Continuous and Categorical Attributes

How to apply association analysis formulation to non-asymmetric binary variables?

<table>
<thead>
<tr>
<th>Session Id</th>
<th>Country</th>
<th>Session Length (sec)</th>
<th>Number of Web Pages viewed</th>
<th>Gender</th>
<th>Browser Type</th>
<th>Buy</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>USA</td>
<td>962</td>
<td>8</td>
<td>Male</td>
<td>IE</td>
<td>No</td>
</tr>
<tr>
<td>2</td>
<td>China</td>
<td>811</td>
<td>10</td>
<td>Female</td>
<td>Netscape</td>
<td>No</td>
</tr>
<tr>
<td>3</td>
<td>USA</td>
<td>2125</td>
<td>45</td>
<td>Female</td>
<td>Mozilla</td>
<td>Yes</td>
</tr>
<tr>
<td>4</td>
<td>Germany</td>
<td>596</td>
<td>4</td>
<td>Male</td>
<td>IE</td>
<td>Yes</td>
</tr>
<tr>
<td>5</td>
<td>Australia</td>
<td>123</td>
<td>9</td>
<td>Male</td>
<td>Mozilla</td>
<td>No</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

Example of Association Rule:

\{\text{Number of Pages} \in [5,10] \land \text{Browser=Mozilla}\} \rightarrow \{\text{Buy = No}\}
Handling Categorical Attributes

- Transform categorical attribute into asymmetric binary variables

- Introduce a new “item” for each distinct attribute-value pair
 - Example: replace Browser Type attribute with
 - Browser Type = Internet Explorer
 - Browser Type = Mozilla
 - Browser Type = Mozilla

Potential Issues

- What if attribute has many possible values
 - Example: attribute country has more than 200 possible values
 - Many of the attribute values may have very low support
 - Potential solution: Aggregate the low-support attribute values

- What if distribution of attribute values is highly skewed
 - Example: 95% of the visitors have Buy = No
 - Most of the items will be associated with (Buy=No) item
 - Potential solution: drop the highly frequent items
Handling Continuous Attributes

- Different kinds of rules:
 - Age $\in [21,35)$ \land Salary $\in [70k,120k)$ \rightarrow Buy
 - Salary $\in [70k,120k)$ \land Buy \rightarrow Age: $\mu=28$, $\sigma=4$

- Different methods:
 - Discretization-based
 - Statistics-based
 - Non-discretization based
 - minApriori

Use discretization

Unsupervised:
- Equal-width binning
- Equal-depth binning
- Clustering

Supervised:

<table>
<thead>
<tr>
<th>Class</th>
<th>V_1</th>
<th>V_2</th>
<th>V_3</th>
<th>V_4</th>
<th>V_5</th>
<th>V_6</th>
<th>V_7</th>
<th>V_8</th>
<th>V_9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anomalous</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>10</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Normal</td>
<td>150</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>100</td>
<td>150</td>
<td>100</td>
</tr>
</tbody>
</table>

Attribute values, v
Discretization Issues

- Size of the discretized intervals affect support & confidence

 \{\text{Refund} = \text{No}, (\text{Income} = 51,250)\} \rightarrow \{\text{Cheat} = \text{No}\}
 \{\text{Refund} = \text{No}, (60K \leq \text{Income} \leq 80K)\} \rightarrow \{\text{Cheat} = \text{No}\}
 \{\text{Refund} = \text{No}, (0K \leq \text{Income} \leq 1B)\} \rightarrow \{\text{Cheat} = \text{No}\}

 - If intervals too small
 * may not have enough support
 - If intervals too large
 * may not have enough confidence

- Potential solution: use all possible intervals

Discretization Issues

- Execution time
 - If intervals contain n values, there are on average \(O(n^2)\) possible ranges

- Too many rules

 \{\text{Refund} = \text{No}, (\text{Income} = 51,250)\} \rightarrow \{\text{Cheat} = \text{No}\}
 \{\text{Refund} = \text{No}, (51K \leq \text{Income} \leq 52K)\} \rightarrow \{\text{Cheat} = \text{No}\}
 \{\text{Refund} = \text{No}, (50K \leq \text{Income} \leq 60K)\} \rightarrow \{\text{Cheat} = \text{No}\}
Approach by Srikant & Agrawal

- Preprocess the data
 - Discretize attribute using equi-depth partitioning
 - Use *partial completeness measure* to determine number of partitions
 - Merge adjacent intervals as long as support is less than max-support

- Apply existing association rule mining algorithms

- Determine interesting rules in the output

Approach by Srikant & Agrawal

- Discretization will lose information

 ![Diagram: Approximated X vs X]

