performance of the data mining based scheme and some
competing schemes on P2P and scanning traffic only.

We are using the same model (built on the first
data set, 0321:1200) as in case of Claim 1. We continue
using the same test set (0321.1200), but we removed all
instances that are not scanners or P2P. There are 38,980
P2P and 4,473 scanning SIDP’s in this portion of the
test set.

The competing schemes are TRW at a threshold
of 1 (TRW-1), TRW at a threshold of 2 (TRW-2) and
TRW-P, which is basically the TRW-1 scheme but we
applied a simple P2P filtering: any source IP that makes
connection attempts to a P2P hosts is not considered a
scanner on that destination port.

Table 6: Performance Comparison on P2P and Scanning
Traffic.

Scheme TP FN FP Prec Rec Fm

TRW-1 1715 1519 16414 0.0946 0.5303 0.1606
TRW-2 137 3097 1039 0.1165 0.0424 0.0621
TRW-P 594 2640 6774 0.0806 0.1837 0.1121
Ripper 2878 356 62 0.9789 0.8899 0.9323

We evaluated the same set of schemes on backscat-
ter traffic, too. We use the same model and the same
test set (0321:1200), but this time we removed all in-
stances that were not noise or scanners from the original
test set. There are 4,473 scanner and 4,053 noise SIDPs
left. Table 7 presents the results.

Table 7: Performance Comparison on Internet Noise and
Scanning Traffic.

Scheme TP FN FP Prec Rec Fm

TRW-1 1562 1323 2325 0.4019 0.5414 0.4613
TRW-2 118 2767 163 0.4199 0.0409 0.0745
TRW-P 538 2347 747 0.4187 0.1865 0.2580
Simple 219 2666 452 0.3264 0.0759 0.1232

Simple-P 184 2701 404 0.3129 0.0638 0.1060
Ripper 2549 336 0 1.0000 0.8835 0.9382

The results for P2P and backscatter are similar.
While our proposed scheme’s performance is character-
ized by very high precision, high recall, it is evident that
without recognizing P2P, high performance is unattain-
able.

This comparison was not exactly fair, since in the
original paper, TRW does not have P2P information at
its disposal. However our experiments on the TRW-P
scheme show, that even when information about P2P
is available, it is not straightforward how one can use
it. One needs to correlate ports in order to successfully
distinguish P2P from scanners.

Claim 3. The data mining approach was capable of
extracting the characteristics of scanning behavior from
the long (3-day) observation and it was subsequently
capable of applying this knowledge to successfully classify
data from short (20-minute) observation.

Table 8 depicts the rules generated by Ripper on
0321:000. In general, the rules make sense. In fact, Rule
#2, which is responsible for the lion’s share of the work
is essentially an enhanced version of TRW’s heuristic
(of failed vs. successful first connections). Similarly
to TRW, Rule #2 also takes failure (and success) into
account but it goes further by correlating this knowledge
across ports. It does not stop there, it also correlates it
with other evidence, the usage of blocked ports.

Rule #1 did not get invoked at all possibly indicat-
ing to the Reader that it may not be as useful in prac-
tice. Nevertheless, Rule #1 does makes sense, too. It
did not get invoked simply because it is geared towards
blocked scanners – SIDPs who scan multiple hosts on
multiple ports. This test data set contained no such
scanners; our scanners (in this data set) either scanned
vertically (with half of the ports blocked) or horizon-
tally, where less than half of the connection attempts
were blocked (but may have touched inactive IPs). The
former scanners were caught in large by Rule #2 and
the horizontal scanners were caught by the rest of the
rules.

From the ndstips>=2 and ndstports<=2 condi-
tions, it is easy to see that Rule #3 is responsible for

Table 8: The rules and their interpretations for identifying
scanners built on 0321.0000. ’Cnt’ stands for the number of
invocations on the test set 0321.1200.
ID Cnt Rule

1 0 blk >= 0.5 nosrv >= 0.6667 indstips

>= 2

More than half of the destination IPs
touched were touched on blocked des-
tination ports, mostly service was not
offered and the source IP touched at least
2 distinct IPs on the current destination
port.

