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Abstract

There are a number of applications in computer graphics that require as a �rst step the accurate

estimation of principal direction vectors at arbitrary vertices on a triangulated surface. Although several

methods for calculating principal directions over such models have been previously proposed, we have found

in practice that all exhibit unexplained large errors in some cases. In this paper we describe our theoretical

and experimental investigations into possible sources of errors in the approximation of principal direction

vectors from triangular meshes, and suggest a new method for estimating principal directions that can yield

better results under some circumstances.

||||||||||||||||||||||||||||||||{

Introduction

Suppose we are given only a surface mesh of vertices and polygons approximating some unknown smooth

surface. There have been many methods proposed for approximating principal directions of the underlying

surface [1,2,5,9,14,16]. In this paper we will examine a few of the known methods, showing how well they can

work in some cases and how badly they can fail in others. In particular we will show how very tiny normal

curvature approximation errors can be magni�ed into large errors in the estimated principal directions. We

also introduce a new method that we believe performs signi�cantly better under certain conditions than many

other proposed methods. In section I, we brie
y describe the motivation for this work and its signi�cance

to applications in computer graphics. In section II, we review the basic mathematics behind computing

principal directions, stating the necessary formulas for the Weingarten curvature matrix and for its use in

computing normal curvature in a given direction. In section III we describe in detail three methods each of

which approximates the Weingarten curvature matrix at a vertex of the mesh. In section IV we apply each
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method to a test surface using a number of di�erent mesh schemes and then examine the direction errors.

In the course of our investigations, we probe the relationship between surface approximation errors and

errors in principal directions, and �nd that similar-appearing surface approximation errors can lead to vastly

di�erent principal direction errors. In particular, we �nd that while the chance for large errors increases near

umbilical points, they can still occur at points on the surface where there is signi�cant di�erence between

the two principal curvatures. We conclude by summarizing the conditions under which principal direction

estimation errors are most likely to occur, suggesting some steps that can be taken to improve the situation,

and outlining promising directions for future work in this area.

I. Motivation

There are many applications for which it is useful to be able to calculate accurate estimates of the

principal directions at points on a given surface. Principal direction vector �elds have been widely used

in shape analysis and surface interrogation in computer-aided manufacturing and design [8,12]. In these

applications the surfaces are analytically de�ned, so the principal directions can be solved for directly and

there are few problems with errors in the estimations. Principal direction vector �elds have also been

successfully used in conjunction with volumetrically-de�ned data to enhance the visual representation of

surface shape for applications in molecular [4] and medical [11] visualization. In these applications the

principal directions can be obtained by diagonalizing the Second Fundamental Form, whose entries can be

fairly well approximated using �rst and second directional derivatives of the sampled 3D distribution.

Recently, there has been increasing interest expressed in the possibility of using principal direction vector

�elds over polygonal meshes for such purposes as guiding the direction of hatching strokes in pen-and-ink

style renderings [6,10] or adaptively guiding the orientation of synthesized anisotropic texture patterns for

enhanced surface shape representation [3,7]. However such e�orts have been complicated by the lack of

a robust and reliably accurate method for estimating the principal directions at points on an underlying

smooth surface that is represented solely by a polygonal mesh. Although a number of methods for principal

direction estimation have been previously published [16,9,2,5,1,14], what we have found in practice is that

the computed vector �eld inevitably appears "noisy", requiring post hoc smoothing that can result in many
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of the vectors falling out of alignment with the true principal directions and complicating our e�orts to

generate surface markings that closely follow the form.

In the research described in this paper we sought to gain insight into the sources of errors in principal

direction estimation on surfaces de�ned by point samples organized in a polygonal mesh, in order to determine

what the worst potential pitfalls are and how they might be overcome. Our goal was to enable an approach

in which instead of accepting large principal direction estimation errors and then working to hide them, we

could strive to obtain more accurate initial principal direction estimates while 
agging the points at which

the probability of obtaining erroneous estimates is high.