 - Use *partial completeness measure* to determine how much information is lost

 \[
 C: \text{frequent itemsets obtained by considering all ranges of attribute values}
 \]
 \[
 P: \text{frequent itemsets obtained by considering all ranges over the partitions}
 \]

 \[
 P \text{ is } K\text{-complete w.r.t } C \text{ if } P \subseteq C, \text{and } \forall X \in C, \exists X' \in P \text{ such that:}
 \]
 \[
 1. X' \text{ is a generalization of } X \text{ and support}(X) \leq K \times \text{support}(X) \quad (K \geq 1)
 \]
 \[
 2. \forall Y \subseteq X, \exists Y' \subseteq X' \text{ such that support}(Y') \leq K \times \text{support}(Y)
 \]

 Given \(K \) (partial completeness level), can determine number of intervals (N)
Interestingness Measure

\{\text{Refund} = \text{No}, \ (\text{Income} = \$51,250)\} \rightarrow \{\text{Cheat} = \text{No}\}
\{\text{Refund} = \text{No}, \ (51 \leq \text{Income} \leq 52)\} \rightarrow \{\text{Cheat} = \text{No}\}
\{\text{Refund} = \text{No}, \ (50 \leq \text{Income} \leq 60)\} \rightarrow \{\text{Cheat} = \text{No}\}

- Given an itemset: \(Z = \{z_1, z_2, \ldots, z_k\}\) and its generalization \(Z' = \{z'_1, z'_2, \ldots, z'_k\}\)
 - \(P(Z)\): support of \(Z\)
 - \(E_{Z'}(Z)\): expected support of \(Z\) based on \(Z'\)
 \[E_{z'}(Z) = \frac{P(z'_1)}{P'(z'_1)} \times \frac{P(z'_2)}{P'(z'_2)} \times \cdots \times \frac{P(z'_k)}{P'(z'_k)} \times P(Z')\]
 - \(Z\) is \(R\)-interesting w.r.t. \(Z'\) if \(P(Z) \geq R \times E_{Z'}(Z)\)

Interestingness Measure

- For \(S: X \rightarrow Y\), and its generalization \(S': X' \rightarrow Y'\)
 - \(P(Y|X)\): confidence of \(X \rightarrow Y\)
 - \(P(Y'|X')\): confidence of \(X' \rightarrow Y'\)
 - \(E_{S'}(Y|X)\): expected support of \(Z\) based on \(Z'\)
 \[E(Y | X) = \frac{P(y_1)}{P(y'_1)} \times \frac{P(y_2)}{P(y'_2)} \times \cdots \times \frac{P(y_k)}{P(y'_k)} \times P(Y | X')\]
 - Rule \(S\) is \(R\)-interesting w.r.t its ancestor rule \(S'\) if
 - Support, \(P(S) \geq R \times E_S(S)\)
 - Confidence, \(P(Y|X) \geq R \times E_S(Y|X)\)
Statistics-based Methods

- Example:
 Browser=Mozilla ∧ Buy=Yes → Age: μ=23
- Rule consequent consists of a continuous variable, characterized by their statistics
 - mean, median, standard deviation, etc.
- Approach:
 - Withhold the target variable from the rest of the data
 - Apply existing frequent itemset generation on the rest of the data
 - For each frequent itemset, compute the descriptive statistics for the corresponding target variable
 - Frequent itemset becomes a rule by introducing the target variable as rule consequent
 - Apply statistical test to determine interestingness of the rule

Statistics-based Methods

- How to determine whether an association rule interesting?
 - Compare the statistics for segment of population covered by the rule vs segment of population not covered by the rule:
 A ⇒ B: μ versus A ⇒ B: μ'

 - Statistical hypothesis testing:
 - Null hypothesis: H0: μ' = μ + Δ
 - Alternative hypothesis: H1: μ' > μ + Δ
 - Z has zero mean and variance 1 under null hypothesis

\[Z = \frac{\mu' - \mu - \Delta}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \]
Statistics-based Methods

- Example:

 \[r: \text{Browser}=\text{Mozilla} \land \text{Buy}=\text{Yes} \rightarrow \text{Age}: \mu = 23 \]
 - Rule is interesting if difference between \(\mu \) and \(\mu' \) is greater than 5 years (i.e., \(\Delta = 5 \))
 - For \(r \), suppose \(n_1 = 50, s_1 = 3.5 \)
 - For \(r' \) (complement): \(n_2 = 250, s_2 = 6.5 \)
 \[
 Z = \frac{\mu' - \mu - \Delta}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{30 - 23 - 5}{\sqrt{\frac{3.5^2}{50} + \frac{6.5^2}{250}}} = 3.11

 - For 1-sided test at 95% confidence level, critical Z-value for rejecting null hypothesis is 1.64.
 - Since \(Z \) is greater than 1.64, \(r \) is an interesting rule

Min-Apriori (Han et al)

Document-term matrix:

<table>
<thead>
<tr>
<th>TID</th>
<th>W1</th>
<th>W2</th>
<th>W3</th>
<th>W4</th>
<th>W5</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>D3</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>D5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Example:

\(W1 \) and \(W2 \) tends to appear together in the same document
Min-Apriori

- Data contains only continuous attributes of the same “type”
 - e.g., frequency of words in a document

TID	W1	W2	W3	W4	W5
D1	2	2	0	0	1
D2	0	0	1	2	2
D3	2	3	0	0	0
D4	0	0	1	0	1
D5	1	1	1	0	2

- Potential solution:
 - Convert into 0/1 matrix and then apply existing algorithms
 - lose word frequency information
 - Discretization does not apply as users want association among words not ranges of words

Min-Apriori

- How to determine the support of a word?
 - If we simply sum up its frequency, support count will be greater than total number of documents!
 - Normalize the word vectors – e.g., using L₁ norm
 - Each word has a support equals to 1.0

<table>
<thead>
<tr>
<th>TID</th>
<th>W1</th>
<th>W2</th>
<th>W3</th>
<th>W4</th>
<th>W5</th>
<th>Normalize</th>
<th>TID</th>
<th>W1</th>
<th>W2</th>
<th>W3</th>
<th>W4</th>
<th>W5</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.40</td>
<td>D1</td>
<td>0.40</td>
<td>0.33</td>
<td>0.00</td>
<td>0.00</td>
<td>0.17</td>
</tr>
<tr>
<td>D2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0.00</td>
<td>D2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.33</td>
<td>1.00</td>
<td>0.33</td>
</tr>
<tr>
<td>D3</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.40</td>
<td>D3</td>
<td>0.40</td>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>D4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.00</td>
<td>D4</td>
<td>0.00</td>
<td>0.00</td>
<td>0.33</td>
<td>0.00</td>
<td>0.17</td>
</tr>
<tr>
<td>D5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0.20</td>
<td>D5</td>
<td>0.20</td>
<td>0.17</td>
<td>0.33</td>
<td>0.00</td>
<td>0.33</td>
</tr>
</tbody>
</table>
Min-Apriori

- New definition of support:

\[
\text{sup}(C) = \sum \min_{i \in T \text{ and } j \in C} D(i, j)
\]

<table>
<thead>
<tr>
<th>TID</th>
<th>W1</th>
<th>W2</th>
<th>W3</th>
<th>W4</th>
<th>W5</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>0.40</td>
<td>0.33</td>
<td>0.00</td>
<td>0.00</td>
<td>0.17</td>
</tr>
<tr>
<td>D2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.33</td>
<td>1.00</td>
<td>0.33</td>
</tr>
<tr>
<td>D3</td>
<td>0.40</td>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>D4</td>
<td>0.00</td>
<td>0.00</td>
<td>0.33</td>
<td>0.00</td>
<td>0.17</td>
</tr>
<tr>
<td>D5</td>
<td>0.20</td>
<td>0.17</td>
<td>0.33</td>
<td>0.00</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Example:

\[
\text{Sup}(W1, W2, W3) = 0 + 0 + 0 + 0.17 = 0.17
\]

Anti-monotone property of Support

<table>
<thead>
<tr>
<th>TID</th>
<th>W1</th>
<th>W2</th>
<th>W3</th>
<th>W4</th>
<th>W5</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>0.40</td>
<td>0.33</td>
<td>0.00</td>
<td>0.00</td>
<td>0.17</td>
</tr>
<tr>
<td>D2</td>
<td>0.00</td>
<td>0.00</td>
<td>0.33</td>
<td>1.00</td>
<td>0.33</td>
</tr>
<tr>
<td>D3</td>
<td>0.40</td>
<td>0.50</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>D4</td>
<td>0.00</td>
<td>0.00</td>
<td>0.33</td>
<td>0.00</td>
<td>0.17</td>
</tr>
<tr>
<td>D5</td>
<td>0.20</td>
<td>0.17</td>
<td>0.33</td>
<td>0.00</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Example:

\[
\begin{align*}
\text{Sup}(W1) &= 0.4 + 0.4 + 0.2 = 1 \\
\text{Sup}(W1, W2) &= 0.33 + 0.4 + 0.17 = 0.9 \\
\text{Sup}(W1, W2, W3) &= 0 + 0 + 0 + 0.17 = 0.17
\end{align*}
\]
Multi-level Association Rules

Why should we incorporate concept hierarchy?
- Rules at lower levels may not have enough support to appear in any frequent itemsets
- Rules at lower levels of the hierarchy are overly specific
 - e.g., skim milk → white bread, 2% milk → wheat bread, skim milk → wheat bread, etc.
 - are indicative of association between milk and bread
Multi-level Association Rules

How do support and confidence vary as we traverse the concept hierarchy?