2 3764 blk >= 0.5 nosrv >= 0.7778

More then half of the IPs were touched on
blocked destination ports and service is
almost never offered.

3 35 iblk >= 1 ndstips >= 2 ndstports <=

2

Connection attempts were made on
no more than 2 distinct destination
ports to at least 2 distinct destination IPs
and the current destination port is blocked.

4 23 iblk >= 1 pp <= 0.75 ndstips <= 4

ndstports >= 5

The source IP touched at least 5 destina-
tion ports out of which at least the current
port is blocked, the number of distinct
destination IPs is no more then 4 and at
least one of them is not a P2P host.
q

... 6 [truncated]

identifying horizontal scanners, where the requirement
of one of the (possibly two) ports being blocked provides
the evidence of scanning activity.

In our scheme, we included a whole set of features
to enable the recognition of exceptional behaviors. In
this rule set, Rule #4 has the ability to recognize such
source IPs. Imagine a source IP, that engages in normal
traffic on a variety of ports but perform scans on one.
As long as this source IP made connection attempts on
more than 5 destination ports, and scans on one (which
is blocked), Rule #4 will catch it. The caveat is that
P2P traffic can also exhibit this kind of behavior. P2P
false alarms are avoided by the pp<=.75 clause.

In the followings, let us have a look at concrete
examples describing how the rule set supports our first
two claims.

Early Detection. One of the most difficult tasks
is to correctly recognize scanners who make connection
attempts to only one destination IP on each destination
port. The only hard evidence we can have against

such a source IP is the unexpectedly large number of
connection attempts on blocked ports. Either Rule #1
or Rule #2 will identify such scanners.

Rule # 3 is another example of correlating infor-
mation. It says that if a source IP makes connection
attempts to a blocked port then making connection at-
tempts on only one other port to at least two distinct
hosts is suspicious. Only P2P (using random ports) and
backscatter are non-scanning traffic types making con-
nection attempts to blocked ports. However, the prob-
ability of randomly selecting the same port for two dis-
tinct destination IPs is negligible, hence such behavior
is indeed very suspicious.

Detection of P2P. Rule # 4 is the only rule that
explicitly uses the P2P feature. P2P feature is not
required for the detection of P2P, false alarms due to
P2P can be avoided by using the blocked ports. While
P2P can possibly make connection attempts on blocked
ports (randomly chosen port), it is highly unlikely that
it would attempt a large portion of its communication
on blocked ports. The first three rules use 50% as the
’large portion’, while Rule #4 explicitly uses the P2P
feature.

Backscatter. There is no explicit feature pro-
vided to help recognize backscatter traffic. Fortunately,
(most) P2P and backscatter traffic share the commonal-
ity of randomly choosing destination ports, so the mech-
anism used to filter out P2P can also be used to filter
out backscatter: it is highly unlikely that a large por-
tion of the randomly chosen set of destination ports for
backscatter traffic will be blocked.

Table 9: Variants of Rule # 2 in Models Built on Different
Time Intervals
02 blk >= 0.5 nosrv >= 0.5476 .

03 iblk >= 1 nosrv >= 1 blk >= 0.5 .

04 blk >= 0.3333 nosrv >= 0.8889 .

08 blk >= 0.5 nosrv >= 1 .

09 blk >= 0.4 nosrv >= 0.75 .

11 blk >= 0.3333 nosrv >= 0.5 iblk >= 1 .

12 blk >= 0.3333 nosrv >= 0.5714 .

13 blk >= 0.3333 nosrv >= 0.875 .

4.2.1 Variations to Rule #2 As mentioned before,
Rule #2 has the largest contribution to the high per-
formance of our proposed scheme. Since this rule is so
dominant, yet appears very generic, it is reasonable to
assume that models built on other data sets contain sim-
ilar rules. Indeed, examination of the models built on
the other 12 data sets revealed that 8 other data sets
have close variants of Rule #2. Table 9 shows these
rules.

The fact that the rule appears with a wide range

of thresholds (blk varying between .3 and .5 and nosrv

varying between .54 and 1) reassures us that the rule is
indeed generic.

