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Abstract—Scheduling multisource divisible loads is a challenging task as different sources should cooperate and share their

computing power with others to balance their loads and minimize total computational time. In this study, we attempt to address a

generalized divisible load scheduling problem for handling loads from multiple sources on arbitrary networks. This problem is all the

more challenging as 1) the topology is arbitrary, 2) in such networks, it is difficult to decide from which source and which route a

processing node should receive loads, and 3) processing nodes must be allocated to different sources when they become available.

We study two distinct cases of interest, static case and dynamic case, and propose two novel strategies, referred to as Static

Scheduling Strategy (SSS) and Dynamic Scheduling Strategy (DSS), respectively. Both strategies work in an iterative fashion. In each

iteration, they will use a novel Graph Partitioning (GP) scheme to partition the network such that each source in the network gains a

portion of network resources and then these sources cooperate to process their loads. We analyze the performance of DSS using

queuing theory and derive upper bounds on a load’s average waiting time and a source’s average queue length. We use simulation to

verify the usefulness and effectiveness of SSS and DSS. Our findings reveal an interesting “load insensitive” property of SSS and also

verify the theoretical upper bound of average queue length at each source in the dynamic case.

Index Terms—Divisible loads, multisource, communication delay, processing time, arbitrary network.

Ç

1 INTRODUCTION

DATA-DRIVEN computation is an active area of current
research fueled by the immense amount of data.

Handling such data/loads on a single workstation can be
quite time consuming, and hence people seek solutions in a
network-based environment. One category of these loads,
where there is no precedence relationship among them-
selves, is referred to as divisible loads. The divisible load
paradigm, originated from Cheng and Robertazzi [1], has
been proposed as an effective technique to schedule and
process such computationally intensive loads on networks.
A formal mathematical framework of this technique was
provided by Bharadwaj et al. [2] and the theory was formally
referred to as Divisible Load Theory (DLT). DLT explicitly
captures the processors computation capacities and link
communication delays in the problem formation, and seeks
optimal or near-optimal solutions in scheduling and proces-
sing the tasks. Since its inception, the DLT paradigm has been
applied to many applications including large-scale matrix-
vector product [3], large-scale database search problems [4],
the use of DLT paradigm with clusters of workstations [5],
[6], etc. DLT researchers are also incorporating many realistic
system constraints into the problem formulation, such as

buffer constraints [7], [8], communication start time costs [9],
release times of the processors [10], and others. Scheduling
divisible loads with multiround algorithms is studied in [11],
and the work [12] considers scheduling divisible loads in a
resource unaware environment.

The works cited above have one common assumption,
that is, they assume the initial load(s) reside on a single
workstation. This means there is only one single load origin
in the network. However, in many real-life applications,
loads/data may be generated and produced at many
different network locations. In these cases, the data require
significant computation which may not be fully available at
the location of the distributed data sources. This applies to
many application domains. Examples include data mining
of distributed scientific and medical data, processing and
analysis of sensor-collected data (e.g., detecting patterns in
camera images), and high-energy physics (e.g., analyzing
LHC data). In these examples, there are multiple load
origins/sources in the computing networks, and computa-
tion must be harnessed in the network to meet the
computational demand of the applications.

However, designing an efficient multisource scheduling
strategy is more difficult since multiple sources must
cooperate with each other to share the resources. Because of
this complexity, the multisource scheduling problem has
received much less attention in the literature. Recent works
[13], [14] have addressed the multisource scheduling pro-
blem on a tree network via linear programming and closed
form solutions, respectively. Another work [15] studied the
two sources scheduling problem on linear networks, and the
work [16] consolidates the previous results. However, those
works are mainly focused on networks with regular
topologies, and in most cases only two load origins/sources
are considered. The generalized case, scheduling multisource
divisible loads on an arbitrary network, has not been
rigorously studied in the DLT literature.

520 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 21, NO. 4, APRIL 2010

. J. Jia and B. Veeravalli are with the Computer Networks and Distributed
Systems Laboratory (CNDS), Department of Electrical and Computer
Engineering, National University of Singapore, Singapore 117576,
Singapore. E-mail: {g0500093, elebv}@nus.edu.sg.

. J. Weissman is with the University of Minnesota, 4-192 EE/CS Building,
200 Union Street SE, Minneapolis, MN 55455-0159.
E-mail: jon@cs.umn.edu.

Manuscript received 20 Mar. 2008; revised 26 Nov. 2008; accepted 17 Mar.
2009; published online 3 Apr. 2009.
Recommended for acceptance by R. Eigenmann.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-2008-03-0111.
Digital Object Identifier no. 10.1109/TPDS.2009.62.

1045-9219/10/$26.00 � 2010 IEEE Published by the IEEE Computer Society



1.1 Our Contributions and Scope of the Work

This paper is first of its kind to address the multisource
divisible loads scheduling problem on an arbitrary net-
work in the DLT domain. A similar but different problem
of scheduling multiflows on arbitrary networks has been
addressed using the multicommodity flow model [17], [18].
However, multicommodity flow modeling and divisible
load scheduling paradigm have different concerns. In
multicommodity flow problems, commodities flow from
a set of known sources to a set of known sinks via an
underlying network and a major concern is to seek a
maximal flow. So, determining routes that provide max-
imal flow between sources and sinks is a key concern.
However, in the DLT domain, every node is a potential
sink and the connotation of “sink” as a special kind of
node is not found in the DLT problem formulation. Thus, a
load fraction is allowed to be processed anywhere in the
system. Also note that DLT provides a discrete, fine
grained control of the system, such as timing control (i.e.,
when a processor should send a load fraction to another
processor, based on delays), while this is not the main
concern with the multicommodity flow problem.

The scope of this paper is to design and analyze
multisource divisible load scheduling strategies on arbi-
trary networks within the DLT domain. We consider two
different cases of interest, the static case and the dynamic
case. In the static case, we assume that no new loads will
arrive to the system, while in the dynamic case, new loads
may arrive as the time progresses. Since a processing node
may be connected to multiple sources and may have
multiple routes to a source, a fundamental issue is from
which source(s) and which route(s) a processing node
should receive its loads. This poses considerable challenges
on designing effective strategies.

