Data Mining Association Analysis: Basic Concepts and Algorithms

Lecture Notes for Chapter 6

Introduction to Data Mining
by
Tan, Steinbach, Kumar

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

1

Association Rule Mining

 Given a set of transactions, find rules that will predict the occurrence of an item based on the occurrences of other items in the transaction

Market-Basket transactions

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Association Rules

 ${Diaper} \rightarrow {Beer},$ ${Milk, Bread} \rightarrow {Eggs,Coke},$ ${Beer, Bread} \rightarrow {Milk},$

Implication means co-occurrence, not causality!

Definition: Frequent Itemset

Itemset

- A collection of one or more items
 - Example: {Milk, Bread, Diaper}
- k-itemset
 - · An itemset that contains k items

Support count (σ)

- Frequency of occurrence of an itemset
- E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$

Support

- Fraction of transactions that contain an itemset
- E.g. s({Milk, Bread, Diaper}) = 2/5

Frequent Itemset

 An itemset whose support is greater than or equal to a *minsup* threshold

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

4/18/2004

3

© Tan,Steinbach, Kumar Introduction to Data Mining

Definition: Association Rule

Association Rule

- An implication expression of the form
 X → Y, where X and Y are itemsets
- Example: {Milk, Diaper} → {Beer}

Rule Evaluation Metrics

- Support (s)
 - Fraction of transactions that contain both X and Y
- Confidence (c)
 - Measures how often items in Y appear in transactions that contain X

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example:

 $\{Milk, Diaper\} \Rightarrow Beer$

$$s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk,Diaper,Beer})}{\sigma(\text{Milk,Diaper})} = \frac{2}{3} = 0.67$$

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Association Rule Mining Task

- Given a set of transactions T, the goal of association rule mining is to find all rules having
 - support ≥ minsup threshold
 - confidence ≥ minconf threshold
- Brute-force approach:
 - List all possible association rules
 - Compute the support and confidence for each rule
 - Prune rules that fail the minsup and minconf thresholds
 - ⇒ Computationally prohibitive!

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

5

Mining Association Rules

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

 ${\text{Milk,Diaper}} \rightarrow {\text{Beer}} \ (\text{s=0.4, c=0.67}) \ {\text{Milk,Beer}} \rightarrow {\text{Diaper}} \ (\text{s=0.4, c=1.0}) \ {\text{Diaper,Beer}} \rightarrow {\text{Milk}} \ (\text{s=0.4, c=0.67}) \ {\text{Beer}} \rightarrow {\text{Milk,Diaper}} \ (\text{s=0.4, c=0.67}) \ {\text{Diaper}} \rightarrow {\text{Milk,Beer}} \ (\text{s=0.4, c=0.5}) \ {\text{Milk}} \rightarrow {\text{Diaper,Beer}} \ (\text{s=0.4, c=0.5})$

Observations:

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements

Mining Association Rules

- Two-step approach:
 - 1. Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup

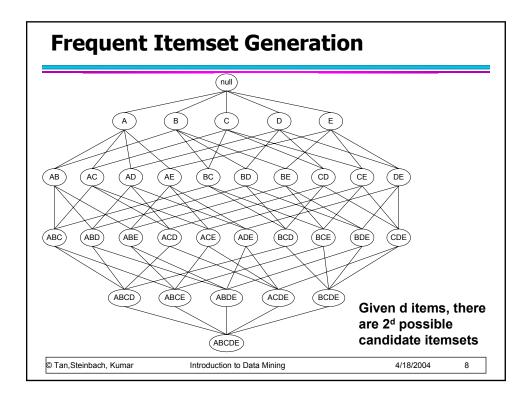
2. Rule Generation

- Generate high confidence rules from each frequent itemset,
 where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive

© Tan,Steinbach, Kumar

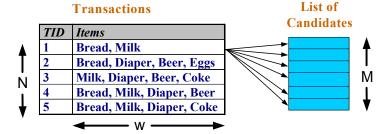
Introduction to Data Mining

4/18/2004



Frequent Itemset Generation

- Brute-force approach:
 - Each itemset in the lattice is a candidate frequent itemset
 - Count the support of each candidate by scanning the database



- Match each transaction against every candidate
- Complexity ~ O(NMw) => Expensive since M = 2^d !!!

© Tan,Steinbach, Kumar

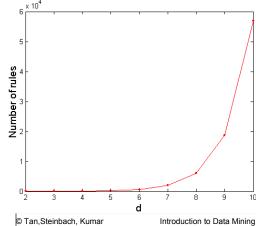
Introduction to Data Mining

4/18/2004

9

Computational Complexity

- Given d unique items:
 - Total number of itemsets = 2^d
 - Total number of possible association rules:



$$R = \sum_{k=1}^{d-1} \left[\begin{pmatrix} d \\ k \end{pmatrix} \times \sum_{j=1}^{d-k} \begin{pmatrix} d-k \\ j \end{pmatrix} \right]$$
$$= 3^{d} - 2^{d+1} + 1$$

If d=6, R = 602 rules

4/18/2004

Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
 - Complete search: M=2^d
 - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
 - Reduce size of N as the size of itemset increases
 - Used by DHP and vertical-based mining algorithms
- Reduce the number of comparisons (NM)
 - Use efficient data structures to store the candidates or transactions
 - No need to match every candidate against every transaction

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

11

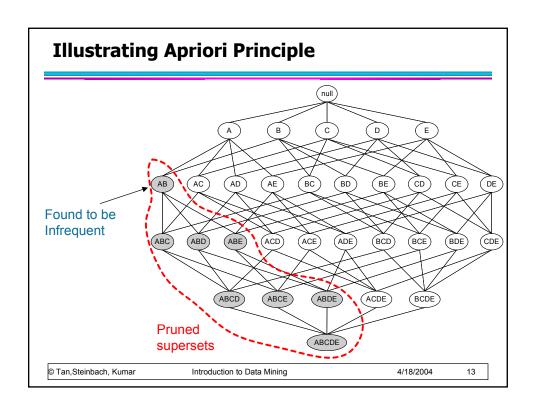
Reducing Number of Candidates

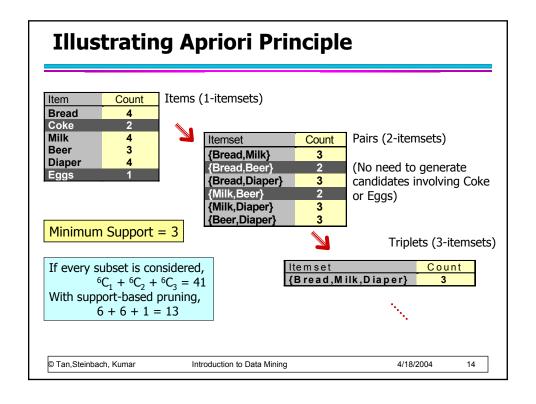
- Apriori principle:
 - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