- If X is the parent item for both X1 and X2, then
 \[\sigma(X) \leq \sigma(X1) + \sigma(X2) \]

- If \(\sigma(X1 \cup Y1) \geq \text{minsup} \),
 and X is parent of X1, Y is parent of Y1
 then \(\sigma(X \cup Y) \geq \text{minsup} \)

Multi-level Association Rules

- Approach 1:
 - Extend current association rule formulation by augmenting each transaction with higher level items

 Original Transaction: \{skim milk, wheat bread\}
 Augmented Transaction:
 \{skim milk, wheat bread, milk, bread, food\}

Issues:

- Items that reside at higher levels have much higher support counts
 - if support threshold is low, too many frequent patterns involving items from the higher levels
- Increased dimensionality of the data
Multi-level Association Rules

Approach 2:
- Generate frequent patterns at highest level first
- Then, generate frequent patterns at the next highest level, and so on

Issues:
- I/O requirements will increase dramatically because we need to perform more passes over the data
- May miss some potentially interesting cross-level association patterns

Sequence Data

Sequence Database:

<table>
<thead>
<tr>
<th>Object</th>
<th>Timestamp</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>10</td>
<td>2, 3, 5</td>
</tr>
<tr>
<td>A</td>
<td>20</td>
<td>6, 1</td>
</tr>
<tr>
<td>A</td>
<td>23</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>4, 5, 6</td>
</tr>
<tr>
<td>B</td>
<td>17</td>
<td>2</td>
</tr>
<tr>
<td>B</td>
<td>21</td>
<td>7, 8, 1, 2</td>
</tr>
<tr>
<td>B</td>
<td>28</td>
<td>1, 6</td>
</tr>
<tr>
<td>C</td>
<td>14</td>
<td>1, 8, 7</td>
</tr>
</tbody>
</table>
Examples of Sequence Data

<table>
<thead>
<tr>
<th>Sequence Database</th>
<th>Sequence</th>
<th>Element (Transaction)</th>
<th>Event (Item)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer</td>
<td>Purchase history of a given customer</td>
<td>A set of items bought by a customer at time t</td>
<td>Books, diary products, CDs, etc</td>
</tr>
<tr>
<td>Web Data</td>
<td>Browsing activity of a particular Web visitor</td>
<td>A collection of files viewed by a Web visitor after a single mouse click</td>
<td>Home page, index page, contact info, etc</td>
</tr>
<tr>
<td>Event data</td>
<td>History of events generated by a given sensor</td>
<td>Events triggered by a sensor at time t</td>
<td>Types of alarms generated by sensors</td>
</tr>
<tr>
<td>Genome sequences</td>
<td>DNA sequence of a particular species</td>
<td>An element of the DNA sequence</td>
<td>Bases A,T,G,C</td>
</tr>
</tbody>
</table>

Formal Definition of a Sequence

- A sequence is an ordered list of elements (transactions)

 \[s = \langle e_1, e_2, e_3, \ldots \rangle \]

 - Each element contains a collection of events (items)
 \[e_i = \{i_1, i_2, \ldots, i_k\} \]

 - Each element is attributed to a specific time or location

- Length of a sequence, \(|s|\), is given by the number of elements of the sequence

- A k-sequence is a sequence that contains k events (items)
Examples of Sequence

- Web sequence:
 < {Homepage} {Electronics} {Digital Cameras} {Canon Digital Camera} {Shopping Cart} {Order Confirmation} {Return to Shopping} >

- Sequence of initiating events causing the nuclear accident at 3-mile Island:
 (http://stellar-one.com/nuclear/staff_reports/summary_SOE_the_initiating_event.htm)
 < {clogged resin} {outlet valve closure} {loss of feedwater} {condenser polisher outlet valve shut} {booster pumps trip} {main waterpump trips} {main turbine trips} {reactor pressure increases} >

- Sequence of books checked out at a library:
 < {Fellowship of the Ring} {The Two Towers} {Return of the King} >

Formal Definition of a Subsequence

- A sequence \(< a_1, a_2 \ldots a_n >\) is contained in another sequence \(< b_1, b_2 \ldots b_m >\) \((m \geq n)\) if there exist integers \(i_1 < i_2 < \ldots < i_n\) such that \(a_1 \subseteq b_{i_1}, a_2 \subseteq b_{i_2}, \ldots, a_n \subseteq b_{i_n}\)

<table>
<thead>
<tr>
<th>Data sequence</th>
<th>Subsequence</th>
<th>Contain?</th>
</tr>
</thead>
<tbody>
<tr>
<td>< {2,4} {3,5,6} {8} ></td>
<td>< {2} {3,5} ></td>
<td>Yes</td>
</tr>
<tr>
<td>< {1,2} {3,4} ></td>
<td>< {1} {2} ></td>
<td>No</td>
</tr>
<tr>
<td>< {2,4} {2,4} {2,5} ></td>
<td>< {2} {4} ></td>
<td>Yes</td>
</tr>
</tbody>
</table>

- The support of a subsequence \(w\) is defined as the fraction of data sequences that contain \(w\)
- A sequential pattern is a frequent subsequence (i.e., a subsequence whose support is \(\geq\) minsup)
Sequential Pattern Mining: Definition

- **Given:**
 - a database of sequences
 - a user-specified minimum support threshold, \(\text{minsup} \)

- **Task:**
 - Find all subsequences with support \(\geq \text{minsup} \)

Sequential Pattern Mining: Challenge

- **Given a sequence:** \(<\{a\ b\} \{c\ d\ e\} \{f\} \{g\ h\ i\}>\)
 - Examples of subsequences:
 - \(<\{a\} \{c\ d\}\{f\}\{g\}\>)
 - \(<\{c\ d\ e\}\>)
 - \(<\{b\}\{g\}\>)
 - etc.