To address this issue, we propose a novel Graph Partition-
ing (GP) scheme. GP partitions the network into several
totally disjoint regions, which solves the “from which source”
issue, and also generates a shortest path spanning tree (SPST)
for each region, which solves the “from which route” issue.
We propose two novel strategies, which are referred to as
Static Scheduling Strategy (SSS) and Dynamic Scheduling
Strategy (DSS), one for each case. Both strategies use GP to
partition the network, and balance the loads in an iterative
fashion. We study the performance of our strategies both
analytically and through simulation. In our study, SSS has
exhibited an interesting “load insensitive” property, which
will be discussed in Section 6. For DSS, we apply queuing
theory to analyze the dynamical nature of DSS. We derive the
upper bound of average load waiting time and average queue
length, and verify the upper bound through simulation.

The paper is organized as follows: In Section 2, we
introduce the network model and the problem formulation.
In Section 3, we present how GP works, and describe SSS. We
present the DSS in Section 4. In Section 5, we analyze DSS
using queuing theory. Simulation results and discussions are
in Section 6. Finally, we conclude the paper in Section 7.

2 NETWORK MODEL, ASSUMPTIONS AND PROBLEM

FORMULATION

In this section, we describe the network model and
present the problem we address. We consider an arbitrary

connected network comprising a total of m source nodes,
to which users submit loads for processing. These source
nodes (or simply “sources”) will share the loads either
with the entire network or a portion of the network. We
denote them as S0; S1; . . . ; Sm�1. Besides the sources, we
assume that there are n processing nodes in the network.
These processing nodes can receive loads from any source,
and we denote them as Pm; Pmþ1; . . . ; Pmþn�1.

We make the following assumptions in our formulation.
First, both sources and processing nodes are allowed to
participate in the computation process, and processing
nodes can perform routing functions. Each source or
processing node is equipped with a front-end processor
which off-loads communication tasks of that processor. This
enables the computation and communication to be carried
out concurrently [19]. However, we assume that no node is
equipped with multiple separate ports for communication,
and therefore simultaneously transmitting or receiving is
not allowed. We also assume that sources can share
information with each other through messages, and we
neglect any overheads incurred by transmitting such short
messages. Further, a linear cost model for communication
and computation is adopted as in the literature. Therefore,
communication delay and computation time is assumed to
be linearly related to the load size.

Problem Statement: Given an arbitrary graph G ¼ <V ;E>,
with V ¼ mþ n, where m equals the number of sources and n
equals the number of processing nodes, how do we schedule and
process loads submitted by the source nodes in the system such that
the total processing time is minimized.

We consider two distinct cases of interest—the static case
and the dynamic case. For the static case, we assume that in
the network there are m divisible loads L0; L1; . . . ; Lm�1

residing on m sources, respectively. We assume that no
additional loads will arrive. For the dynamic case, we
assume that each source has an independent load inflow.
Therefore, new loads may be expected to arrive at any point
in time and the network should accommodate the new
arrivals dynamically.

2.1 Problem Formulation

Two different approaches [16] are possible to tackle this
problem. One is based on “superposition,” wherein all or
part of the processing nodes will receive multiple fractions
of loads from different sources and the total load that each
processing node received will be balanced according to its
computation capacity. The other approach is referred to as
“network partitioning,” wherein the entire network will be
partitioned into several nonoverlapping regions centered at
each source, respectively, and each source will only
dispatch its load to its own region. Both techniques have
advantages and disadvantages. Under “network partition-
ing,” since the entire network is partitioned into nonover-
lapping regions, each source can carry out load dispatching
separately without interfering with each other. However,
the challenge lies in partitioning the network into regions
where each region’s equivalent computation power (de-
fined in [2]) is exactly proportional to this region’s load size.
In most cases, we cannot strike a perfect balance across the
network. On the other hand, under the “superposition”
technique, each processing node can receive loads from
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several sources, and hence it is easier to balance the load
across the network. However, because of the communica-
tion contention problems, exercising control of “super-
position” is much more complicated than “network
partitioning,” and may induce large overheads.

In the divisible load context, all load fractions are
homogenous, and a node that receives multiple fractions of
load from different sources can receive a single fraction of
load, which equals the summation of the multiple fractions,
from the “nearest” source. Therefore, we adopt “network
partitioning” technique1 to schedule and process the loads.

However, as mentioned above, designing an efficient
strategy to partition the graph into several regions such that
each region’s optimal equivalent computation power is
proportional to the region’s load size is very difficult. The
reason is that one must first solve a (equivalent) subpro-
blem: Given a region, how do we identify this region’s optimal
equivalent computation power? It has been shown in the DLT
literature that the optimal solution of scheduling divisible
loads on an arbitrary graph occurs on a spanning tree of the
graph. Thus, to identify a region’s optimal equivalent
computation power, we must find the best/optimal span-
ning tree first. Unfortunately, finding the best/optimal
spanning tree for divisible load distribution on a graph is
proven to be NP-hard in [20].

Therefore, in this paper, we will demonstrate that our
proposed GP works efficiently in the sense that it partitions
the network into several regions and generates an SPST for
each region simultaneously. Our two algorithms, SSS for the
static case and DSS for the dynamic case, will use GP to
partition the network and then schedule the loads.

3 STATIC SCHEDULING STRATEGY

Before we introduce SSS, we will first illustrate how GP
works. For the ease of presentation, we define an ordered
communication delay two-tuple ðCki; iÞ which captures the
cumulative communication delay from processing node Pk
to source Si. As there are m sources in the network, each
processing node has m two-tuples. We can define their
relations as follows: When Cki > Ckj; ðCki; iÞ > ðCkj; jÞ.
When Cki ¼ Ckj, then ðCki; iÞ > ðCkj; jÞ, iff i > j. Since each
source has a unique subscript, according to our definition,
each processing node can locate a unique source which has
smallest two-tuple (i.e., smallest cumulative communication
delay). We denote this source as target source to the
corresponding processing node. Further, we also define �ij
as the shortest path (in term of communication delays) from
Si (or Pi) to Sj (or Pj).