II. A Quick Review of Surface Curvature

Let p be a point on a smooth surface S, let Np be the unit normal to S at p, and suppose X(u; v) is

a local parametrization of S in a neighborhood of p. Then using Xu(p), Xv(p), Np as a local coordinate

system, we can compute principal curvatures and principal directions as follows: Let �1 and �2 (�1 � �2)

be the eigenvalues, and p1, p2 the associated unit eigenvectors of the Weingarten curvature matrix

W =

0
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where

e = Np �Xuu(p) E = Xu(p) �Xu(p)

f = Np �Xuv(p) F = Xu(p) �Xv(p)

g = Np �Xvv(p) G = Xv(p) �Xv(p)

Note that in the special case that Xu and Xv are orthogonal unit vectors, this becomes the symmetric

matrix

W =

�
e f

f g

�
:

If u is a unit vector in the tangent plane to S at p, then

�u = u
T
Wu
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is the normal curvature of the surface in the direction of u.

It follows that �1 and �2 are the maximum and minimum normal curvatures of the surface at p, and

p1 =

�
p11

p12

�
and p2 =

�
p21

p22

�
are the principal curvature vectors expressed in local coordinates. That is,

v1 = p11Xu + p12Xv

v2 = p21Xu + p22Xv

are the principal direction vectors in R
3.

An important observation is that at points where �1 = �2, the notion of principal direction is not

de�ned, since all vectors are eigenvectors. Such a point is called an umbilical point on the surface.

III. Three Principal Direction Approximation Methods

The �rst step in computing principal directions on a surface mesh is to compute at each vertex p a

vector N 0

p
that approximates the true unit surface normal Np at p. Most methods compute a \normalized

average" - i.e. a set of vectors is summed and the resulting vector is normalized to length 1.

Of course, using an incorrect surface normal will introduce error into a principal direction calculation.

However, as we will show, even if the exact surface normal is used, there are other sources of signi�cant

potential error in principal direction estimation. In order to most e�ectively gain insight into these other

sources of error, we decided to use exact surface normals in the subsequent steps of our initial investigations.

Later, we return to examine the e�ects of using approximated surface normals.

The next step in estimating the principal directions is to choose a pair of orthonormal vectors x1 and x2 in

the plane through p with normal vector N 0

p
to form a local orthonormal coordinate system L = fx1;x2; N

0

p
g

in R
3. All subsequent calculations are done with respect to this local coordinate system. We examined

three principal direction estimation methods, outlined below, each of which approximates the Weingarten

curvature matrix expressed in this local coordinate system.
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III.a The Normal Curvature Approximation Method

Suppose W is the unknown Weingarten matrix with respect to local coordinates L at vertex p. Suppose

there are n vertices adjacent to p and let qi denote the i
th adjacent vertex. We denote by yi the unit vector

obtained by projecting the vector �pqi (expressed in local coordinates L) onto the plane through p with normal

vector N 0

p
and normalizing the result. Then using the result from section I, the normal curvature in the

direction yi is given by �yi
= yT

i
Wyi. An approximation to this normal curvature is given by:

�
0

yi
= 2

(p� qi) �N
0

p

(p� qi) � (p� qi)

which is the curvature of the unique osculating circle passing through p and qi with normal N 0

p
at p. This

produces a system of equations:

(1) yT
i
Wyi = �

0

yi
i = 1; 2; : : : ; n

that we wish to solve for W . In [2], these equations are weighted in the same manner as the weighting in

the third normal approximation method mentioned at the beginning of this section, but it is not clear to us

that this improves the result much. The problem is that the osculating circle only produces a second-order

approximation to the true normal curvature and second-order approximations can introduce signi�cant error

in many cases.

The �rst step in solving for W is to reorganize (1) as follows. Let yi = (ui; vi) and

W =

�
A B

B C

�
:

Then

yT
i
Wyi = (ui vi )

�
A B

B C

��
ui

vi

�
= (u2

i
2uivi v

2

i
)

0
@A

B

C

1
A :

If we let U be the n� 3 matrix with rows (u2
i

2uivi v
2

i
), x = (A B C )

T
, and d be the n-vector

whose ith entry is �0
yi

the entire system can be written as the matrix equation

(2) Ux = d:

If d was the vector of true normal curvatures, this linear system would have an exact solution (assuming

the adjacent vertices do not have some degenerate pattern, like all lying on the same line.) In practice, the
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best we can hope to �nd is a least squares �t, i.e., a vector x that minimizes jjUx�djj. There are standard

numerical methods for �nding this least squares solution. The resulting matrix

W
0 =

�
A
0

B
0

B
0

C
0

�

is used to approximate the principal directions. It is worth noting that the matrix U depends only on the

projection of the adjacent vertices onto the local tangent plane, i.e. it is �xed by the choice of the mesh

on the surface. The vector d depends on measurements we make at these adjacent vertices - i.e. it varies

according to the amount of error we make. As we will see in a later section, it is possible to separate the

mesh from the measurements so that we can understand how measurement error interacts with the local

mesh geometry.