- **How many \(k\)-subsequences can be extracted from a given \(n\)-sequence?**

\(\begin{align*}
\{a\ b\} \{c\ d\ e\} \{f\} \{g\ h\ i\} &\quad n = 9 \\
\{a\} &\quad \{d\ e\} &\quad \{i\} \quad k=4:
\end{align*}\)

\[\frac{n!}{k!(n-k)!} = \frac{9!}{4!(9-4)!} = 126\]
Sequential Pattern Mining: Example

<table>
<thead>
<tr>
<th>Object</th>
<th>Timestamp</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1,2,4</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>2,3</td>
</tr>
<tr>
<td>A</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>1,2</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>2,3,4</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1,2</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>2,3,4</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>2,4,5</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>3,4</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>4,5</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>1,3</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>2,4,5</td>
</tr>
</tbody>
</table>

\(\text{Minsup} = 50\% \)

Examples of Frequent Subsequences:

- \(<\{1,2\}> \quad s=60\%\)
- \(<\{2,3\}> \quad s=60\%\)
- \(<\{2,4\}> \quad s=80\%\)
- \(<\{3\} \{5\}> \quad s=80\%\)
- \(<\{1\} \{2\}> \quad s=80\%\)
- \(<\{2\} \{2\}> \quad s=60\%\)
- \(<\{1\} \{2\} \{3\}> \quad s=60\%\)
- \(<\{2\} \{2\} \{3\}> \quad s=60\%\)
- \(<\{1,2\} \{2,3\}> \quad s=60\%\)

Extracting Sequential Patterns

- **Given** \(n\) events: \(i_1, i_2, i_3, \ldots, i_n\)
- **Candidate 1-subsequences:**
 \(<\{i_1\}, <\{i_2\}, <\{i_3\}, \ldots, <\{i_n\}>\)
- **Candidate 2-subsequences:**
 \(<\{i_1, i_2\}, <\{i_1, i_3\}, \ldots, <\{i_1\} \{i_1\}, <\{i_1\} \{i_2\}, \ldots, <\{i_1, i_n\} \{i_n\}>\)
- **Candidate 3-subsequences:**
 \(<\{i_1, i_2, i_3\}, <\{i_1, i_2, i_4\}, \ldots, <\{i_1, i_2\} \{i_1\}, <\{i_1, i_2\} \{i_2\}, \ldots, <\{i_1\} \{i_1\} \{i_2\}, <\{i_1\} \{i_1\} \{i_2\}, \ldots\)
Generalized Sequential Pattern (GSP)

- **Step 1:**
 - Make the first pass over the sequence database D to yield all the 1-element frequent sequences

- **Step 2:**
 Repeat until no new frequent sequences are found
 - **Candidate Generation:**
 - Merge pairs of frequent subsequences found in the $(k-1)$th pass to generate candidate sequences that contain k items
 - **Candidate Pruning:**
 - Prune candidate k-sequences that contain infrequent $(k-1)$-subsequences
 - **Support Counting:**
 - Make a new pass over the sequence database D to find the support for these candidate sequences
 - **Candidate Elimination:**
 - Eliminate candidate k-sequences whose actual support is less than \minsup

Candidate Generation

- **Base case (k=2):**
 - Merging two frequent 1-sequences $<i_1>$ and $<i_2>$ will produce two candidate 2-sequences: $<i_1, i_2>$ and $<i_1, i_2>$

- **General case (k>2):**
 - A frequent $(k-1)$-sequence w_1 is merged with another frequent $(k-1)$-sequence w_2 to produce a candidate k-sequence if the subsequence obtained by removing the first event in w_1 is the same as the subsequence obtained by removing the last event in w_2
 - The resulting candidate after merging is given by the sequence w_1 extended with the last event of w_2.
 - If the last two events in w_2 belong to the same element, then the last event in w_2 becomes part of the last element in w_1.
 - Otherwise, the last event in w_2 becomes a separate element appended to the end of w_1.
Candidate Generation Examples

- Merging the sequences
 \(w_1 = \{1\} \{2 3\} \{4\} \) and \(w_2 = \{2 3\} \{4 5\} \)
 will produce the candidate sequence \(\{1\} \{2 3\} \{4 5\} \) because the
 last two events in \(w_2 \) (4 and 5) belong to the same element