© Tan,Steinbach, Kumar





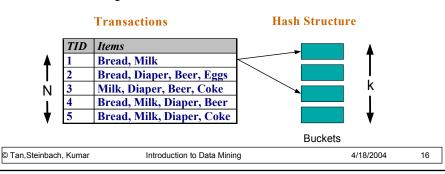
Apriori Algorithm

- Method:
 - Let k=1
 - Generate frequent itemsets of length 1
 - Repeat until no new frequent itemsets are identified
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - Prune candidate itemsets containing subsets of length k that are infrequent
 - Count the support of each candidate by scanning the DB
 - Eliminate candidates that are infrequent, leaving only those that are frequent

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 15

Reducing Number of Comparisons

- Candidate counting:
 - Scan the database of transactions to determine the support of each candidate itemset
 - To reduce the number of comparisons, store the candidates in a hash structure
 - Instead of matching each transaction against every candidate, match it against candidates contained in the hashed buckets



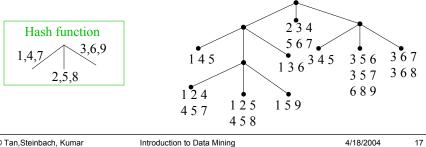
Generate Hash Tree

Suppose you have 15 candidate itemsets of length 3:

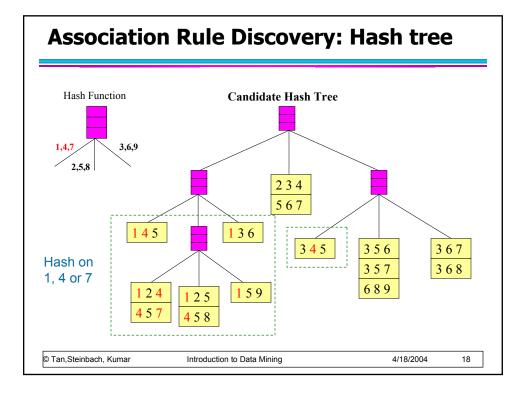
{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, {3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

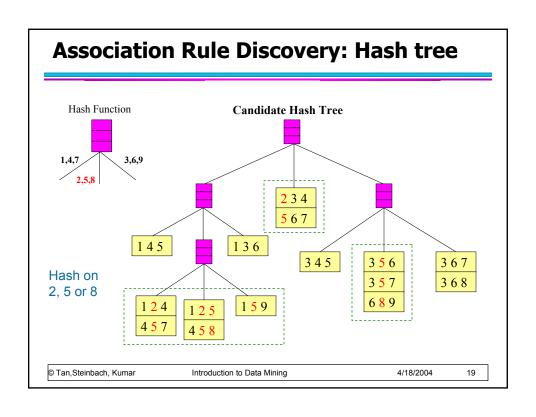
You need:

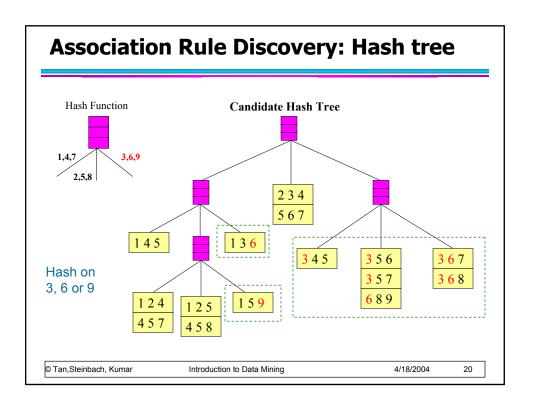
- · Hash function
- Max leaf size: max number of itemsets stored in a leaf node (if number of candidate itemsets exceeds max leaf size, split the node)

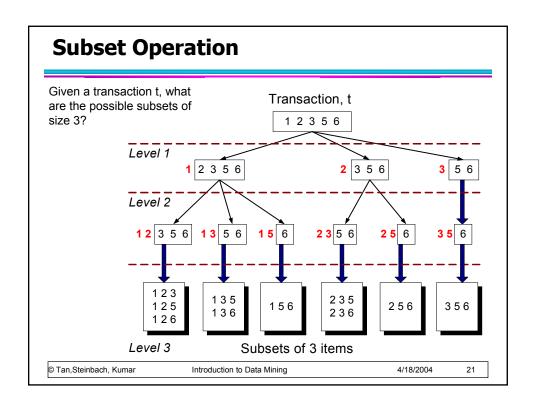


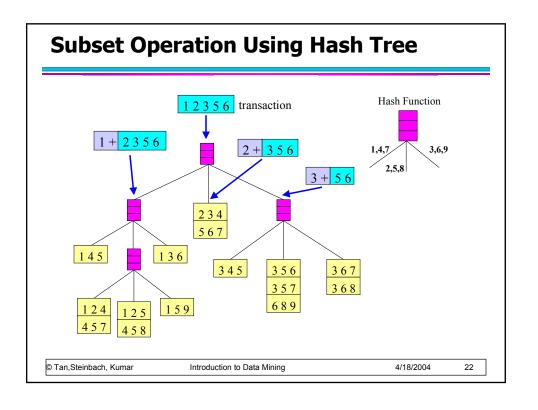
© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004