Figure 4 depicts the performance of Ripper (in
terms of F-measure) on the test set 0321.1200 for nosrv
and blk thresholds varying between 0 and 100 %. F-
measure values less than .85 were encountered only
when nosrv or blk was 0. To enhance visibility, we
replaced all values (101 values) less than .85 with .85.

The results show that the dependence of the per-
formance upon a correctly chosen threshold is minimal.
For blk, the performance is practically constant as long
as blk≥ 50% (and experiences a maximum of 2% drop
according to F-measure and precision for blk>1%); for
nosrv, it performs best between 1% and 85%.

These results are not surprising. In [5], Jung
has pointed out that network traffic has a bimodal
distribution in terms of the ratio of < destination IP,
port> pairs offering the requested service: either almost
all of them or almost none of destinations offered the
requested service. As far as the blk feature is concerned,
there is a logical explanation for its characteristics.
There are N = 216 ports, out of which B are blocked. If
a source IP randomly selects a set of n ports, then the
number b of blocked port in the set follows Binomial(n,
B/N). Since B << N , even for small b’s the probability
of observing such a random port set will be very small.
Hence the scanning-like non-scanner source IPs (P2P,
backscatter), who select ports randomly, will have very
small b values, while scanners, who do not select ports
randomly and tend to make connection attempts to
blocked ports will have larger b values. (The step at
blk=50% is caused by the relatively frequent case of 1
blocked port out of 2.)

Now that we have concluded that the performance
is stable for a wide range of blk and nosrv thresholds on
0321:1200, we investigate the variability in performance
across data sets.

Figure 5 illustrates the variation in performance
observed for a wide range of thresholds over the 13
data sets. For the boxplots in the left pane, blk was
fixed at 50 % (a threshold that many models built on
various data sets found best) and nosrv was varied. The
set of values it took was ({0, 5, 10, 50, 75, 80, 85,
90, 95, 100}) reflecting our prior experience that the
performance varied only at low values (0 to 1%) and at
around 85%. The small sizes of the boxes indicate that
the variation in performance from data set to data set
is negligible. For the boxplots in the right pane, nosrv
was fixed at 75% (in accordance with our observation
that the performance is best between 1% and 85%; 75%
is close to 77.78% chosen by Ripper) and selected the set
{0, 1, 5, 45, 50, 55, 90, 95, 100} reflecting our interest

in the change from 0 to 1% and the slight improvement
around 50%. Once again, the variation from data set to
data set is negligibly small.

In summary, we gave a logical explanation why Rule
#2’s performance should not change from data set to
data set and why it is expected to be high over a wide
range of thresholds. We also verified it experimentally.
In addition we showed – from a security perspective –
that the rules built by Ripper are reasonable and we
also verified this claim experimentally. Consequently,
we can conclude that our Claim 3 is proven. What
we discovered, however, is more far-reaching than just
an experimental proof. We saw that Ripper, using our
framework, automatically discovered a heuristic (Rule
#2) that is more powerful than the heuristics we have
seen in the literature so far.

4.3 Generalizability We approach the question of
generalizability from two angles. First, we investigate
how the performance of a model changes when we apply
it to different test sets. Second, we investigate how
consistent with each other are the models built on
different data sets.

In Section 4.2 we gave an answer to the first
question. The results are consistently good with only
data set ID 7 experiencing a slight drop due to the
misclassification of the unexpected vertical scanner.

Next, we demonstrate that Ripper performs well
regardless of which data set we selected for building
the model on. Figure 6 depicts the performance of
various models on the 13 test sets. The horizontal axis
corresponds to the ID of the data set the model was
built on, the vertical axis corresponds to the data set
ID that the model was tested on. The performance is
measured in terms of precision, recall and F-measure,
lighter colors indicating better performance.

In general, the results are good and the differences
between the models are marginal (In Figure 6 the color
within each row does not change much), typically no
more than 1% on the same data set.