III.b The Quadratic Surface Approximation Method

In this method we try to best-�t a quadratic surface to the adjacent vertices. We begin by transforming

each adjacent vertex qi to local coordinates (xi; yi; zi). In these local coordinates, p becomes (0; 0; 0), N 0

p
lies

along the positive z-axis, and the quadratic surface looks like

z = f(x; y) =
A

2
x
2 +Bxy +

C

2
y
2
:

It is easy to show that the Weingarten matrix for such a surface is

W =

�
A B

B C

�
:

As in the Normal Curvature method, we plug in the adjacent vertices to get a system of equations

( 1
2
x
2

i
xiyi

1

2
y
2

i
)x = zi i = 1; : : : ; n:

As before, we can �nd a least-squares �t to this system. In order to be able to compare the result to the

normal curvature method, we scale the ith equation by
2

k2
i

, where ki =
p
x2
i
+ y2

i
. Then (xi; yi) = ki(ui; vi)

so that

( 1
2
x
2

i
xiyi

1

2
y
2

i
) =

k
2

i

2
(u2

i
2uivi v

2

i
) :
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Then we can write each scaled equation in the system as:

(u2
i

2uivi v
2

i
)x = di

where di =
2

k
2

i

zi. There is a nice geometric interpreatation of di. Consider the parabola with equation

y = di

2
x
2. Plugging in x = ki we get

y =
di

2
k
2

i
= zi

so that this parabola passes through the origin and the point (ki; zi). Since ki =
p
x2
i
+ y2

i
, we can think of

this parabola in three dimensions as passing through the local coordinate origin and the point (xi; yi; zi).

The one variable, planar formula for computing curvature is :

� =
jy00j

(1 + y02)3=2
:

Using this formula for the parabola, at (0,0) we get � = jdij. In other words, di is the normal curvature of a

parabola passing through (xi; yi; zi) and the origin. We can now see that the Quadratic Surface method is

identical to the Normal Curvature method, except that curvature approximations are done using parabolas

rather than circles. This suggests that these two methods will produce similar results, with one performing

slightly better than the other depending on whether circles or parabolas better approximate the surface

locally in some direction.

III.c The Adjacent-Normal Cubic Approximation Method

In both of the proceeding methods, we did not use all of the information available to us. Namely, we

did not use the known (approximated) normal vectors at adjacent vertices qi. We can use this information

to create a third-order approximation method that we believe has not yet appeared in the literature. As we

will see in the next section, this method seems to perform signi�cantly better than the �rst two in many

cases.

As in the Quadratic method we try to �t a surface to the adjacent vertex data. Let

f(x; y) =
A

2
x
2 +Bxy +

C

2
y
2 +Dx

3 + Ex
2
y + Fxy

2 +Gy
3
:
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The Weingarten matrix for this surface is still W =

�
A B

B C

�
, because in the local coordinate system the

curvature only depends on the second degree terms. However, using the third degree terms in the least-

squares �t will produce values for (A;B;C) di�erent from the ones we get in the quadratic method. The

normal to this surface is given by:

N(x; y) = (fx(x; y); fy(x; y);�1)

= (Ax+By + 3Dx2 + 2Exy + Fy
2
; Bx+ Cy + Ex

2 + 2Fxy + 3Gy2;�1):

Let (ai; bi; ci) denote the normal at the data point (xi; yi; zi) (both normal and point must be transformed to

the local coordinates), and let x = (A B C D E F G )
T
. Rewrite the normal as (�

ai

ci
;�

bi

ci
;�1).