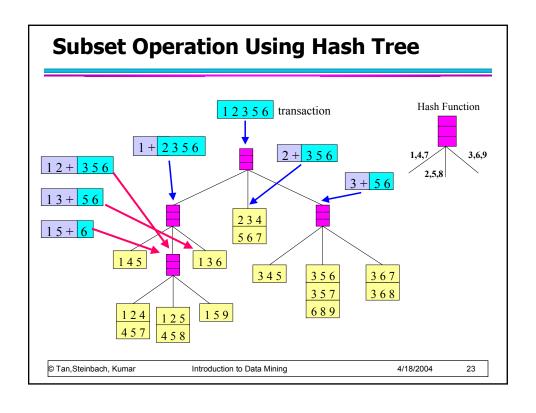


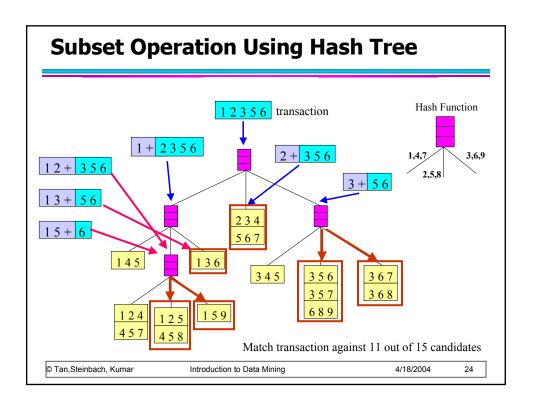












Factors Affecting Complexity

- Choice of minimum support threshold
 - lowering support threshold results in more frequent itemsets
 - this may increase number of candidates and max length of frequent itemsets
- Dimensionality (number of items) of the data set
 - more space is needed to store support count of each item
 - if number of frequent items also increases, both computation and I/O costs may also increase
- Size of database
 - since Apriori makes multiple passes, run time of algorithm may increase with number of transactions
- Average transaction width
 - transaction width increases with denser data sets
 - This may increase max length of frequent itemsets and traversals of hash tree (number of subsets in a transaction increases with its width)

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 25

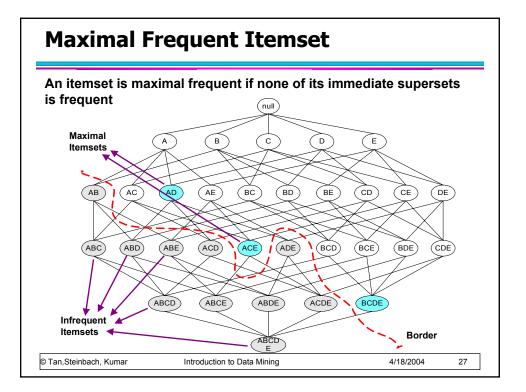
Compact Representation of Frequent Itemsets

 Some itemsets are redundant because they have identical support as their supersets

TID	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	B1	B2	В3	B4	B5	B6	B7	B8	B9	B10	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

- Number of frequent itemsets = $3 \times \sum_{k=1}^{10} \binom{10}{k}$
- Need a compact representation

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 26



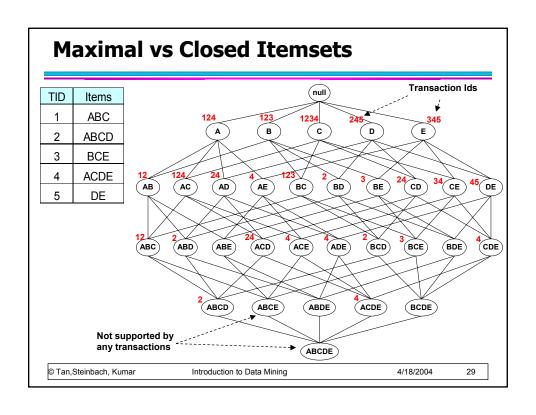
Closed Itemset

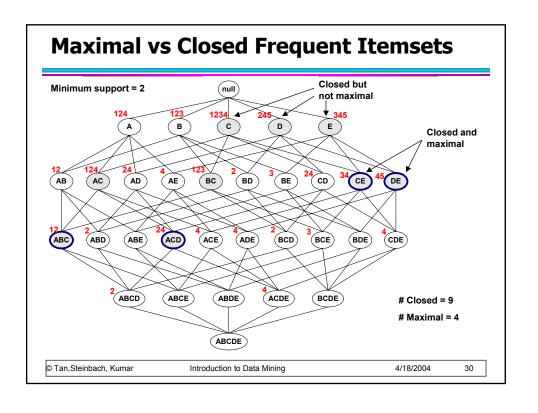
 An itemset is closed if none of its immediate supersets has the same support as the itemset

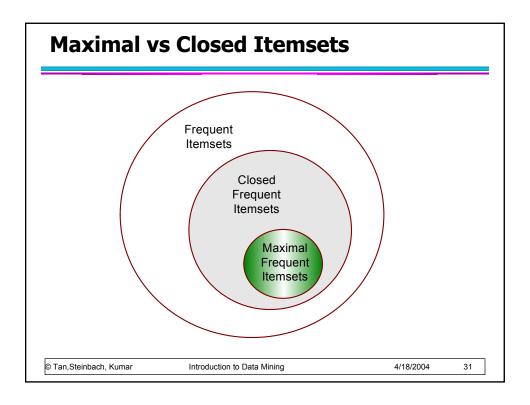
TID	Items
1	{A,B}
2	{B,C,D}
3	$\{A,B,C,D\}$
4	{A,B,D}
5	{A,B,C,D}

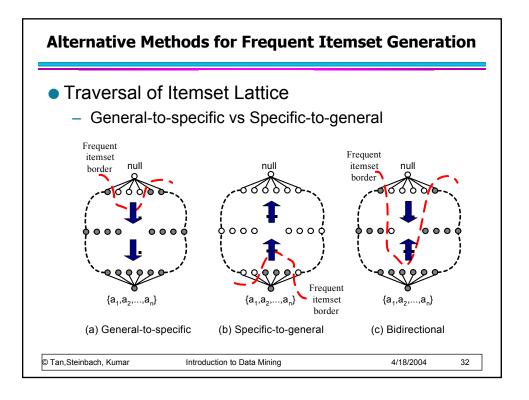
Itemset	Support
{A}	4
{B}	5
{C}	3
{D}	4
{A,B}	4
{A,C}	2
{A,D}	3
{B,C}	3
{B,D}	4
{C,D}	3

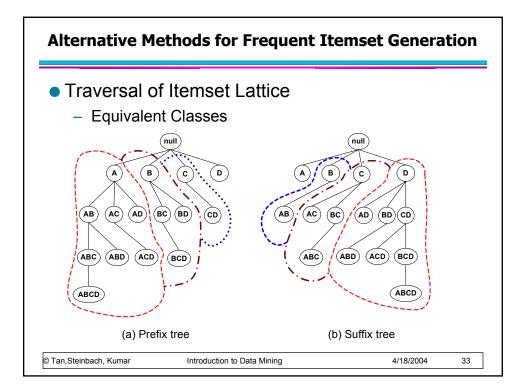
Itemset	Support
{A,B,C}	2
$\{A,B,D\}$	3
$\{A,C,D\}$	2
{B,C,D}	3
{A,B,C,D}	2