Graph partitioning scheme. In our approach, the given
graph is divided into m regions Region0; Region1; . . .
Regionm�1, centered at S0; S1; . . . ; Sm�1, respectively. An
arbitrary processing node Pi is attached to its target source
by the shortest path (path with smallest communication
delay). We observe that GP intuitively uses each processing
node effectively. This is because what determines the real
computation capacity of a node in a network is not only
the computation speed of this processor, but also its

communication delay to the source. In GP, all the
processing nodes are attached to their target sources by
the shortest path and, hence, from processing nodes’
perspective they have been used efficiently. We define
the following.

Totally disjoint regions: Totally disjoint regions mean that
any two regions have 1) no common node, 2) no common
link, and 3) no intersection. Notice that 1) and 2) do not
imply 3). Even without common nodes and links, two
regions may still intersect with each other. For example,
suppose Px belongs to Regioni, and Py belongs to Regionj,
respectively. However, Py may be connected to Sj through
Px (i.e., Px provides routing service for Regionj), so Regioni
and Regionj still intersect with each other. Thus, for two
regions to be totally separable/disjoint, they must satisfy 1),
2), and 3) simultaneously. Now we state the following.

Theorem 1. Using GP the graph is divided into m totally
disjoint regions.

Proof. In order to realize the proof we proceed as follows:
We realize that 1) is immediately apparent, since every
processing node has a unique smallest ordered commu-
nication delay two-tuple. However, to complete the
proof including 2) and 3), we need to prove the following
lemma first. tu

Lemma 1. Suppose Pi is attached to Sj, and �ij is the shortest
path (with respect to communication delay) from Pi to Sj.
Then, all the processing nodes belonging to �ij are also
attached to Sj.

Proof. The proof is by contradiction. Suppose one processing
node Pk belongs to �ij and is not attached to Sj, but is
attached to another source Sx. Thus, according to GP, for
Pk, we have ðCkj; jÞ > ðCkx; xÞ. Notice that the path from
Px to Pi has a constant communication delay, denoted as
C�xi . Then, for Pi, we have ðCkj þ C�xi ; iÞ > ðCkx þ C�xi ; xÞ,
i.e., ðCij; jÞ > ðCix; xÞ. This means that Pi should also be
attached to Sx, which contradicts our assumption. There-
fore, Lemma 1 is proved.

Next, we use Lemma 1 to complete the proof of
separability of the regions including 2) and 3) of Theorem
1. According to GP, each processing node is attached to its
target source by the shortest path. Suppose two paths �1

and �2, which belong to two different regionsRegioni and
Regionj, respectively, intersect with each other at Pk.
Then, from Lemma 1 we know Pk belongs to Regioni and
also Regionj, which is impossible. Therefore, any two
paths belonging to two different regions have no
intersection, and hence any two regions have no intersec-
tion or common links. Hence, the proof. tu

From the above proof, we know that by using GP, the
graph can be divided into m disjoint regions. Further, since
in GP all processing nodes in the same region are attached
to the corresponding source by the shortest path, we
automatically generate one SPST for each region. This is a
very useful characteristic of GP, since the optimal solution
of scheduling divisible load for an arbitrary connected
graph occurs on a spanning tree of the graph. In our
context, after applying GP, each source can directly
dispatch load to its SPST, using a similar RAOLD-OS
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strategy [21]. Therefore, GP actually performs two tasks
together. It effectively divides the graph into m disjoint
regions and at the same time it generates one SPST for each
region. We use the shortest path for constructing a spanning
tree because each processing node’s communication delay
is guaranteed to be a minimum. Thus, compared to other
well-known spanning trees, such as shortest hop spanning
tree, minimum spanning tree [21], and robust spanning tree
[22], SPST usually admits better performance.

Now we will introduce how SSS works. SSS progresses
in an iterative fashion. At the beginning of the first iteration,
SSS will apply GP to partition the graph. After the network
is partitioned into m totally disjoint regions, each source
will compute the “equivalent computation power” for its
own region based on the SPST and this process of obtaining
an equivalent computation power is described in [2]. Notice
that since we do not take into account each source’s load
size when we partition the network, each region’s “equiva-
lent computation power” is not proportional to this region’s
load size. We may expect that regions will complete
processing their respective loads at different time instants.
Therefore, in the first iteration, to balance the computation
power across all the regions, the amount of load that will be
consumed for processing by a region will be altered
proportionally. Suppose when each source dispatches and
processes its load only on its own region, the finish time of
L0; L1; . . . ; Lm�1 are T0; T1; . . . ; Tm�1, respectively, and sup-
pose i ¼ argminfTjg, i.e., Regioni has the smallest finish
time. To achieve balance, any region other than Regioni, say
Regionj, will only consume LjTi=Tj amount of load in the
first iteration, using a similar RAOLD-OS strategy.

In the first iteration, the whole Li is consumed by
Regioni, and hence no load remains in Si. However, other
sources will have some amount of load remaining, and the
amount of load L0j remaining with source node Sj is

L0j ¼ Lj �
Tj � Ti
Tj

: ð1Þ

Therefore, the second iteration will start with m� 1
remaining loads L00; . . .L0i�1; L

0
iþ1; . . . ; L0m�1 residing on m�

1 sources S0; . . .Si�1; Siþ1; . . . ; Sm�1, respectively. Then, SSS
will apply GP again to partition the graph into (m� 1)
regions. Notice that this process actually is a reallocation of
processing nodes, which originally belong to Regioni, to
other regions. Those processing nodes which belong to a
region other than Regioni remain in that region. As in the
first iteration, the region with the smallest finish time will
consume the whole remaining load, while other regions will
only consume a proportional amount of load, and hence the
third iteration will start with (m� 2) sources and remaining
loads. Obviously, SSS will come to a halt after m iterations.
Further, as long as a region is busy, its equivalent
computation power will not decrease. Thus, in SSS, the
processing of load Li will complete within Ti. The total
processing time Tsss of the entire network, defined as time
difference between the start time and the time instant when
the last remaining load has been processed, is

Tsss � maxfTi; i ¼ 0; 1; . . . ;m� 1g: ð2Þ

We observe two issues here. First, in SSS, within each
iteration, “network partitioning” technique is used to
dispatch and process the loads. However, when we look
at the entire process, a processing node may receive loads
from different sources, and hence SSS also has an “super-
position” characteristic. Therefore, SSS can be viewed as
having a “hybrid” property.