Then for each point, we have an equation

( 1
2
x
2

i
xiyi

1

2
y
2

i
x
3

i
x
2

i
yi xiy

2

i
y
3

i
)x = zi

and for each normal we have two equations:

(xi yi 0 3x2
i

2xiyi y
2

i
0 )x = �

ai

ci

( 0 xi yi 0 x
2

i
2xiyi 3y2

i
)x = �

bi

ci
:

As in the preceding method, we scale these equations by the same scale factor 2

k2
i

, to obtain a system

Ux = d

where U is a 3n� 7 matrix and d is a 3n-vector. Again, we �nd a least-squares �t, but use only A, B, and

C from the result. Note that n has to be at least 3 for there to be at least as many equations as unknowns.
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III.d Higher Order Methods

The preceding method can be extended to higher orders:

f4(x; y) =
A

2
x
2 +Bxy +

C

2
y
2 +

n=3X
n=0

Dnx
3�n

y
n +

n=4X
n=0

Enx
4�n

y
n

f5(x; y) =
A

2
x
2 +Bxy +

C

2
y
2 +

n=3X
n=0

Dnx
3�n

y
n +

n=4X
n=0

Enx
4�n

y
n +

n=5X
n=0

Fnx
5�n

y
n

and so on. However, in order that there be at least as many equations as unknowns, the maximum de-

gree of the approximation that we can compute is limited by the number of adjacent vertices in the

mesh. For example, if we use 6 adjacent vertices, then there will be 18 equations. The highest or-

der method that we can use is then degree 5, since such an approximation will have the 18 unknowns

(A;B;C;D0; : : : ; D3; E0; : : : ; E4; F0; : : : ; F5):

As we will see in what follows, higher order methods seem to make small errors smaller, but can also

make large errors larger.

IV. Testing the Methods

We set out to design a test surface that had signi�cant areas where the curvature was \interesting".

Our surface, S(u; v), is de�ned by:

f(u) = �2u4 + 2u2 + u=6 + 0:3

g(u) =

8<
:
:9 + u+ f(�:9); �:9� f(�:9) � u � �:9;

f(u); �:9 � u � 1;

1� u� f(1); 1 � u � 1 + f(1);

h(u) =

8<
:
�:9; �:9� f(�:9) � u � �:9;

u; �:9 � u � 1;

1; 1 � u � 1 + f(1);

x(u; v) = g(u) cos(v)

y(u; v) = g(u) sin(v)

z(u; v) = h(u) + 0:2 sin(2x(u; v)) + 0:15 cos(3x(u; v)y(u; v))

S(u; v) = (x(u; v); y(u; v); z(u; v)) :9� f(�:9) � u � 1 + f(1); 0 � v � 2�:
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Figure 1. Test Surface

IV.a Global Parameter Space Triangulations

For our �rst set of tests we created two di�erent global mesh representations of the surface. First, we

created a Global Regular triangulation of the parameter space. This is the type of meshing condition that

we had found most commonly used for demonstrating the results of previous principal direction estimation

algorithms. Figure 2-left shows an example of a 4 by 4 global regular triangulation. The actual triangulation

we used was 50 by 50.

Then we created a Global Random triangulation by jittering the locations of the interior points within

the parameter space. This more closely resembles the type of meshing condition that we had encountered in

practice, when desiring to estimate the principal directions at the vertices of arbitrary polygonally-de�ned

models. Figure 2-right shows an example of a 4 by 4 global random triangulation in parameter space.

By de�nition, all of the object space vertices obtained from each of these parameter space triangulations

lay exactly in the analytically de�ned surface.
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Figure 2. Left: Regular Triangulation in parameter space, Right: Random Triangulation in

parameter space.

Figure 3 shows the results of estimating principal directions using each of the three principal direction

approximation methods described in section III, in the case where the data is represented by the Global

Regular mesh. All of the methods perform very well under this condition.