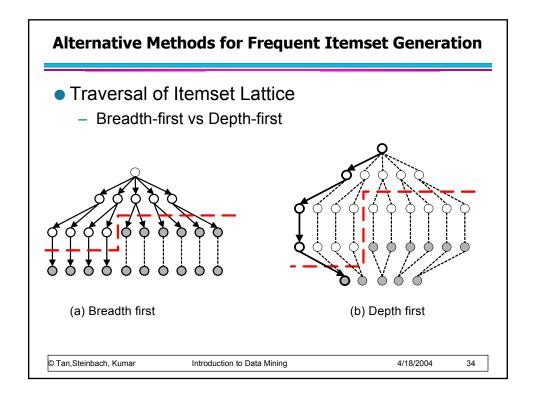












Alternative Methods for Frequent Itemset Generation

- Representation of Database
 - horizontal vs vertical data layout

Horizontal Data Layout

TID	Items
1	A,B,E
2	B,C,D
3	C,E
4	A,C,D
5	A,B,C,D
6	A,E
7	A,B
8	A,B,C
9	A,C,D
10	В

Vertical Data Layout

Α	В	С	D	Е
1	1	2	2	1
4	2	3	4	3 6
5	5	2 3 4 8 9	2 4 5 9	6
6	7	8	9	
7	2 5 7 8 10	9		
1 4 5 6 7 8 9	10			
9				

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

35

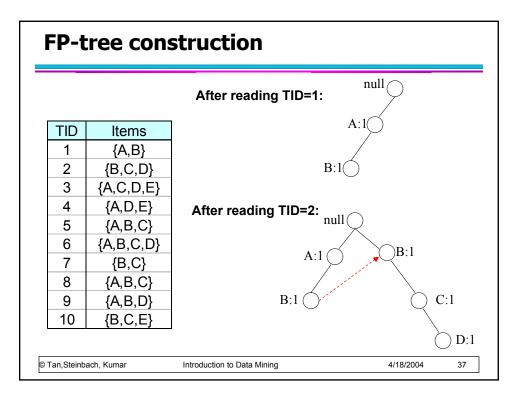
FP-growth Algorithm

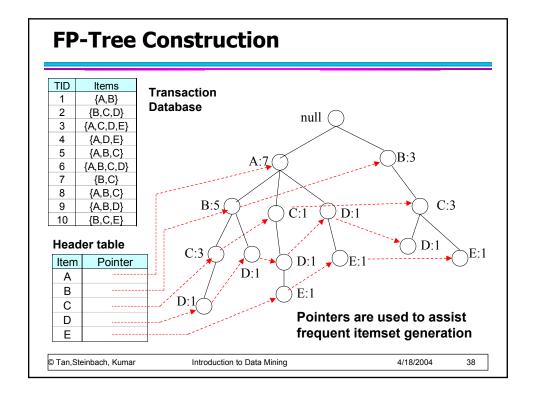
- Use a compressed representation of the database using an FP-tree
- Once an FP-tree has been constructed, it uses a recursive divide-and-conquer approach to mine the frequent itemsets

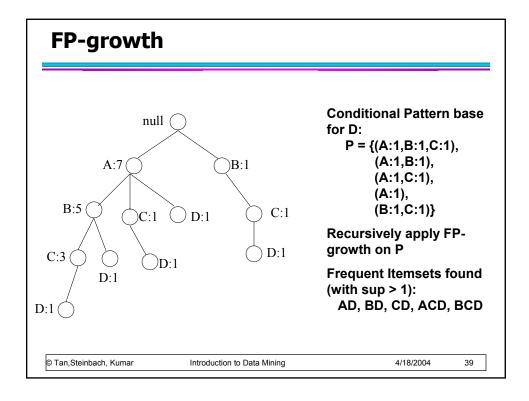
© Tan,Steinbach, Kumar

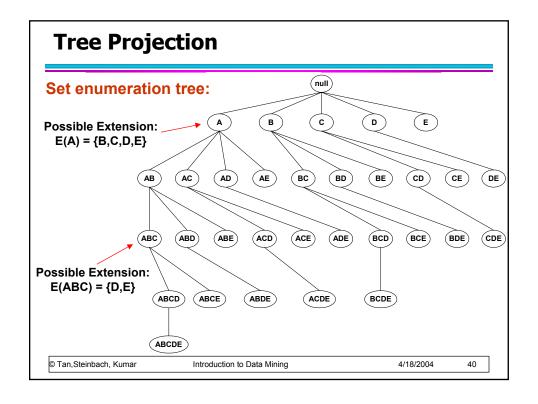
Introduction to Data Mining

4/18/2004









Tree Projection

- Items are listed in lexicographic order
- Each node P stores the following information:
 - Itemset for node P
 - List of possible lexicographic extensions of P: E(P)
 - Pointer to projected database of its ancestor node
 - Bitvector containing information about which transactions in the projected database contain the itemset

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

41

Projected Database

Original Database:

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	{A,B,C}
6	$\{A,B,C,D\}$
7	{B,C}
8	{A,B,C}
9	{A,B,D}
10	{B,C,E}

Projected Database for node A:

TID	Items
1	{B}
2	{}
3	$\{C,D,E\}$
4	{D,E}
5	{B,C}
6	{B,C,D}
7	{}
8	{B,C}
9	{B,D}
10	{}

For each transaction T, projected transaction at node A is $T \cap E(A)$

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

ECLAT

• For each item, store a list of transaction ids (tids)

Horizontal Data Layout

TID	Items
1	A,B,E
2	B,C,D
3	C,E
4	A,C,D
5	A,B,C,D
6	A,E
7	A,B
8	A,B,C
9	A,C,D
10	В

Vertical Data Layout

Α	В	С	D	Е
1	1	2 3 4 8 9	2	1
4	2	3	4	3 6
4 5 6 7 8 9	2 5	4	2 4 5 9	6
6	7	8	9	
7	7 8	9		
8	10			
9				
$\overline{\downarrow}$				
TID-	list			

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

43

ECLAT

 Determine support of any k-itemset by intersecting tid-lists of two of its (k-1) subsets.