- Merging the sequences
 \(w_1 = \{1\} \{2 3\} \{4\} \) and \(w_2 = \{2 3\} \{4\} \{5\} \)
 will produce the candidate sequence \(\{1\} \{2 3\} \{4\} \{5\} \) because the
 last two events in \(w_2 \) (4 and 5) do not belong to the same element

- We do not have to merge the sequences
 \(w_1 = \{1\} \{2 6\} \{4\} \) and \(w_2 = \{1\} \{2\} \{4\} \{5\} \)
 to produce the candidate \(\{1\} \{2 6\} \{4\} \{5\} \) because if the latter is a
 viable candidate, then it can be obtained by merging \(w_1 \) with
 \(\{1\} \{2 6\} \{5\} \)

GSP Example

Frequent 3-sequences

- \(\langle 1 \rangle \{2\} \{3\} \rangle \)
- \(\langle 1\} \{2 5\} \rangle \)
- \(\langle 1\} \{5\} \{3\} \rangle \)
- \(\langle 2\} \{3\} \{4\} \rangle \)
- \(\langle 2 5\} \{3\} \rangle \)
- \(\langle 3\} \{4\} \{5\} \rangle \)
- \(\langle 5\} \{3 4\} \rangle \)

Candidate Generation

- \(\langle 1\} \{2\} \{3\} \{4\} \rangle \)
- \(\langle 1\} \{2 5\} \{3\} \rangle \)
- \(\langle 1\} \{5\} \{3 4\} \rangle \)
- \(\langle 2\} \{3\} \{4\} \{5\} \rangle \)
- \(\langle 2 5\} \{3 4\} \rangle \)

Candidate Pruning

- \(\langle 1\} \{2 5\} \{3\} \rangle \)
Timing Constraints (I)

Data sequence:
- \{A, B\}
- \{C\}
- \{D, E\}

- \(x_g\): max-gap
- \(n_g\): min-gap
- \(m_s\): maximum span

\(x_g = 2, n_g = 0, m_s = 4\)

<table>
<thead>
<tr>
<th>Data sequence</th>
<th>Subsequence</th>
<th>Contain?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(<{2,4}{3,5,6}{4,7}{4,5}{8}>)</td>
<td>(<{6}{5}>)</td>
<td>Yes</td>
</tr>
<tr>
<td>(<{1}{2}{3}{4}{5}>)</td>
<td>(<{1}{4}>)</td>
<td>No</td>
</tr>
<tr>
<td>(<{1}{2,3}{3,4}{4,5}>)</td>
<td>(<{2}{3}{5}>)</td>
<td>Yes</td>
</tr>
<tr>
<td>(<{1,2}{3}{2,3}{3,4}{2,4}{4,5}>)</td>
<td>(<{1,2}{5}>)</td>
<td>No</td>
</tr>
</tbody>
</table>

Mining Sequential Patterns with Timing Constraints

- **Approach 1:**
 - Mine sequential patterns without timing constraints
 - Postprocess the discovered patterns

- **Approach 2:**
 - Modify GSP to directly prune candidates that violate timing constraints
 - Question:
 - Does Apriori principle still hold?
Apriori Principle for Sequence Data

<table>
<thead>
<tr>
<th>Object</th>
<th>Timestamp</th>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1,2,4</td>
</tr>
<tr>
<td>A</td>
<td>2</td>
<td>2,3</td>
</tr>
<tr>
<td>A</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>1,2</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>2,3,4</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>1,2</td>
</tr>
<tr>
<td>C</td>
<td>2</td>
<td>2,3,4</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>2,4,5</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>3,4</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>4,5</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>1,3</td>
</tr>
<tr>
<td>E</td>
<td>2</td>
<td>2,4,5</td>
</tr>
</tbody>
</table>

Suppose:
- \(x_g = 1 \) (max-gap)
- \(n_g = 0 \) (min-gap)
- \(m_s = 5 \) (maximum span)
- \(\text{minsup} = 60\% \)

\(<\{2\} \{5\}>\) support = 40%

but

\(<\{2\} \{3\} \{5\}>\) support = 60%

Problem exists because of max-gap constraint
No such problem if max-gap is infinite

Contiguous Subsequences

- \(s \) is a contiguous subsequence of \(w = <e_1>,<e_2>...<e_k> \)
 if any of the following conditions hold:
 1. \(s \) is obtained from \(w \) by deleting an item from either \(e_1 \) or \(e_k \)
 2. \(s \) is obtained from \(w \) by deleting an item from any element \(e_i \) that contains more than 2 items
 3. \(s \) is a contiguous subsequence of \(s' \) and \(s' \) is a contiguous subsequence of \(w \) (recursive definition)