Second, when implementing GP, it can either be the
sources that can initiate the processing or the processing
nodes.2 In a source initiating scheme, each source will
construct a shortest path spanning tree simultaneously,
using Dijkstra’s Algorithm or the Bellman-Ford Algorithm
[23]. Then, all the sources share information with each other,
and hence each source can identify the processing nodes
which have the smallest communication delay to itself. On
the other hand, if processing nodes initiate the algorithm,
each processing node will simultaneously compute its
shortest path weight (communication delay) to each source
using Dijkstra’s Algorithm or Bellman-Ford Algorithm, and
then choose the target source and report the shortest route to
the target source. To reduce redundant computation,
initially, each processing node can maintain a list of shortest
paths and their weights to each source. Then, as long as a
source completes its load, its processing nodes (nodes within
its region) can quickly identify the next source it should be
attached to, and hence reduce overheads.

4 DYNAMIC SCHEDULING STRATEGY

Now we tackle a more realistic situation wherein each node
is more independent in its operation and each source has an
independent and dynamic load inflow. To accommodate
the newly arrived loads, we attempt to extend SSS. In this
DSS, at the beginning of each iteration, each source will
check which sources in the network currently have loads to
be processed. This can be done by exchanging messages
among the sources. Then, sources having loads to process,
will apply GP to partition the network. In a manner similar
to SSS, the region with the smallest finishing time will
consume the entire load, while other regions will only
consume a proportional amount of load. After the current
iteration, the sources will repeat the above process for every
load that arrives to the system.

There are two major concerns here. First, a newly arrived
load at Si will be stored in the buffer until all previous loads
in Si have been processed. Second, unlike in SSS, where
each active region’s “equivalent computation power” will
only increase, in DSS, it may also decrease. This is because a
new load may arrive at a previously idle source, and this
source will reclaim the resource which initially belongs to
its region at the beginning of the next iteration. Therefore,
the “equivalent computation power” of a currently active
region fluctuates as the time progresses.

Although in DSS each region’s “equivalent computation
power” fluctuates, we can still attempt to derive the upper
bound of processing time of a given load.3 When all sources in
the network are busy, each region will occupy certain
“domains” in the network. We refer to such domains as the
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“critical domains” to the corresponding regions. Notice that a
region’s “critical domain” is composed of all the processing
nodes which have smaller communication delay to this
region’s source than any other sources. For a certain source,
its “critical domain” will always be attached to it, as long as
this source is busy. We denote the “equivalent computation
power” of Regioni’s “critical domain” as Ec

i . Further, since
we adopt a linear cost model, the processing time of a load is
linearly related to the load size. Therefore, suppose the load
Li at Si is processed with k installments L0

i ; L
1
i ; . . . ; Lk�1

i , and
the average computation power is �Ei, we have

T ð �Ei; LiÞ ¼ T
�

�Ei; L
0
i þ L1

i þ � � � þ Lk�1
i

�
¼ T

�
�Ei; L

0
i

�
þ T

�
�Ei; L

1
i

�
þ � � � þ T

�
�Ei; L

k�1
i

�
� T

�
Ec
i ; L

0
i

�
þ T

�
Ec
i ; L

1
i

�
þ � � � þ T

�
Ec
i ; L

k�1
i

�
¼ T

�
Ec
i ; Li

�
¼ Ec

iLi;

ð3Þ

where T ðE;LiÞ denotes the processing time of load Li with
computation power E.

Notice that (3) gives an upper bound of one load’s
processing time. However, a load may not be able to be
processed immediately when it arrives, and hence the
actual time the load spends in the network may be longer.
Further, since a newly arrived load will be stored in the
buffer until its previous loads have been processed, each
source should have adequate buffer space to hold new
arrival loads. Therefore, it will be more appropriate if we
perform queuing analysis for understanding the perfor-
mance of DSS in the next section.

5 ANALYSIS OF DSS

Suppose each source has independent Poisson arrival loads,
and the arrival rate at Si is �i. Further, we assume that the
load size is exponentially distributed with parameter �ciE

c
i .

Notice that when a region has fixed computation power, the
processing time of the loads is also exponentially distrib-
uted. Therefore, when all regions are busy (and thus each
region is processing its load within its critical domain only),
we can map each region to a M/M/1 queue [24], and the
service rate for Regioni is �ci , as shown in Fig. 1a.

However, in a dynamic situation, the service rate for each

region is not constant. At any time instant, several regions

may become idle and their computation power will be

reallocated to other regions. For instance, when Region0 is

idle while other regions are busy, the network model is

shown in Fig. 1b. Notice that the arrival rate � is the same for

the above two cases, but �i0 ¼ E0i
Ec
i
�ci , where Ec

i denotes the

equivalent computation power of Regioni’s critical domain

and E0i denotes Regioni’s equivalent computation powers

when Region0 is idle. Actually, there are 2m different cases,

where m is the number of sources. In all cases, for a given

region, arrival rates remain the same, but service rates are

different. Notice that among all cases, when Si occupies the

entire network (i.e., when all other regions are idle), Regioni
will have the maximum service rate. We denote the

maximum service rate for Regioni as �maxi .
Now, we consider the entire network as a system with m

inflows of loads and the system will process these loads at a
certain rate. However, if the aggregated load inflow rate
exceeds the service rate of the entire system, then system
becomes unstable, and the number of loads left in the
system will increase to infinity as the time progresses.
Therefore, the key question to address is as follows: “Given a
network, if we know the load arrival rate as well as the load size
distribution at each source (i.e., �i and each region’s service rates
in different cases are known), how can we decide whether this
network can manage these loads or not, and what is the average
queue length at each source and the average waiting time of a
load?” To address these questions, we will analyze our
network for three important cases.