•		1,04200	····		
	Α		В		AB
	1		1		1
	4		2		5
	5	^	5	\rightarrow	7
	6		7		8
	7		8		
	8		10		
	a				

- 3 traversal approaches:
 - top-down, bottom-up and hybrid
- Advantage: very fast support counting
- Disadvantage: intermediate tid-lists may become too large for memory

Rule Generation

- Given a frequent itemset L, find all non-empty subsets f ⊂ L such that f → L – f satisfies the minimum confidence requirement
 - If {A,B,C,D} is a frequent itemset, candidate rules:

 If |L| = k, then there are 2^k – 2 candidate association rules (ignoring L → Ø and Ø → L)

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

45

Rule Generation

- How to efficiently generate rules from frequent itemsets?
 - In general, confidence does not have an antimonotone property

 $c(ABC \rightarrow D)$ can be larger or smaller than $c(AB \rightarrow D)$

- But confidence of rules generated from the same itemset has an anti-monotone property
- e.g., L = {A,B,C,D}:

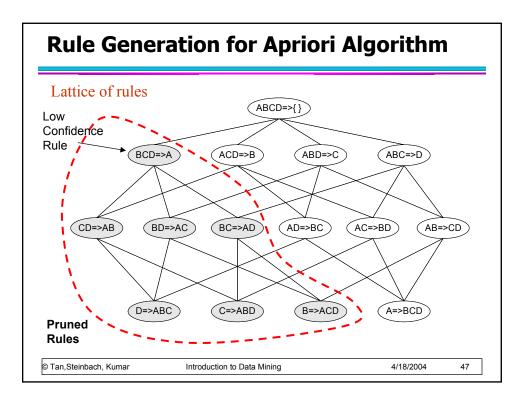
$$c(\mathsf{ABC} \to \mathsf{D}) \geq c(\mathsf{AB} \to \mathsf{CD}) \geq c(\mathsf{A} \to \mathsf{BCD})$$

◆ Confidence is anti-monotone w.r.t. number of items on the RHS of the rule

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004



Rule Generation for Apriori Algorithm

 Candidate rule is generated by merging two rules that share the same prefix in the rule consequent

join(CD=>AB,BD=>AC)
 would produce the candidate
 rule D => ABC

 Prune rule D=>ABC if its subset AD=>BC does not have high confidence

D=>ABC

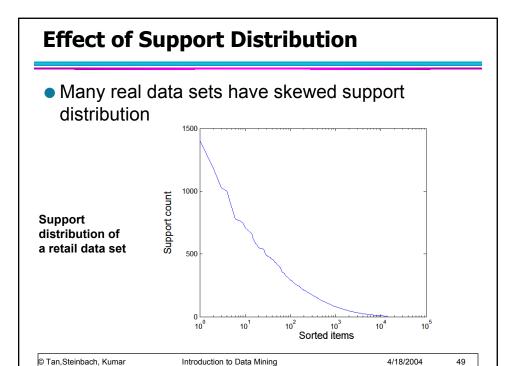
CD=>AB

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

BD=>AC



Effect of Support Distribution

- How to set the appropriate minsup threshold?
 - If minsup is set too high, we could miss itemsets involving interesting rare items (e.g., expensive products)
 - If minsup is set too low, it is computationally expensive and the number of itemsets is very large

4/18/2004

 Using a single minimum support threshold may not be effective

Multiple Minimum Support

- How to apply multiple minimum supports?
 - MS(i): minimum support for item i
 - e.g.: MS(Milk)=5%, MS(Coke) = 3%, MS(Broccoli)=0.1%, MS(Salmon)=0.5%
 - MS({Milk, Broccoli}) = min (MS(Milk), MS(Broccoli))= 0.1%
 - Challenge: Support is no longer anti-monotone
 - Suppose: Support(Milk, Coke) = 1.5% and Support(Milk, Coke, Broccoli) = 0.5%
 - {Milk,Coke} is infrequent but {Milk,Coke,Broccoli} is frequent

© Tan,Steinbach, Kumar Inti

Introduction to Data Mining

4/18/2004

51

Multiple Minimum Support

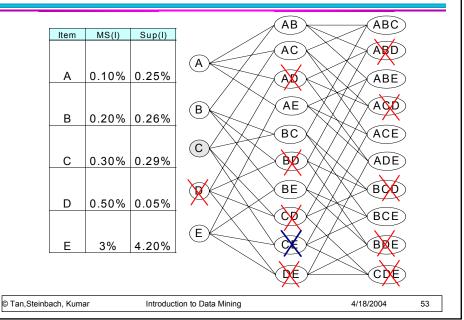
	I		AB	ABC
Item	MS(I)	Sup(I)		/ NBO
			AC	ABD
Α	0.10%	0.25%	AD	ABE
В	0.20%	0.26%	B	ACD
			BC	ACE
С	0.30%	0.29%	BD	ADE
D	0.50%	0.05%	BE	BCD
			CD	BCE
Е	3%	4.20%	E	BDE
			DE	CDE

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Multiple Minimum Support



Multiple Minimum Support (Liu 1999)

- Order the items according to their minimum support (in ascending order)
 - e.g.: MS(Milk)=5%, MS(Coke) = 3%, MS(Broccoli)=0.1%, MS(Salmon)=0.5%
 - Ordering: Broccoli, Salmon, Coke, Milk
- Need to modify Apriori such that:
 - L₁: set of frequent items
 - F_1 : set of items whose support is $\geq MS(1)$ where MS(1) is min_i(MS(i))
 - C₂: candidate itemsets of size 2 is generated from F₁ instead of L₁

Multiple Minimum Support (Liu 1999)

- Modifications to Apriori:
 - In traditional Apriori,
 - A candidate (k+1)-itemset is generated by merging two frequent itemsets of size k
 - The candidate is pruned if it contains any infrequent subsets of size k
 - Pruning step has to be modified:
 - Prune only if subset contains the first item
 - e.g.: Candidate={Broccoli, Coke, Milk} (ordered according to minimum support)
 - {Broccoli, Coke} and {Broccoli, Milk} are frequent but {Coke, Milk} is infrequent
 - Candidate is not pruned because {Coke,Milk} does not contain the first item, i.e., Broccoli.