The variability of the performance from data set
to data set is higher. Particularly, data set ID 7
(0321:1800) sticks out. This is the data set that
contained the vertical scanner. Since no other data
set contained such a scanner, all models experienced
a 2% drop in precision on this data set. Conversely, the
model built on this data set (column 7 in Figure 6) was
naturally able to recognize the vertical scanner and at
the same time its performance on other data sets was
comparable to that of other models (with the exception
of test set ID 9, where a pair of IPs were talking to
each other on 872 different ports appearing to Ripper
as vertical scanners).

nosrv [%]

bl
k

[%
]

Performance of Rule # 2 (Precision)

20 40 60 80 100

20

40

60

80

100
0.86

0.88

0.9

0.92

0.94

0.96

0.98

Performance of Rule # 2 (Recall)

nosrv [%]

bl
k

[%
]

20 40 60 80 100

20

40

60

80

100 0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1 Performance of Rule # 2 (F−measure)

nosrv [%]

bl
k

[%
]

20 40 60 80 100

20

40

60

80

100
0.86

0.88

0.9

0.92

Figure 4: The performance of Rule #2 on 0321.1200 at blk and nosrv thresholds varying between 0 and 100% in terms
of precision (left), recall (middle) and f-measure (right)

0 5 10 50 75 80 85 90 95 100
0

0.2

0.4

0.6

0.8

1

F
−

m
ea

su
re

nosrv [%]

Performance of Rule # 2 (blk=.5)

0 1 5 45 50 55 90 95 100
0

0.2

0.4

0.6

0.8

1

F
−

m
ea

su
re

blk [%]

Performance of Rule # 2 (nosrv=.75)

Figure 5: Illustration of the variation of Rule #2’s performance at different thresholds over the 13 data sets. The figure
on the left depicts the variation for a set of nosrv thresholds at fixed blk=50%, while the figure on the right depicts the
variation for a set of blk thresholds at fixed nosrv=75%

As this example illustrates, the limitation of the
approach is that (i) only scanning modes that are
present in the data set can be learnt and that (ii) rare
scanning modes (scanning modes that occur in few data
sets) appearing in a single data set in large amounts (e.g.
the massive vertical scan in 0321:1800) can cause Ripper
to overfit the training data.

5 Summary and Conclusion

In this paper, we have introduced a method for for-
malizing the scan detection problem as a classification
problem solvable with data mining techniques. We pro-
posed a method for transforming network trace data
into data sets that off-the-shelf classifiers can be run
on. We selected Ripper, a fast, rule-based classifier, be-
cause it is particularly capable of learning rules from
multi-modal data sets and it provides results that are
easy to interpret. Moreover, we demonstrated that data
mining methods, given a carefully labeled training set
and an appropriate set of features, are capable of ex-
tracting knowledge from observations made over a long

period of time and applying this knowledge successfully
to observations made over only a short period of time.

We found that by using our data mining framework,
we achieved a substantial improvement in coverage, a
factor of close to 9, at improved precision over the
state-of-the-art heuristic-based scan detector, TRW at
its author’s suggested threshold of 4.

We demonstrated that the gain stems from the clas-
sifier’s ability of detecting scanners early (as early as
the first connection attempt on a specific port) at high
precision and recall, and its ability to avoid false detec-
tion of scanning-like non-scanning traffic such as P2P
and backscatter. We demonstrated that Ripper indeed
extracted the behaviors characteristic of scan detection:
the model it built made perfect sense from a network se-
curity perspective although due its complexity it would
be difficult for a human analyst to discover it. We
zoomed in onto the rule that dominated the rule set
(in terms of number of invocations) and found that the
heuristic (encoded in form of a rule) was so powerful
that it alone could outperform the competing schemes

Model Built on Data Set [ID]

M
od

el
 T

es
te

d
on

 D
at

a
S

et
 [I

D
]

Classification Performance (Precision)

2 4 6 8 10 12

2

4

6

8

10

12 0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

Model Built on Data Set [ID]

M
od

el
 T

es
te

d
on

 D
at

a
S

et
 [I

D
]

Classification Performance (Recall)

2 4 6 8 10 12

2

4

6

8

10

12 0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

Model Built on Data Set [ID]

M
od

el
 T

es
te

d
on

 D
at

a
S

et
 [I

D
]

Classification Performance (F−measure)

2 4 6 8 10 12

2

4

6

8

10

12
0.88

0.9

0.92

0.94

0.96

Figure 6: Generalizability of the scheme. The performance of different model on different data sets in terms of precision,
recall and F-measure (from left to right)

(TRW at various thresholds).

