Recommender Systems: Advanced Concepts in Research and Practice

Joseph A. Konstan
University of Minnesota

konstan@cs.umn.edu
http://www.grouplens.org

A Bit of History

- Ants, Cavemen, and Early Recommender Systems
 - The emergence of critics
- Information Filtering and User Modeling
- Manual Collaborative Filtering
- Automated Collaborative Filtering
 - Social Navigation and other approaches
- The Commercial Era

Historical Challenges

- Collecting Opinion and Experience Data
- Finding the Relevant Data for a Purpose
- Presenting the Data in a Useful Way

Introductions

- Me
- You
- This tutorial

About Me

- Professor of Computer Science
 - University of Minnesota
- Background: Human-Computer Interaction
- Recommender Systems Experience
 - Started on GroupLens project in late 1994
 - Co-founded Net Perceptions
 - Still actively working on RS research

About You

- Name
- What you do
- Who you work for / where you study
- Briefly
 - Your experience with recommender systems
 - One key thing you want to get out of this tutorial
About This Tutorial

Background
- I have taught an introductory tutorial on RS about a dozen times (often with John Riedl, Anthony Jameson)

The idea:
- A venue to go beyond the introductory material to explore newer knowledge and current problems
- Inherently biased by what I find to be interesting (for better or for worse)
- Assumes basic understanding of RS (e.g., k-nearest-neighbor collaborative filtering – if not, let’s fix that!)

Goals of this Tutorial

- To understand the state of research and practice in recommender systems:
 - Algorithms
 - Interface Design
 - Evaluation
- To explore the future of user-centered recommender system design
- To have fun while doing so!

Where do Recommenders Fail?

Your experiences
- Where have recommenders really missed the mark?
- Where have they looked dumb?
- And why????

My Examples

- Recommending without enough data (weak confidence)
- Recommending items ignorant of context
- Ignoring overall interest or balance
- Just plain wrong!

Amazon Explanation

Amazon.com Tolkien
More Generally …

- Recommenders fail when …
 - they lack awareness of their own knowledge
 - they don’t consider the context of recommendation
 - they don’t consider the user's goals and needs
How do we Evaluate Recommenders -- today?

- Industry outcome
 - Add-on sales
 - Click-through rates

Real-world Experience

- Large international catalog retailer
 - 17% hit rate, 23% acceptance rate in call center
- Medium European outbound call center
 - 17% hit rate, 6.7% acceptance rate from an outbound telemarketing call
 - $350.00 price of average item sold
 - Items were in an electronics over-stocked category and were sold-out within 3 weeks
- Medium American online toy store (e-mail campaign)
 - 19% click-thru rate vs. 10% industry average
 - 14.3% conversion to sale vs. 2.5% industry average

How do we Evaluate Recommenders -- today?

- Industry outcome
 - Add-on sales
 - Click-through rates
- Research measures
 - User satisfaction
- Metrics
 - To anticipate the above beforehand (offline)

Evaluating Recommendations

- Prediction Accuracy
 - MAE, MSE,
- Decision-Support Accuracy
 - Reversals, ROC
- Recommendation Quality
 - Top-n measures (e.g., Breese score)
- Item-Set Coverage

What’s Wrong with This Approach?

- What is the purpose of recommenders?
 - to help people find things they don’t already know – and that they’ll like/value/use
 - to serve as a useful advisor
- What are we measuring, mostly?
 - how well the recommenders perform at finding things the users already know
 - performance on individual recommendations

There are Alternatives!

- The “easy” alternative
 - test on real users, real situation
 - have them consume and evaluate
- The “hard” alternative
 - extend our knowledge and understanding about metrics
Extending our Knowledge …

From Items to Lists

- Do users really experience recommendations in isolation?

Making Good Lists

- Individually good recommendations do not equal a good recommendation list
- Other factors are important
 - Diversity
 - Affirmation
 - Appropriateness
- Called the “Portfolio Effect”
 [Ali and van Stam, 2004]

Topic Diversification

- Re-order results in a rec list
- Add item with least similarity to all items already on list
- Weight with a ‘diversification factor’
- Ran experiments to test effects

Experimental Design

- Books from BookCrossing.com
- Algorithms
 - Item-based CF
 - User-based CF
- Experiments
 - On-line user surveys
 - 2125 users each saw one list of 10 recommendations

Online Results
Diversity is Important

• User satisfaction more complicated than only accuracy
• List makeup is important to users
• 30% change enough to alter user opinion
• Change not equal across algorithms

Human-Recommender Interaction

• Three premises:
 - Users perceive recommendation quality in context; users evaluate lists
 - Users develop opinions of recommenders based on interactions over time
 - Users have an information need and come to a recommender as a part of their information seeking behavior

HRI

• A language for communicating user expectations and system behavior
• A process model for customizing recommenders to user needs
• An analytic theory to help designers focus on user needs

HRI Pillars and Aspects

Recommendation Dialog

• The individual recommender interaction
• Historical Aspects
 - Correctness, Quantity, Spread
• New Aspects
 - Transparency
 - Saliency
 - Serendipity
 - Usefulness
 - Usability
Recommendation Personality