© Tan,Steinbach, Kumar

Introduction to Data Mining

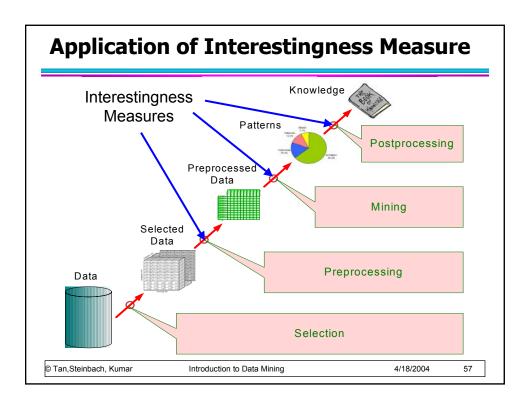
4/18/2004

55

Pattern Evaluation

- Association rule algorithms tend to produce too many rules
 - many of them are uninteresting or redundant
 - Redundant if {A,B,C} → {D} and {A,B} → {D} have same support & confidence
- Interestingness measures can be used to prune/rank the derived patterns
- In the original formulation of association rules, support & confidence are the only measures used

© Tan,Steinbach, Kumar



Computing Interestingness Measure

• Given a rule $X \rightarrow Y$, information needed to compute rule interestingness can be obtained from a contingency table

Contingency table for $X \rightarrow Y$

	Y	Y	
Х	f ₁₁	f ₁₀	f ₁₊
₹	f ₀₁	f ₀₀	f _{o+}
	f ₊₁	f ₊₀	ΙΤΙ

f₁₁: support of X and Y

 f_{10} : support of X and \overline{Y}

 f_{01} : support of $\overline{\underline{X}}$ and $\underline{\underline{Y}}$ f_{00} : support of $\overline{\underline{X}}$ and $\overline{\underline{Y}}$

Used to define various measures

 support, confidence, lift, Gini, J-measure, etc.

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Drawback of Confidence

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea → Coffee

Confidence= P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9

- ⇒ Although confidence is high, rule is misleading
- \Rightarrow P(Coffee|Tea) = 0.9375

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

50

Statistical Independence

- Population of 1000 students
 - 600 students know how to swim (S)
 - 700 students know how to bike (B)
 - 420 students know how to swim and bike (S,B)
 - $P(S \land B) = 420/1000 = 0.42$
 - $P(S) \times P(B) = 0.6 \times 0.7 = 0.42$
 - P(S∧B) = P(S) × P(B) => Statistical independence
 - P(S∧B) > P(S) × P(B) => Positively correlated
 - P(S∧B) < P(S) × P(B) => Negatively correlated

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Statistical-based Measures

Measures that take into account statistical dependence

$$Lift = \frac{P(Y \mid X)}{P(Y)}$$

$$Interest = \frac{P(X,Y)}{P(X)P(Y)}$$

$$PS = P(X,Y) - P(X)P(Y)$$

$$\phi - coefficient = \frac{P(X,Y) - P(X)P(Y)}{\sqrt{P(X)[1 - P(X)]P(Y)[1 - P(Y)]}}$$

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

~4

62

Example: Lift/Interest

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea → Coffee

Confidence= P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9

 \Rightarrow Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated)

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004

Drawback of Lift & Interest

	Υ	Y	
Х	10	0	10
X	0	90	90
	10	90	100

	Υ	Y	
Х	90	0	90
X	0	10	10
	90	10	100

$$Lift = \frac{0.1}{(0.1)(0.1)} = 10$$

$$Lift = \frac{0.1}{(0.1)(0.1)} = 10 \qquad Lift = \frac{0.9}{(0.9)(0.9)} = 1.11$$

Statistical independence:

If $P(X,Y)=P(X)P(Y) \Rightarrow Lift = 1$

4/18/2004 © Tan,Steinbach, Kumar Introduction to Data Mining 63

	#	Measure	Formula.
	1	φ-coefficient	P(A,B)-P(A)P(B)
There are lots of	*	y-coemcient	$\sqrt{P(A)P(B)(1-P(A))(1-P(B))}$
measures proposed	2	Goodman-Kruskal's (λ)	$\frac{\sum_{j \max_{k} P(A_{j}, B_{k}) + \sum_{k \max_{j} P(A_{j}, B_{k}) - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}{2 - \max_{j} P(A_{j}) - \max_{k} P(B_{k})}$
in the literature	3	Odds ratio (α)	$\frac{P(A,B)P(\overline{A},\overline{B})}{P(A,\overline{B})P(\overline{A},B)}$
	4	Yule's Q	$\frac{P(A,B)P(\overline{AB})-P(A,\overline{B})P(\overline{A},B)}{P(A,B)P(\overline{AB})+P(A,\overline{B})P(\overline{A},B)} = \frac{\alpha-1}{\alpha+1}$
	5	Yule's Y	$\frac{\sqrt{P(A,B)P(\overline{AB})} - \sqrt{P(A,\overline{B})P(\overline{A},B)}}{\sqrt{P(A,B)P(\overline{AB})} + \sqrt{P(A,\overline{B})P(\overline{A},B)}} = \frac{\sqrt{\alpha} - 1}{\sqrt{\alpha} + 1}$
Some measures are good for certain	6	Kappa (κ)	$\frac{\dot{P}(A,B)+P(\overline{A},\overline{B})-\dot{P}(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A)P(B)-P(\overline{A})P(\overline{B})}$
applications, but not	7	Mutual Information (M)	$\frac{\sum_{i}\sum_{j}P(A_{i},B_{j})\log\frac{P(A_{i},B_{j})}{P(A_{j})P(B_{j})}}{\min(-\sum_{i}P(A_{i})\log\frac{P(A_{i}),-\sum_{j}P(B_{j})\log P(B_{j}))}$
for others	8	J-Measure (J)	$\max \left(P(A,B) \log(\frac{P(B A)}{P(B)}) + P(A\overline{B}) \log(\frac{P(\overline{B} A)}{P(\overline{B})}), \right.$
			$P(A,B)\log(\frac{P(A B)}{P(A)}) + P(\overline{A}B)\log(\frac{P(\overline{A} B)}{P(A)})$
	9	Gini index (G)	$\max \left(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A})[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2] \right)$
What criteria should			$-P(B)^2-P(\overline{B})^2$,
we use to determine			$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}]$
whether a measure			$-P(A)^3 - P(\overline{A})^3$
is good or bad?	10	Support (s)	P(A,B)
· ·	11	Confidence (c)	$\max(P(B A), P(A B))$
	12	Laplace (L)	$\max\left(\frac{NP(A,B)+1}{NP(A)+2},\frac{NP(A,B)+1}{NP(B)+2}\right)$
What about Apriori-	13	Conviction (V)	$\max\left(rac{P(A)P(\overline{B})}{P(A\overline{B})}, rac{P(B)P(\overline{A})}{P(B\overline{A})} ight)$
style support based	14	Interest (I)	$\frac{P(A,B)}{P(A)P(B)}$
pruning? How does	15	cosine (IS)	$\frac{P(A,B)}{\sqrt{P(A)P(B)}}$
it affect these	16	Piatetsky-Shapiro's (PS)	P(A,B) - P(A)P(B)
measures?	17	Certainty factor (F)	$\max\left(\frac{P(B A)-P(B)}{1-P(B)},\frac{P(A B)-P(A)}{1-P(A)}\right)$
	18	Added Value (AV)	$\max(P(B A) - P(B), P(A B) - P(\underline{A}))$
	19	Collective strength (S)	$\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(\overline{A})P(\overline{B})} \times \frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}$
	20	Jaccard (ζ)	$\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$
	21	Klosgen (K)	$\sqrt{P(A,B)}\max(P(B A) - P(B), P(A B) - P(A))$