References

[1] Kdd cup ’99 data.
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

[2] Daniel Barbara, Ningning Wu, and Sushil Jajodia. De-
tecting novel network intrusions using bayes estimators.
In SDM, 2001.

[3] William W. Cohen. Fast effective rule induction. In
ICML, 1995.

[4] Levent Ertoz, Eric Eilertson, Paul Dokas, Vipin Kumar,
and Kerry Long. Scan detection - revisited. Technical
Report AHPCRC 127, University of Minnesota – Twin
Cities, 2004.

[5] Jaeyeon Jung, Vern Paxson, Arthur W. Berger, and
Hari Balakrishnan. Fast portscan detection using se-
quential hypothesis testing. In IEEE Symposium on
Security and Privacy, 2004.

[6] Thomas Karagiannis, Andre Broido, Nevil Brownlee,
and kc claffy. Is p2p dying or just hiding? In IEEE
Globecom 2004 ”Emerging Technologies Applications
and Services”, 2004.

[7] Thomas Karagiannis, Andre Broido, Michalis Falout-
sos, and kc claffy. Transport layer identification of
p2p traffic. In International Measurement Conference
(IMC), 2004.

[8] Wenke Lee, Salvatore J. Stolfo, and Kui W. Mok.
Mining audit data to build intrusion detection models.
In KDD, 1998.

[9] C. Lickie and R. Kotagiri. A probabilistic approach
to detecting network scans. In Eighth IEEE Network
Operations and Management, 2002.

[10] Matthew V. Mahoney and Philip K. Chan. Learning
rules for anomaly detection of hostile network traffic.
In ICDM, 2003.

[11] David Moore, Geoffrey M. Voelker, and Stefan Savage.
Inferring internet denial-of-service activity. In USENIX
Security Symposium, 2001.

[12] Ruoming Pang, Vinod Yegeswaran, Paul Barford, Vern
Paxson, and Larry Peterson. Characteristics of internet

background radiation. In Internet Measurement Con-
ference (IMC), 2004.

[13] V. Paxon. Bro: a system for detecting network intrud-
ers in real-time. In Eighth IEEE Network Operators and
Management Symposium (NOMS), 2002.

[14] Phillip A. Porras and Alfonso Valdes. Live traffic
analysis of tcp/ip gateways. In NDSS, 1998.

[15] Seth Robertson, Eric V. Siegel, Matt Miller, and Sal-
vatore J. Stolfo. Surveillance detection in high band-
width environments. In DARPA DISCEX III Confer-
ence, 2003.

[16] Martin Roesch. Snort: Lightweight intrusion detection
for networks. In LISA, pages 229–238, 1999.

[17] Gyorgy Simon, Hui Xiong, Eric Eilertson, and Vipin
Kumar. Scan detection: A data mining approach.
Technical Report AHPCRC 038, University of Min-
nesota – Twin Cities, 2005.

[18] Stuart Staniford, James A. Hoagland, and Joseph M.
McAlerney. Practical automated detection of stealthy
portscans. Journal of Computer Security, 10(1/2):105–
136, 2002.

Acknowledgements. This work was partially supported by the

Army High Performance Computing Research Center contract
number DAAD19-01-2-0014, by the ARDA Grant AR/F30602-

03-C-0243 and by the NSF grants IIS-0308264 and ITR-0325949.
The content of the work does not necessarily reflect the position

or policy of the government and no official endorsement should
be inferred. Access to computing facilities was provided by the

AHPCRC and the Minnesota Supercomputing Institute.

Special thanks to Paul Dokas, the chief security analyst at

the University of Minnesota for his help in labeling the data and
understanding the problem.