Case 1. 8i; �i < �ci . This is considered as a stable case
wherein arrival rates are less than the processing rates,
which implies that each source can easily manage its own
loads using its critical domain only.

According to DSS, an idle source node Si will release its
computation capacity. Any load arriving during Si’s idle
time will wait for a certain amount of time until Si regains its
computation capacity, and then Si will start to dispatch and
process the load. Therefore, we can mapRegioni to a M/G/1
queue with vacations4 [24]. Let �i denote the distribution of
service time at Regioni, and �i denotes the distribution of
Regioni’s vacation time. Then, average waiting time of loads
at Si’s buffer (denoted as Twi ) is given by

Twi ¼
�iE

�
�2
i

�
2ð1� �iE½�i�Þ

þ
E
�
�2
i

�
2E½�i�

: ð4Þ

However, in our context, each region’s service rate and
vacation time are coupled with other regions in the network,
and hence it is more appropriate to view the entire network as
m coupled M/G/1 queues with vacations. In this case, it may
be noted that determining the exact value of Twi is very
difficult. To see this, consider the simplest case where there
are only two regions (Region0 andRegion1) in the network. To
compute E½�i�; E½�2

i �; E½�i�, and E½�2
i � (i ¼ 0; 1) in (4), one

needs to know the probability when Region0 is busy while
Region1 is idle, the probability when Region0 is idle while
Region1 is busy, the probability when both regions are busy,
and the probability when both regions are idle. This requires
us to solve an infinite three-dimensional Markov Chain, as
shown in Fig. 2. In the figure, state (ij) denotes i loads in S0

and j loads in S1, while both S0 and S1 are busy. State (i0j)(or
(ij0)) denotes that there are i loads inS0 and j loads inS1, while
S0 is idle(or busy) and S1 is busy(or idle).
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Fig. 1. Network models. (a) Network model when all regions are busy.

(b) Network model when only Region0 is idle.

4. When all other regions are idle, the vacation time can be viewed as
arbitrarily small.



The Markov Chain shown in Fig. 2 is very complicated to
solve. Further, the complexity of the problem increases
dramatically as the number of sources increases and makes
it complex to derive an exact value of Twi . Thus, in this
paper, we will attempt to derive the upper bound on Twi . In
the derivation, we will use an important property of the
exponential distribution—the combination property [24],
which is stated as follows:

Theorem 2. Random variables x1; x2; . . . ; xk are exponentially
distributed with parameters u1; u2; . . . ; uk. Let random vari-
ables Y ¼ minfx1; x2; . . . ; xkg. Then, Y is also exponentially
distributed with parameter u ¼ u1 þ u2 þ � � � þ uk.

Using Theorem 2, we can identify the distribution of �i and
find the worst case E½�iworst� and E½�2

iworst�. Suppose when Si
becomes idle, there are k busy regions in the network.
Because of the memoryless property of the exponential
distribution [24], all the k regions’ remaining processing time
of their loads are exponentially distributed with parameters
�0; �1; . . . ; �k�1. It may be noted that the Regioni’s vacation
time is the minimum remaining processing time among the k
busy regions. According to Theorem 2, we know that the
Regioni’s vacation time �i is also exponentially distributed,
with parameter � ¼ �0 þ �1 þ � � � þ �k�1. Notice that as k
becomes smaller (i.e., less regions are active), � also becomes
smaller. Therefore, when only the region with smallest �maxj

is active,Regioni’s vacation time distribution has the smallest
value � ¼ �maxj ¼ minf�max0 ; �max1 ; . . . ; �maxi�1 ; �

max
iþ1 . . . ; �maxm�1g.

In this case, Regioni has the largest average vacation time,
and hence loads at Si have largest waiting time in the buffer.
We have

E½�iworst� ¼
1

�maxj

; ð5Þ

E½�2
iworst� ¼

2

ð�maxj Þ2
: ð6Þ

Further, we notice that as long as Regioni is busy, its service
rate is larger than or equal to �ci . Since the loads waiting
time is inversely related to the Regioni’s service rate, the
upper bound of Twi is

Twi ¼
�iE½�2

i �
2ð1� �iE½�i�Þ

þ E½�2
i �

2E½�i�
� �i=�

c
i

�ci � �i
þ 1

�maxj

: ð7Þ

Then, applying Little’s Theorem [25], we can derive the
average number of loads in the Si’s buffer (denoted as
Numave

i ), which is

Numave
i ¼ �iTwi � �i

�i=�
c
i

�ci � �i
þ 1

�maxj

 !
: ð8Þ

Since load size at Si is exponentially distributed with a

parameter �ciE
c
i , the average load size is given by 1

�c
i
Ec
i
.

Thus, the average queue length at Si (denoted as Qave
i ) is

bounded by

Qave
i ¼ Numave

i =Ec
i �

c
i � �i

�i=�
c
i

�ci � �i
þ 1

�maxj

 !�
Ec
i �

c
i : ð9Þ

Equation (9) gives us considerable hints on how much
buffer should be assigned to each source when designing
the system. To reduce the probability of dropping loads
when the buffer is full, one should assign a larger buffer
size than Qave

i derived from (9) (for example, two times
larger than Qave

i ), to Si. However, since we have adopted
some approximations to derive (9), in some cases Qave

i

may not give a tight estimation on real actual queue
length. This behavior is carefully studied and discussed in
the next section.

Case 2. 8i; �i � �ci or 9 i; �i > �maxi . In this case, the
network cannot manage these loads and is critically stable.
The average queue length of the network and average
waiting time of loads are expected to grow to infinity, as
time progresses. Therefore, in this situation, one must
reduce load arrival rates or discard low priority loads at one
or more of the sources.