Properties of A Good Measure

Piatetsky-Shapiro:

3 properties a good measure M must satisfy:

- M(A,B) = 0 if A and B are statistically independent
- M(A,B) increase monotonically with P(A,B) when P(A) and P(B) remain unchanged
- M(A,B) decreases monotonically with P(A) [or P(B)] when P(A,B) and P(B) [or P(A)] remain unchanged

© Tan, Steinbach, Kumar Introduction to Data Mining 4/18/2004 65

Comparing Different Measures

10 examples of contingency tables:

Example	t ₁₁	t ₁₀	t ₀₁	t ₀₀
E1	8123	83	424	1370
E2	8330	2	622	1046
E3	9481	94	127	298
E4	3954	3080	5	2961
E5	2886	1363	1320	4431
E6	1500	2000	500	6000
E7	4000	2000	1000	3000
E8	4000	2000	2000	2000
E9	1720	7121	5	1154
E10	61	2483	4	7452

Rankings of contingency tables using various measures:

#	φ	λ	α	Q	Y	κ	M	J	G	s	c	L	V	I	IS	PS	F	AV	S	ζ	K
E1	1	1	3	3	3	1	2	2	1	3	5	5	4	6	2	2	4	6	1	2	5
E2	2	2	1	1	1	2	1	3	2	2	1	1	1	8	3	5	1	8	2	3	6
E3	3	3	4	4	4	3	3	8	7	1	4	4	6	10	1	8	6	10	3	1	10
E4	4	7	2	2	2	5	4	1	3	6	2	2	2	4	4	1	2	3	4	5	1
E5	5	4	8	8	8	4	7	5	4	7	9	9	9	3	6	3	9	4	5	6	3
E6	6	6	7	7	7	7	6	4	6	9	8	8	7	2	8	6	7	2	7	8	2
E7	7	5	9	9	9	6	8	6	5	4	7	7	8	5	5	4	8	5	6	4	4
E8	8	9	10	10	10	8	10	10	8	4	10	10	10	9	7	7	10	9	8	7	9
E9	9	9	5	5	5	9	9	7	9	8	3	3	3	7	9	9	3	7	9	9	8
E10	10	8	6	6	6	10	5	9	10	10	6	6	5	1)	10	10	5	1	10	10	7
		•	•	•	•	•								\smile	•						

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

Property under Variable Permutation

Does
$$M(A,B) = M(B,A)$$
?

Symmetric measures:

• support, lift, collective strength, cosine, Jaccard, etc

Asymmetric measures:

• confidence, conviction, Laplace, J-measure, etc

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004

Property under Row/Column Scaling

Grade-Gender Example (Mosteller, 1968):

	Male	Female		
High	2	3	5	
Low	1	4	5	
	3	7	10	

	Male	Female	
High	4	30	34
Low	2	40	42
	6	70	76
	\downarrow	<u> </u>	

10x

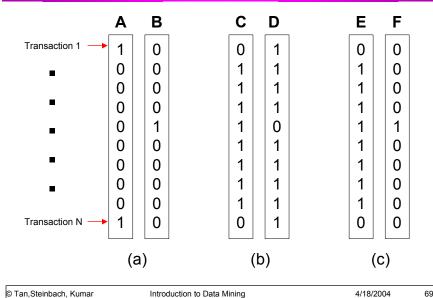
2x

67

Mosteller:

Underlying association should be independent of the relative number of male and female students in the samples

Property under Inversion Operation



Example: ϕ -Coefficient

 φ-coefficient is analogous to correlation coefficient for continuous variables

	Υ	Y	
Х	60	10	70
X	10	20	30
	70	30	100

$$\phi = \frac{0.6 - 0.7 \times 0.7}{\sqrt{0.7 \times 0.3 \times 0.7 \times 0.3}} \qquad \phi = \frac{0.2 - 0.3 \times 0.3}{\sqrt{0.7 \times 0.3 \times 0.7 \times 0.3}}$$
$$= 0.5238 \qquad = 0.5238$$

φ Coefficient is the same for both tables

Property under Null Addition

Invariant measures:

support, cosine, Jaccard, etc

Non-invariant measures:

• correlation, Gini, mutual information, odds ratio, etc

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 71

Different Measures have Different Properties

Symbol	Measure	Range	P1	P2	P3	01	02	O3	O3'	04
Φ	Correlation	-1 0 1	Yes	Yes	Yes	Yes	No	Yes	Yes	No
λ	Lambda	0 1	Yes	No	No	Yes	No	No*	Yes	No
α	Odds ratio	0 1 ∞	Yes*	Yes	Yes	Yes	Yes	Yes*	Yes	No
Q	Yule's Q	-1 0 1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
Υ	Yule's Y	-1 0 1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
κ	Cohen's	-1 0 1	Yes	Yes	Yes	Yes	No	No	Yes	No
M	Mutual Information	0 1	Yes	Yes	Yes	Yes	No	No*	Yes	No
J	J-Measure	0 1	Yes	No	No	No	No	No	No	No
G	Gini Index	0 1	Yes	No	No	No	No	No*	Yes	No
S	Support	0 1	No	Yes	No	Yes	No	No	No	No
С	Confidence	0 1	No	Yes	No	Yes	No	No	No	Yes
L	Laplace	0 1	No	Yes	No	Yes	No	No	No	No
V	Conviction	0.5 1 ∞	No	Yes	No	Yes**	No	No	Yes	No
- 1	Interest	0 1 ∞	Yes*	Yes	Yes	Yes	No	No	No	No
IS	IS (cosine)	0 1	No	Yes	Yes	Yes	No	No	No	Yes
PS	Piatetsky-Shapiro's	-0.25 0 0.25	Yes	Yes	Yes	Yes	No	Yes	Yes	No
F	Certainty factor	-1 0 1	Yes	Yes	Yes	No	No	No	Yes	No
AV	Added value	0.5 1 1	Yes	Yes	Yes	No	No	No	No	No
S	Collective strength	0 1 ∞	No	Yes	Yes	Yes	No	Yes*	Yes	No
ζ	Jaccard	0 1	No	Yes	Yes	Yes	No	No	No	Yes
K	Klosgen's	$\left(\sqrt{\frac{2}{\sqrt{3}}-1}\right)\left(2-\sqrt{3}-\frac{1}{\sqrt{3}}\right)\dots0\dots\frac{2}{3\sqrt{3}}$	Yes	Yes	Yes	No	No	No	No	No