Figure 4 shows the estimated principal directions computed using the same three methods at the vertices

of the Global Random mesh. In this case, we found a dramatic increase in the prevalence of large angle

errors in the principal direction estimates, even at points that were far from being umbilic. The increase in

errors is especially severe with the two second order methods. Estimated directions more than 10Æ out of

alignment with the true principal directions are highlighted in red.
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Figure 3. Approximated principal directions, Global Regular mesh. Directions marked in

red have errors above 10Æ. Surface coloration highlights areas in which the di�erence between

the two principal curvatures becomes small (near-umbilic points). Upper left: exact direc-

tions. Upper right: approximated directions, Quadratic Method. Lower left: approximated

directions, Normal Curvature Method. Lower right: approximated directions, Cubic Method.
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Figure 4. Approximated principal directions, Global Random mesh. Directions marked in

red have errors above 10Æ. Surface coloration highlights areas in which the di�erence between

the two principal curvatures becomes small (near-umbilic points). Upper left: exact direc-

tions. Upper right: approximated directions, Quadratic Method. Lower left: approximated

directions, Normal Curvature Method. Lower right: approximated directions, Cubic Method.
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IV.b Local Tangent Space Projections

Seeking deeper insight into the source of the large errors in principal direction estimates under non-

regular meshing conditions, we set out to devise a number of di�erent local triangular meshes on the surface

that we could use to investigate the following questions:

1. Does regularity of the mesh improve accuracy and randomness reduce it?

2. Does enforcing equiangularity between adjacent vertices improve accuracy?

3. Does enforcing equidistance to adjacent vertices improve accuracy?

4. Does choosing adjacent vertices that lie along the true principal directions have any e�ect on accuracy?

With these in mind, we created six local meshing patterns, which we de�ned independently around each

of 575 individual vertices randomly sampled from the global random mesh. None of the 575 local mesh center

points were umbilical points. Roughly 80% satis�ed �1 � �2 > 0.5; the remainder had �1 � �2 reasonably

uniformly distributed between 0 and 0.5.

To obtain the local surface meshes, we began by de�ning, in parameter space, the six planar mesh

patterns shown in Figure 5. We achieved each of these patterns by rotating a single radial edge about a

given centerpoint according to various criteria. In all cases a total of six edges were de�ned, with the �rst

edge aligned with the analytically-determined �rst principal direction. For the �rst local mesh, we used

a constant angle of rotation (60Æ) to de�ne all of the edges. With this mesh we would be able to test

whether enforcing equiangularity between adjacent vertices improves the accuracy of the principal directions

estimated at the central point. We refer to this mesh type as "local equi-angle". In the second case, we

de�ned the angles between the edges to lie in a regular pattern with 3-way symmetry, by alternating 30Æ

with 90Æ rotations. We chose this pattern in order to test the question of whether mesh 'regularity', in

terms of a certain symmetry in the locations of edges, improves the accuracy of the results. We refer to this

mesh type as "local 30-90". In the remaining four cases we de�ned the meshes by randomly choosing �ve

successive angles of rotation in [1Æ .. 90Æ]. We refer to these meshes as "local random [1-4]". We felt that

it was important to additionally test the methods on a reasonable set of randomly de�ned local meshes in

order to establish a larger context within which to interpret the results we would �nd in the more highly
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constrained conditions.

Figure 5. Our six local mesh patterns in parameter space.

For each of the six local mesh patterns in parameter space we obtained a collection of 575 local surface

meshes by determining the points on our analytically-de�ned test surface that projected onto each pattern

when the pattern was laid in the tangent plane to the surface at each of the 575 sample points (Figure 6).

Figure 6. Diagram showing how a local surface mesh is obtained from a local mesh template

in the tangent plane.
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Finally, we rotated each of the patterns in the tangent plane 5 times (72 degrees each time). We

did this in order to investigate the hypothesis that having some mesh edges coincidentally aligned with or

counter-balanced against the principal directions might a�ect the accuracy of the approximation. The initial

orientation of each local mesh was con�gured to have one edge lying along a principal direction. Subsequent

rotations moved this edge away from the principal direction.

IV.c Findings and Interpretation

The results of our further testing are summarized in Figures 7-8. Detailed tables are available on the

website.

Figure 7 shows the median angle error, in degrees, obtained with each of the three principal direction

estimation methods, applied both to the two global meshes and to each of the six di�erent local meshes at

575 sampled points on the surface. Median errors for the local mesh results were computed using data from

all �ve mesh rotations, or 2875 values in all.