Case 3. 8i; �i < �maxi and 9i; �i � �ci and 9j; �j < �cj. This
case is more difficult than the above two cases. In this case,
some regions cannot handle their loads by using their
critical domains only, but by “borrowing” computation
power from other regions, these regions may be able to
handle their loads. Thus, the problem is “whether the regions
with excess resources can render enough computation power to
other regions.” Obviously, addressing this problem is
extremely complex. For this case, we attempt to study the
simplest two regions case, which reveals some basic issues
of the posed problem.

Consider that there are two regions in the network, with
�c0 � �0 < �max0 and �1 < �c1 < �max1 . Now, the key question is
that whether Region0 can borrow enough computation
capacities from Region1 to accommodate its excess loads.
Consider the boundary situation, i.e.,Region0 can borrow “just
enough” resources fromRegion1. In this case, �0 ¼ ��0, where
��0 denotes Region0’s average service rate. From Region1’s
perspective, it can be mapped to a M/M/1 queue with
vacations, and vacation time is exponentially distributed
with parameter �max0 . Notice that vacation time will not affect
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Fig. 2. Markov chain of two regions case.



the idle ratio5 of Region1 (denoted as Ridle
1 ), and hence Ridle

1 is
equal to the idle ratio of a M/M/1 queue with the same
service rate and arrival rate, but without vacations, which is

Ridle
1 ¼

�
�c1 � �1

�
=�c1: ð10Þ

From Region0’s viewpoint, it has the maximum service rate
�max0 in Ridle

1 ratio of time, and has a service rate of �c0 in the
remaining 1�Ridle

1 ratio of time. Hence, the expectation of
its service rate is

��0 ¼
�max0 ð�c1 � �1Þ

�c1
þ �

c
0�1

�c1
: ð11Þ

Therefore, if �0 < ��0, this network is able to manage these
loads. Otherwise, this network cannot handle this amount
of loads.

As in Case 1, one can apply (9) to estimate the upper bound

ofQave
1 (the average queue length atS1), and as �0 approaches

��0 (given by (11)), Qave
1 approaches the upper bound. When

�0 � ��0; Q
ave
1 is exactly equal to �1ð�1=�

c
1

�c
1
��1
þ 1

�max
0
Þ=Ec

1�
c
1 (as per

(9)). For Region0, when �0 � ��0; Q
ave
0 goes to infinity. When

�c0 < �0 < ��0, though we cannot directly use (9) to calculate

the upper bound of Qave
0 , we can use ��0 instead of �c0 in (9) to

estimate the approximate value of Qave
0 .

Similarly, when there are more than two regions in the
network, we have to compute how much computation
power the regions with excess resource can borrow from
other regions which cannot handle their loads alone.
Unfortunately, solving this problem requires solving the
similar Markov Chain6 as shown in Fig. 2. This remains
an open problem.

6 PERFORMANCE EVALUATION

To characterize the network used for simulation in this
section, we define several network parameters that are
widely used in the DLT literature [2].

1. zi: Communication speed parameter. It is the ratio of
the time taken to transmit a unit amount of data
through the link li to the time taken by a standard link.

2. wi: Computation speed parameter. It is the ratio of the
time taken to compute a unit amount of data by the Si
(when i � m� 1) or Pi (when i � m) to the time taken
by a standard processing node. A standard proces-
sing node or link can be any processing node or link
that is referenced in the system.

3. Tcm: Communication intensity constant. It equals the
time taken by a standard link to transmit a unit of
the load.

4. Tcp: Computation intensity constant. It equals the
time taken by a standard processing node to
compute a unit of the load.

6.1 Performance of SSS

In this section, we will study the performance of the SSS.
We compare the performance of SSS with a strategy

referred to as Sequential Dispatching Strategy (SDS).7 SDS
works as follows: Consider a network with m loads
L0; L1; . . . ; Lm�1 residing on m sources S0; S1; . . . ; Sm�1,
respectively. In SDS, S0 will first dispatch L0 to the entire
network based on an SPST of the network using a similar
RAOLD-OS strategy, while other sources temporarily hold
their loads. Then, after L0 has been processed, S1 will
dispatch L1 to the entire network. The above process
continues until all loads have been processed.

As we can see from the above description, SDS is simple in
nature. Further, we notice that if communication delay can
be neglected (when all links in the network are sufficiently
fast), SDS and SSS will have exactly the same performance.
Suppose there are m loads in the network, the total
processing time Ttotal for both SDS and SSS would be

Ttotal ¼ ðL0 þ L1 þ � � � þ Lm�1Þ � EðwÞTcp; ð12Þ

where EðwÞ is the equivalent computation capacity of the
entire network. However, in the presence of communication
delay, SSS and SDS will show different performances. We
conduct experiments to study how SSS and SDS will react to
communication delay. Our experiments reveal certain
interesting characteristics of SSS.

In our experiments, the network has an arbitrary graph
topology generated randomly with a specified number of
nodes and link connectivity probabilities.8 The computation
speed parameters of sources and processing nodes w is
uniformly distributed among ½1; 10�, and both Tcm and Tcp
are set to be 1. We simulate different network scenarios
(tightly coupled and loosely coupled) by assigning different
distributions of the communication speed parameters. We
assume that each source in the network has an amount of
load L ¼ 10;000;000. We will show the effect of load size on
our strategies later in this section. Further, we neglect the
start-up cost (the time needed to run the graph partitioning
scheme and calculate the load distributions), as this cost is a
prescheduling and one-time cost only, and negligible
compared to the real processing time.

We first study networks with 20 nodes. To simulate the
characteristics of a tightly coupled network, z is set to
be uniformly distributed among ½0; 0:5�, and to simulate the
characteristics of a loosely coupled network, z is set to be
uniformly distributed among ½1; 2�. We vary the number of
source nodes9 in the network from 1 to 10, and the
corresponding total processing time of SSS and SDS is
shown in Figs. 3a and 3b. From these figures, we observe that
SSS outperforms SDS, and when the communication delay is
large, SSS gains a significant speedup against SDS. This is
expected since in the presence of communication delays, SSS
utilizes the computation power of sources and processing
nodes much more efficiently than SDS.