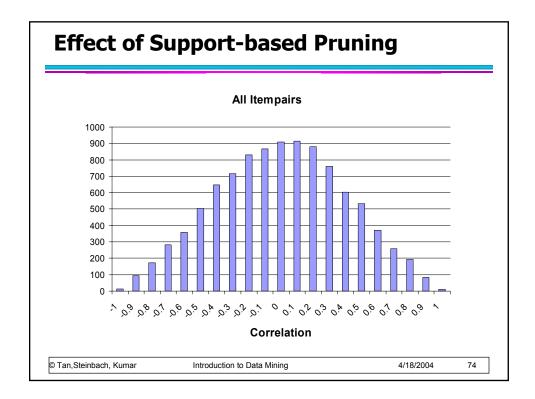
Support-based Pruning

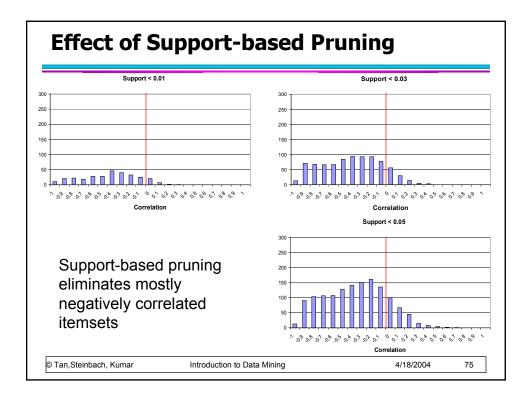
- Most of the association rule mining algorithms use support measure to prune rules and itemsets
- Study effect of support pruning on correlation of itemsets
 - Generate 10000 random contingency tables
 - Compute support and pairwise correlation for each table
 - Apply support-based pruning and examine the tables that are removed

© Tan,Steinbach, Kumar

Introduction to Data Mining

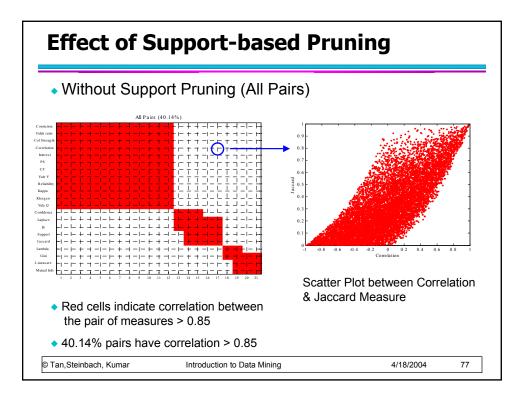
4/18/2004

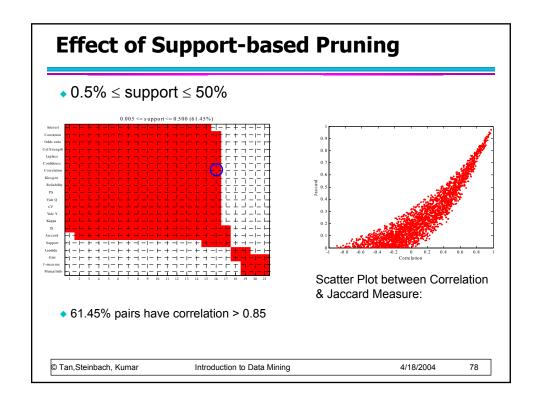




Effect of Support-based Pruning

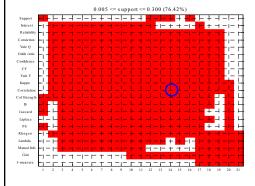
- Investigate how support-based pruning affects other measures
- Steps:
 - Generate 10000 contingency tables
 - Rank each table according to the different measures
 - Compute the pair-wise correlation between the measures

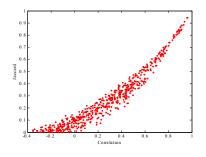




Effect of Support-based Pruning

0.5% ≤ support ≤ 30%





◆ 76.42% pairs have correlation > 0.85

Scatter Plot between Correlation & Jaccard Measure

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

79

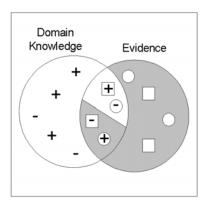
Subjective Interestingness Measure

- Objective measure:
 - Rank patterns based on statistics computed from data
 - e.g., 21 measures of association (support, confidence, Laplace, Gini, mutual information, Jaccard, etc).
- Subjective measure:
 - Rank patterns according to user's interpretation
 - A pattern is subjectively interesting if it contradicts the expectation of a user (Silberschatz & Tuzhilin)
 - A pattern is subjectively interesting if it is actionable (Silberschatz & Tuzhilin)

© Tan,Steinbach, Kumar

Interestingness via Unexpectedness

Need to model expectation of users (domain knowledge)



- + Pattern expected to be frequent
- Pattern expected to be infrequent
- Pattern found to be frequent
- Pattern found to be infrequent
- + Expected Patterns
- Unexpected Patterns
- Need to combine expectation of users with evidence from data (i.e., extracted patterns)

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

81

Interestingness via Unexpectedness

- Web Data (Cooley et al 2001)
 - Domain knowledge in the form of site structure
 - Given an itemset $F = \{X_1, X_2, ..., X_k\}$ (X_i : Web pages)
 - L: number of links connecting the pages
 - ◆ Ifactor = L / (k × k-1)
 - cfactor = 1 (if graph is connected), 0 (disconnected graph)
 - Structure evidence = cfactor × lfactor
 - Usage evidence = $\frac{P(X_{1} \cap X_{2} \cap ... \cap X_{k})}{P(X_{1} \cup X_{2} \cup ... \cup X_{k})}$
 - Use Dempster-Shafer theory to combine domain knowledge and evidence from data

© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004