- Experience over repeated interactions
- Nature of recommendations
 - Personalization, Boldness, Freshness, Risk
- Progression over time
 - Adaptability, Pigeonholing
- Relationship
 - Affirmation, Trust

Information-Seeking Task

- One of the current limits of HRI
- Concreteness
- Compromise
- Appropriateness of Recommender
- Role of Recommender
- Expectation of Usefulness

HRI Process Model

- Makes HRI Constructive
 - Links Users/Tasks to Algorithms
- But, Needs New Metrics

Developing New Metrics

- Identify candidate metrics
- Benchmark a variety of algorithms
 - and datasets?
 - establish that metric can distinguish algorithms
- Establish link to HRI aspects
 - definitional links; user studies
- Detailed Examples:
 - Ratability, Boldness, Adaptability

Metric Experimental Design

- ACM DL Dataset
 - Thanks to ACM!
 - 24,000 papers
 - Have citations, titles, authors, & abstracts
 - High quality
- Algorithms
 - User-based CF
 - Item-based CF
 - Naive Bayes Classifier
 - TF/IDF Content-based
 - Co-citation
 - Local Graph Search
 - Hybrid variants

Ratability

- Probability a user will rate a given item
 - “Obviousness”
 - Based on current user model
 - Independent of liking the item
 - Many possible implementations
 - Naive Bayes Classifier
Ratability Results

- **Ratability**
 - Mean Ratability
 - Bars representing Local Graph, Bayes, Item, 50 nbrs, TFIDF, User, 50 nbrs.

Boldness

- **Measure of “Extreme Predictions”**
 - Only defined on explicit rating scale
 - Choose “extreme values”
 - Count appearance of “extremes” and normalize
- **For example, MovieLens movie recommender**
 - 0.5 to 5.0 star scale, half-star increments
 - Choose 0.5 and 5.0 as “extreme”

Boldness Results

- **Boldness**
 - Ratio to Expected
 - Bars representing Item, 50 nbrs, User, 30 nbrs.

Adaptability

- **Measure of how algorithm changes in response to changes in user model**
 - How do users grow in the system?
- **Perturb a user model with a model from another random user**
 - 50% each
 - See quality of new recommendation lists

Adaptability Results

- **Adaptability, Even-Split**
 - Mean % adaptable
 - Bars representing Item, 50 nbrs, TFIDF, User, 50 nbrs.
Adaptability Results

Adaptability, Even-Split

More Generally …

Recommender Algorithms

Collaborative Filtering

E-Commerce Scale

- Millions of Products
- Millions of Customers
- Thousands of Clicks per Second
 - Scalability!
Collaborative Filtering Algorithms

- Non-Personalized Summary Statistics
 - K-Nearest Neighbor
 - user-user
 - item-item
 - Dimensionality Reduction
 - LSI
 - PLSI
 - Factor Analysis

- Content + Collaborative Filtering
 - Burke’s Survey of Hybrids
 - Graph Techniques
 - Clustering
 - Classifier Learning
 - Naïve Bayes
 - Bayesian Belief Networks
 - Rule-induction

Item-Item Collaborative Filtering

- Many customers have no relationship
- Many products have no relationship
- Synonymy
 - Similar products treated differently
 - Increases sparsity, loss of transitivity
 - Results in poor quality

Item-Item Collaborative Filtering

Item-based algorithm:
Similarity measure

Item-Item Collaborative Filtering

Item-Item Matrix Formulation

Target item

5 closest neighbors

Raw scores for prediction generation
Approximation based on linear regression

Item similarities

Used for similarity computation

MAE

Adjusted cosine
Pure cosine
Correlation
Neighborhood Size

Incremental Item-Item Algorithm
- Model Building
 - Compute similarity between items
 - Record p most similar items for each item
 - p is model size
- Prediction Generation
 - p' is subset of p rated by u
 - Use $\min(p',k)$ items for prediction
 - k is neighborhood size

Model size sensitivity

Model Size vs. Throughput

Item-Item Discussion
- Good quality, in sparse situations
- Promising for incremental model building
 - Small quality degradation
 - Big performance gain

Collaborative Filtering Algorithms
- Non-Personalized Summary Statistics
 - K-Nearest Neighbor
 - user-user
 - item-item
- Dimensionality Reduction
 - LSI
 - PLSI
 - Factor Analysis
- Content + Collaborative Filtering
 - Burke's Survey of Hybrids
- Graph Techniques
 - Horting
- Clustering
- Classifier Learning
 - Naïve Bayes
 - Bayesian Belief Networks
 - Rule-induction
Dimensionality Reduction

- Latent Semantic Indexing
 - Used by the IR community
 - Worked well with the vector space model
 - Used Singular Value Decomposition (SVD)
- Main Idea
 - Term-document matching in feature space
 - Captures latent association
 - Reduced space is less-noisy

SVD: Mathematical Background

- Use Singular Value Decomposition (SVD)
 - Main Idea
 - Term-document matching in feature space
 - Captures latent association
 - Reduced space is less-noisy

\[\mathbf{R_k} = \mathbf{U_kS_kV_k^T} \]

The reconstructed matrix \(\mathbf{R_k} = \mathbf{U_kS_kV_k^T} \) is the closest rank-\(k \) matrix to the original matrix \(\mathbf{R} \).