Further, we notice that the total processing time of SDS is
approximately linearly related to the number of sources in
both loosely coupled networks and tightly coupled networks,
as shown in Figs. 3a and 3b. SSS also exhibits the similar linear
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5. Idle ratio is defined as ratio of the time when the region is idle.
6. Similarly, the complexity of the Markov Chain increases dramatically

as number of regions grows.

7. As of this date, there are no multijob strategies for scheduling divisible
loads on arbitrary graphs in the literature.

8. In our experiments, the link probability of a direct link between a pair
of nodes is set to 0.4.

9. Each time new source nodes are randomly generated, while previous
source nodes are retained.



relationship in tightly coupled networks. However, SSS
shows a very interesting characteristic in loosely coupled
networks. As shown in Fig. 3b, provided the number of
sources is smaller than some threshold, increasing the
number of sources (i.e., increasing the number of loads in
the network) does not affect the total processing time
significantly. Actually, as the number of sources increases
from 1 to 7 (i.e., total amount of loads increases by
600 percent), the total processing time of SDS increases by
662 percent (2:1� 106-1:6� 107) and 418 percent (1:1� 107-
5:7� 107) in tightly coupled networks and loosely coupled
networks, respectively. In the same case, the total processing
time of SSS also increases by 471 percent (2:1� 106- 1:2� 107)
in the tightly coupled networks, but it increases only by
45 percent (1:1� 107-1:6� 107) in the loosely coupled net-
works. We refer to the above SSS’ characteristic as the “load

insensitive” property because the total processing time of SSS
seems “insensitive” to the increase of number of loads. Notice
that this property can only be observed in a relatively loosely
coupled network.

The above load insensitive property can be explained by
a “Nearest Nodes Dominance” effect, which is stated as

follows: In the presence of communication delays, for a given

region, the source and its “nearest” nodes dominate this region’s
computation capacity. Here, “nearest” is in terms of small
communication delay. This is because in our strategy the
load will be scheduled according to nodes’ computation
speeds and communication delays to the source. In such
scheduling, the “farthest” nodes (i.e., have largest commu-
nication delays) tend to receive fewer amount of load, while
the nearer nodes tend to receive larger amount of load. If a
farther node is deprived from a region, only a small amount
of excess load needs to be shared by the rest nodes. Thus, the
region’s computation capacity is less affected. On the other
hand, if a nearer node is deprived from the region, a large
amount of excess load needs to be processed, and hence the
region’s computation capacity will decrease significantly.

Now, let us see why SSS exhibits the load insensitive
property. The total processing time of SSS is the maximum
finish time of all loads, and its upper bound is shown in the
Inequality (2), where the Tis are determined by the respective
critical domains’ computation power. Notice that when the
sources are sparse and communication delay is relatively
large, each source’s critical domain contains almost all its
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Fig. 3. Experiment results for the static case. (a) Tightly coupled network with 20 nodes. (b) Loosely coupled network with 20 nodes. (c) Tightly

coupled network with 150 nodes. (d) Loosely coupled network with 150 nodes.



“nearest” nodes. Therefore, because of the nearest nodes
dominance effect, Ti is very close to the real processing time
of Li. Further, when adding a new source into the network,
as long as sources remain sparse, it is highly probable that
the new source will not deprive other sources’ “nearest”
nodes. Therefore, previous existing critical domains’ com-
putation capacities will not decrease significantly, and hence
the total processing time is less affected.

From the above discussion, we know that there are two
prerequisites for SSS to exhibit the load insensitive property.
First, the communication delay of the network should be
relatively large. This explains why in the tightly coupled
network, the total processing time of SSS increases linearly
with the number of sources, as shown in Fig. 3a. Second, the
sources in the network should be sparse enough, i.e.,
geographically well distributed. When the number of sources
exceeds some threshold, we should observe a sharp increase
in the total processing time as the number of sources increases
further. As shown in Fig. 3b, when the number of sources
increases from 7 to 10, the total processing time increases from
1:6� 107 to 2:4� 107, almost triple the increment as com-
pared to when the number of sources increases from 1 to 4 or
from 4 to 7. However, notice that the threshold could be
varied. For a larger network, SSS should be able to sustain the
load insensitive property for a larger number of sources.

To verify this, we then conduct another set of experiments
on a much larger network with 150 nodes. The network
parameters are the same as previous experiments—w is
uniformly distributed among ½1; 10�, and z is uniformly
distributed among ½0; 0:5� for tightly coupled network and
among ½1; 2� for relatively loosely coupled network. The
results are shown in Figs. 3c and 3d. We observe that for the
loosely coupled case the plot of SSS is almost flat, even when
the number of sources exceeds 7. Actually, as the number of
sources increases from 1 to 20, the total processing time only
increases from 0:91� 107 to 1:25� 107. However, when the
number of sources increases further to 40, the total processing
time increases disproportionately to 2:3� 107.

Further, we notice that as the network size grows, the
total processing time for tightly coupled network decreases
significantly, but the total processing time for loosely
coupled network does not change significantly. Comparing
Figs. 3b and 3d, we find that for the single source case, the
total processing time only decreases from 1:1� 107 to
0:91� 107, as the network size grows from 20 to 150 nodes.
This indeed verifies the nearest nodes dominance effect.

Finally, it should be noted that since we adopt a linear
cost model, the change of the initial load size does not affect
the above observations. Consider the 150 nodes loosely
coupled network, we vary each region load size from
5,000,000 to 15,000,000, and the total processing time of SSS
with respect to different number of sources are plotted in

Fig. 4. From the figure, we observe that the total processing
time of SSS increases linearly with the load size.

6.2 Performance of DSS

Now, we will study the performance of DSS. Since DSS is a

natural extension of SSS, its usefulness and effectiveness are
shown in the above section. Therefore, in this section, we
mainly focus on the dynamic nature of DSS—the average
queue length at each source. Notice that as long as we know
the average queue length, applying Little’s Theorem can
easily yield other performance metrics.