- Examples: \(s = <\{1\} \{2\}> \)
 - is a contiguous subsequence of \(<\{1\} \{2\} \{3\}>\), \(<\{1\} \{2\} \{3\}>\), and \(<\{3\} \{4\} \{1\} \{2\} \{3\} \{4\}>\)
 - is not a contiguous subsequence of \(<\{1\} \{3\} \{2\}>\) and \(<\{2\} \{1\} \{3\} \{2\}>\)
Modified Candidate Pruning Step

- Without maxgap constraint:
 - A candidate \(k\)-sequence is pruned if at least one of its \((k-1)\)-subsequences is infrequent

- With maxgap constraint:
 - A candidate \(k\)-sequence is pruned if at least one of its contiguous \((k-1)\)-subsequences is infrequent

Timing Constraints (II)

\[
\{A, B\} \ {C} \ {D, E}\]

\[
\begin{align*}
\leq x_g & \quad \leq n_g & \quad \leq m_s & \quad \leq ws \\
\leq x_g & \quad > n_g & \quad \leq m_s & \quad \leq ws \\
\leq x_g & \quad \leq n_g & \quad > m_s & \quad \leq ws
\end{align*}
\]

- \(x_g\): max-gap
- \(n_g\): min-gap
- \(ws\): window size
- \(m_s\): maximum span

\(x_g = 2, n_g = 0, ws = 1, m_s = 5\)

<table>
<thead>
<tr>
<th>Data sequence</th>
<th>Subsequence</th>
<th>Contain?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(< (2,4) (3,5,6) (4,7) (4,6) (8) >)</td>
<td>(< (3) (5) >)</td>
<td>No</td>
</tr>
<tr>
<td>(< (1) (2) (3) (4) (5) >)</td>
<td>(< (1,2) (3) >)</td>
<td>Yes</td>
</tr>
<tr>
<td>(< (1,2) (2,3) (3,4) (4,5) >)</td>
<td>(< (1,2) (3,4) >)</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Modified Support Counting Step

- Given a candidate pattern: \(<\{a, c\}\>
- Any data sequences that contain

 \(<\ldots \{a, c\} \ldots \rangle,\>

 \(<\ldots \{a\} \ldots \{c\} \ldots >\) (where \(\text{time}({c}) - \text{time}({a}) \leq ws\))

 \(<\ldots \{c\} \ldots \{a\} \ldots >\) (where \(\text{time}({a}) - \text{time}({c}) \leq ws\))

 will contribute to the support count of candidate pattern

Other Formulation

- In some domains, we may have only one very long time series
 - Example:
 - monitoring network traffic events for attacks
 - monitoring telecommunication alarm signals
- Goal is to find frequent sequences of events in the time series
 - This problem is also known as frequent episode mining
General Support Counting Schemes

<table>
<thead>
<tr>
<th>Sequence: (p) (q)</th>
<th>Method</th>
<th>Support Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>COBJ</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>CWIN</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>CMINWIN</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>CDIST_O</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>CDIST</td>
<td>5</td>
</tr>
</tbody>
</table>

Object's Timeline

\[
\begin{array}{cccccccc}
p & p & q & p & q & q & p & q \\
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\
\end{array}
\]

Assume:
- \(x_g = 2 \) (max-gap)
- \(n_g = 0 \) (min-gap)
- \(ws = 0 \) (window size)
- \(ms = 2 \) (maximum span)

Frequent Subgraph Mining

- Extend association rule mining to finding frequent subgraphs
- Useful for Web Mining, computational chemistry, bioinformatics, spatial data sets, etc

![Graph](chart.png)
Graph Definitions

(a) Labeled Graph
(b) Subgraph
(c) Induced Subgraph

Representing Transactions as Graphs

- Each transaction is a clique of items

<table>
<thead>
<tr>
<th>Transaction Id</th>
<th>Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>{A, B, C, D}</td>
</tr>
<tr>
<td>2</td>
<td>{A, B, E}</td>
</tr>
<tr>
<td>3</td>
<td>{B, C}</td>
</tr>
<tr>
<td>4</td>
<td>{A, B, D, E}</td>
</tr>
<tr>
<td>5</td>
<td>{B, C, D}</td>
</tr>
</tbody>
</table>
Challenges

- Node may contain duplicate labels
- Support and confidence
 - How to define them?
- Additional constraints imposed by pattern structure
 - Support and confidence are not the only constraints
 - Assumption: frequent subgraphs must be connected
- Apriori-like approach:
 - Use frequent k-subgraphs to generate frequent (k+1) subgraphs
 - What is k?
Challenges...