SVD for Collaborative Filtering

1. Low dimensional representation
 - \(\mathbf{O(m+n)} \) storage requirement
2. Direct Prediction

\[\mathbf{R_{m \times n}} \quad \mathbf{U_{m \times k}} \quad \mathbf{S_{k \times k}} \quad \mathbf{V_{k \times n}} \]

Experimental Setup

- MovieLens Data (www.movielens.umn.edu)
 - Size 943 x 1,682; 100,000 ratings entry
 - Ratings are from 1-5
 - Used for Prediction and Neighborhood experiments
- E-Commerce Data
 - Size 6,502 x 23,554; 97,045 purchase entry
 - Purchase entries are dollar amounts
 - Used for Neighborhood experiment
- Training and Test Portions
 - Percentage of Training data, \(x \)
 - 10x cross-validation

Experimental Setup

- Benchmark Systems
 - CF-Predict
 - CF-Recommend
- Evaluation Metrics
 - Prediction
 - Mean Absolute Error (MAE)
 - Top-N Recommendation
 - Recall and Precision
 - Combined score F1

Dimension Sensitivity

![Graph showing sensitivity of no. of dimensions](image)

- Sensitivity of No. of Dimensions
- Ideal value of \(k \)
- Number of Dimensions, \(k \)
- Sensitivity graph with data points indicating the ideal value of \(k \).
SVD Prediction Results

SVD as Prediction Generator

(k is fixed at 14 for SVD)

<table>
<thead>
<tr>
<th>x (train/test ratio)</th>
<th>Pure-CF</th>
<th>SVD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.715</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>0.735</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>0.755</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.775</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>0.795</td>
<td></td>
</tr>
<tr>
<td>0.7</td>
<td>0.815</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>0.835</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>0.855</td>
<td></td>
</tr>
</tbody>
</table>

Discussion

- **Pros:**
 - SVD addresses sparsity
 - Comparable quality with only 14 features
 - Storage space: $O(mn)$ vs. $O(m+n)$
- **Cons:**
 - Problem with dynamic database
 - SVD computation is expensive

SVD Performance Issues

<table>
<thead>
<tr>
<th>Model Building</th>
<th>Traditional CF</th>
<th>SVD-based CF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Offline performance</td>
<td>Relatively Fast</td>
<td>Slow</td>
</tr>
<tr>
<td>Prediction Generation</td>
<td>Slow</td>
<td>Very Fast</td>
</tr>
</tbody>
</table>

SVD Folding-in

A simple projection technique

\[
U \rightarrow S \rightarrow V
\]

Singular Value Decomposition

Reduce dimensionality of problem
- Results in small, fast model
- Richer Neighbor Network

Incremental Update
- Folding in
- Model Update

Collaborative Filtering Algorithms

- Non-Personalized Summary Statistics
- K-Nearest Neighbor
 - user-user
 - item-item
- Dimensionality Reduction
 - LSI
 - PLSI
 - Factor Analysis
- Content + Collaborative Filtering
 - Burke's Survey of Hybrids
 - Graph Techniques
 - Horting
 - Clustering
 - Classifier Learning
 - Naive Bayes
 - Bayesian Belief Networks
 - Rule-induction
Algorithm Exercise

Recommender Application (choose one)
- Personalized newspaper
- Music streaming application
- Dentist recommender

The exercise
- Identify sources of data for recommendation
 - content and/or ratings
- Identify 2 user situations
- Explore recommender algorithms for application

Thinking About User Experience

Recommender Application Space

- Dimensions of Analysis
 - Domain
 - Purpose
 - Whose Opinion
 - Personalization Level
 - Privacy and Trustworthiness
 - Interfaces
 - "Algorithms Inside"

Domains of Recommendation

- Content to Commerce
 - News, information, “text”
 - Products, vendors, bundles

Google: Content Example
Purposes of Recommendation

- The recommendations themselves
 - Sales
 - Information
- Education of user/customer
- Build a community of users/customers around products or content

Whose Opinion?

- “Experts”
- Ordinary “phoaks”
- People like you

Personalization Level

- Generic
 - Everyone receives same recommendations
- Demographic
 - Matches a target group
- Ephemeral
 - Matches current activity
- Persistent
 - Matches long-term interests
Privacy and Trustworthiness

- Who knows what about me?
 - Personal information revealed
 - Identity
 - Deniability of preferences
- Is the recommendation honest?
 - Biases built-in by operator
 - “business rules”
 - Vulnerability to external manipulation

Interfaces

- Types of Output
 - Predictions
 - Recommendations
 - Filtering
 - Organic vs. explicit presentation
- Types of Input
 - Explicit
 - Implicit

Launching Organic Interfaces

- Launch.yahoo.com – a truly personal radio station
 - Observes play limits
 - Mixes different inputs, different recommenders
 - Kill a song – once and forever
 - Nice information on why a song is playing
Application Critiques

- Consider the following recommender-powered application
 - What’s good?
 - What’s bad?
 - Why?