We adopt the assumption made in Section 5, that is, the
arrival of loads follow a Poisson distribution and load size is
exponentially distributed. Further, in our simulation, for any
Regioni, we always let �i < �ci , which corresponds to Case 1
in Section 5. It is because the other two cases are either trivial
(for Case 2) or too complex (for Case 3). Under the above

constraints, an upper bound of each region’s average queue
length is given in (9). Below, we conduct experiments to
study the actual average queue length of each region.

First, we consider networks with symmetric architecture
and three sources. Similar to the static case, we generate two
types of networks—loosely coupled and tightly coupled

networks. In the loosely coupled network, because of the
presence of large communication delays, a region can only
get a small amount of computation power from other idle
regions. On the other hand, in the tightly coupled network,
since the communication delays are small, a region can get
relatively larger amount of computation power from other

idle regions. The respective equivalent computation power
for each region in different cases is shown in Table 1.
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Fig. 4. Total processing time of SSS with different load size and number

of sources.

TABLE 1
Regions’ Equivalent Computation Capacities for Symmetric Networks



In our simulation, we let each region’s average load size
� ¼ 3 units, and vary the load arrival rate �. The average
queue length with respect to different � is plotted in Fig. 5.
In the figure, the theoretical bounds are derived by (9).
Notice that � denotes the average number of loads arriving
in one unit of time. Since we consider divisible loads which
are large in size, it is reasonable to let � < 1.

From Fig. 5, we observe that the average queue length
increases with �, which is natural. Further, we notice that
the actual average queue length of the tightly coupled
network is much smaller than the theoretical bound.
However, as the network’s communication delay becomes
larger, the actual average queue length moves closer to the
theoretical bound. This behavior is captured in Fig. 5a. The
loosely coupled network’s average queue length is quite
close to the theoretical bound. Therefore, (9) serves as a very
good estimator on average queue length for loosely coupled
networks, but may not give a “tight” estimation for tightly
coupled networks.

Next, we consider a more general case—regions having
different computation powers. We generate a network with
three regions, and the regions’ equivalent computation
power in different cases is shown in Table 2, where E0

i 0
denotes the equivalent computation power for Regioni
when Region0 is idle, and similar for E1

i 0 and E2
i 0.

Similarly, we let the average load size to be three units,
and run the simulation for different sets of load arrival
rates. Several results are reported in Table 3, where Qt

i

denotes the theoretical bound of Regioni’s average queue
length derived from (9) and Qa

i denotes its actual average
queue length. From Table 3, we find that Qa

2 is very close to
Qt

2 independent of load arrival rates. This is because
Region2 is similar to a loosely coupled network in that its
main computation power lies within its critical domain, i.e.,
it cannot borrow too much extra computation power from
other idle regions. However, as regions are able to gain
more computation capacity from other idle regions, the
difference between Qt

i and Qa
i increases. This tendency is

shown by Region0 and Region1’s performance. The above
phenomena is also intuitive, as these regions’ actual average
computation capacity is much larger than their critical
domains’ computation capacity.

From the above discussions, we know that (9) can be
directly used as a reference to assign buffer space to
regions which exhibit more “loosely coupled” character-
istics. However, for the regions exhibiting more “tightly
coupled” characteristics, one should reduce the value
predicted by (9) correspondingly, and then use the new
value as the reference.

7 CONCLUSIONS

In this paper, we have addressed the problem of scheduling
multisource divisible loads in arbitrary networks. In this
study, we considered a very generic graph/network with
heterogeneous processing nodes and links. To our knowl-
edge, this is the first attempt to consider scheduling
multisource divisible loads on such networks. We had
considered each aspect of the problem dimension by
analyzing the effects of several key parameters—network
size (number of nodes/scalability of the network), rate of
arrival of loads, rate of processing of the loads, number of
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Fig. 5. The average queue length of loosely coupled network and tightly

coupled network with respect to different �. (a) Loosely coupled network.

(b) Tightly coupled network.

TABLE 2
Regions’ Equivalent Computation Capacities

for the General Case

TABLE 3
Experimental Results for the General Case



sources, etc. We believe that this study is a very timely
contribution to the DLT domain, as it represents a general-
ization of the problem. One of the key contributions of this
study is in the graph partitioning approach and resource
sharing across domains. This introduces the possibility of
dynamic power tapping of idle resources. We also derived
theoretical bounds on the average buffer length at sources
when each source has an independent Poisson arrival loads.
We summarize all the contributions below.

We proposed a novel GP scheme. GP solves the
fundamental problem of scheduling loads in arbitrary
networks—that is, from which source and which route a
node should receive loads. Further, GP works very
efficiently in the sense that it combines network partitioning
and spanning tree generation in a single step. Then, based
on GP, we proposed two novel scheduling strategies—SSS
and DSS. SSS applies to the static case where no new loads
will arrive in the network, while DSS to the dynamic case
where loads arrive randomly. We also studied the dynamic
behavior of DSS using queuing theory, and our analysis
revealed the upper bound of each load’s average waiting
time and each source’s average queue length. Both SSS and
DSS have shown a “hybrid” property of superposition and
network partitioning, and our simulation has verified the
effectiveness and usefulness of SSS and DSS. Further, the
simulation has revealed a very interesting characteristic of
SSS that in loosely coupled networks, an increasing of
number of sources will not affect the total processing time
significantly when the number of sources is below a
threshold. Our simulation also shows that for DSS, the
theoretical bound derived for each source’s average queue
length is very useful to predict the actual average queue
length in loosely coupled networks, but it may not be tight
for tightly coupled networks.

An immediate extension to this work is to study the
dynamic behavior of tightly coupled networks more
precisely. Further, a dedicated network is considered in
this paper. One may attempt to incorporate the time-
varying nature of the speeds of links and processors into
problem formulation, and study the multisource scheduling
problem in a real dynamic environment.
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