- **Support:**
 - number of graphs that contain a particular subgraph

- **Apriori principle still holds**

- **Level-wise (Apriori-like) approach:**
 - Vertex growing:
 - k is the number of vertices
 - Edge growing:
 - k is the number of edges

Vertex Growing

\[M_{G1} = \begin{pmatrix}
0 & p & p & q \\
p & 0 & r & 0 \\
p & r & 0 & 0 \\
q & 0 & 0 & 0
\end{pmatrix} \quad M_{G2} = \begin{pmatrix}
0 & p & p & 0 \\
p & 0 & r & 0 \\
p & r & 0 & r \\
0 & 0 & r & 0
\end{pmatrix} \quad M_{G3} = \begin{pmatrix}
0 & p & p & 0 & q \\
p & 0 & r & 0 & 0 \\
p & r & 0 & r & 0 \\
0 & 0 & r & 0 & 0 \\
q & 0 & 0 & 0 & 0
\end{pmatrix} \]
Edge Growing

\[G_1 \quad + \quad G_2 \rightarrow G_3 = \text{join}(G_1, G_2) \]

Apriori-like Algorithm

- Find frequent 1-subgraphs
- Repeat
 - Candidate generation
 - Use frequent \((k-1)\)-subgraphs to generate candidate \(k\)-subgraph
 - Candidate pruning
 - Prune candidate subgraphs that contain infrequent \((k-1)\)-subgraphs
 - Support counting
 - Count the support of each remaining candidate
 - Eliminate candidate \(k\)-subgraphs that are infrequent

In practice, it is not as easy. There are many other issues
Example: Dataset

<table>
<thead>
<tr>
<th></th>
<th>(a,b,p)</th>
<th>(a,b,q)</th>
<th>(a,b,r)</th>
<th>(b,c,p)</th>
<th>(b,c,q)</th>
<th>(b,c,r)</th>
<th>...</th>
<th>(d,e,r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>G2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>G3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
<tr>
<td>G4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
</tbody>
</table>

Example

Minimum support count = 2

k=1 Frequent Subgraphs

a b c d e

k=2 Frequent Subgraphs

a p b a q e b r d

c p d c p e

k=3 Candidate Subgraphs

a p b d p c (Pruned candidate)
Candidate Generation

- In Apriori:
 - Merging two frequent \(k\)-itemsets will produce a candidate \((k+1)\)-itemset

- In frequent subgraph mining (vertex/edge growing)
 - Merging two frequent \(k\)-subgraphs may produce more than one candidate \((k+1)\)-subgraph

Multiplicity of Candidates (Vertex Growing)

\[
G1 = \begin{pmatrix}
0 & p & p & q \\
p & 0 & r & 0 \\
p & r & 0 & 0 \\
qu & 0 & 0 & 0
\end{pmatrix}, \quad
G2 = \begin{pmatrix}
0 & p & p & 0 \\
p & 0 & r & 0 \\
p & r & 0 & r \\
qu & 0 & 0 & 0
\end{pmatrix}, \quad
G3 = \text{join}(G1, G2)
\]

\[
M_{ss} = \begin{pmatrix}
0 & p & p & q \\
p & 0 & r & 0 \\
p & r & 0 & r \\
qu & 0 & 0 & 0
\end{pmatrix}
\]
Multiplicity of Candidates (Edge growing)

- Case 1: identical vertex labels

 ![Graph Example](image1)

- Case 2: Core contains identical labels

 ![Graph Example](image2)

Core: The (k-1) subgraph that is common between the joint graphs
Multiplicity of Candidates (Edge growing)

- Case 3: Core multiplicity

![Diagram of core multiplicity with graphs and adjacency matrices]

- The same graph can be represented in many ways

Adjacency Matrix Representation

<table>
<thead>
<tr>
<th></th>
<th>A(1)</th>
<th>A(2)</th>
<th>A(3)</th>
<th>A(4)</th>
<th>B(5)</th>
<th>B(6)</th>
<th>B(7)</th>
<th>B(8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A(1)</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A(2)</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A(3)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>A(4)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>B(5)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B(6)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>B(7)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B(8)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Graph Isomorphism

- A graph is isomorphic if it is topologically equivalent to another graph

Test for graph isomorphism is needed:
- During candidate generation step, to determine whether a candidate has been generated
- During candidate pruning step, to check whether its $(k-1)$-subgraphs are frequent
- During candidate counting, to check whether a candidate is contained within another graph
Graph Isomorphism

- Use canonical labeling to handle isomorphism
 - Map each graph into an ordered string representation (known as its code) such that two isomorphic graphs will be mapped to the same canonical encoding
 - Example:
 - Lexicographically largest adjacency matrix

 \[
 \begin{bmatrix}
 0 & 0 & 1 & 0 \\
 0 & 0 & 1 & 1 \\
 1 & 1 & 0 & 1 \\
 0 & 1 & 1 & 0 \\
 \end{bmatrix}
 \quad \rightarrow \quad
 \begin{bmatrix}
 0 & 1 & 1 & 1 \\
 1 & 0 & 1 & 0 \\
 1 & 1 & 0 & 0 \\
 1 & 0 & 0 & 0 \\
 \end{bmatrix}
 \]

 String: 001000111010110 Canonical: 0111101011001000