Figure 7. Median angle error in the approximated principal directions, per mesh type and

method.

Overall, performance was best when the Cubic method was used, and was not as good in the cases

of the Quadratic and Normal Curvature methods. The performance in the cases of the two second order

methods was very similar. The Cubic method exhibited the least variation in performance over the di�erent
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mesh conditions. With the two second order methods, the size and prevalence of errors varied signi�cantly

according to the mesh type, indicating that some meshing arrangements were 'better' than others. The

smallest errors occured in the local equi-angle and global regular cases, and the largest errors occured in the

cases of the global and local random meshes and the local 30Æ-90Æ pattern.

Figure 8 provides a more detailed look at the data for the normal curvature and cubic methods, showing

the percentage of mesh points at which the angle errors of the estimated principal directions fell below

speci�c thresholds.

Figure 8. Prevalence of errors in the approximated principal directions, by magnitude.

In �gure 8a we can again see that with the Cubic method, performance was fairly consistent across all

mesh types. Approximately 22-27% of the mesh points had angle errors above 1Æ, with that number rapidly

dropping to 5% with errors above 10Æ-15Æ and below 3% with errors above 20Æ, for all mesh types. In �gure

8b we can see again that in the case of the second order method, there is greater variation in performace

under the di�erent mesh conditions. In aggregate, between 23% to over 50% of the mesh points had angle

errors above 1Æ, with that number dropping to 5% at thresholds between 5Æ-22Æ, depending on mesh type.

For this method, performance was particulary good in the cases of the global regular mesh, where fewer

than 1% of mesh points had errors above 10Æ, and the local equi-angle mesh, where 90% of mesh points had

errors below about 3Æ, but poorer in the other mesh conditions.

17



Table 2, provided on the website, contains numeric data that lists, for each meshing scheme and each

local mesh rotation, the number of points at which the degree error falls into each of three ranges: less than

3Æ, between 3Æ-6Æ, and more than 6Æ. Figure 9, derived from Table 2, illustrates the range of variation in

angle errors found under the di�erent mesh rotation conditions, for the cubic and normal curvature methods.

We noticed no apparent advantage for the principal-direction aligned rotations.

Figure 9. Distribution of errors in the approximated principal directions, found using �ve

di�erent rotations of the local meshes with each of the six local meshing schemes. Results are

quantized into three ranges: less than 3Æ (green), between 3Æ-6Æ (yellow), and more than 6Æ

(red). The graphs representing each of the di�erent rotation conditions are layered in depth,

with the zero rotation condition appearing at the rear.

Figure 10, also derived from Table 2, illustrates the e�ects of using higher order methods. The results

are not qualitatively di�erent from the cubic case. Overall, accuracy is good with these methods, at most

points, but high errors remain at a signi�cant fraction of the others.
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Figure 10. A comparison of the errors found in principal directions approximated using second

through �fth order methods.

Figure 11, derived from Table 3 (also on the website), shows that the results are virtually identical when

the constraint of equal edge length on the surface (as opposed to on the local parameterization in the tangent

plane) is individually enforced for each local mesh. The local edge length was de�ned to be equal to the

average of the lengths of the edges that had comprised the local mesh in the unequal edge length condition.

19



Figure 11. Distribution of errors in the approximated principal directions when edges in

each local surface mesh are constrained to be of equal length in object space (foreground), as

opposed to being equal length in parameter space (background).

Not shown here, but available in Table 4, are the results of further investigations in which we applied

a globally equal edge length constraint, using two di�erent edge lengths. As expected, we found that errors

increased with increasing edge length. However the overall pattern of performance across the di�erent meshes

and methods remained qualitatively similar to what was found in the local equal (and unequal) edge length

conditions.

IV.d The E�ect of Errors in Surface Normal Approximations

Up to this point, we have been examining the performance of the various principal direction estimation

algorithms using analytically-de�ned (error free) surface normals. In practice, of course, the true surface

normal cannot be exactly determined, and it is useful to consider how errors in the surface normal computa-

tions can a�ect the accuracy of principal direction estimates achieved using each of the previously considered

methods.

As several di�erent surface normal approximation methods have been proposed, we decided to take a

closer look at three:

1. The normalized average of the surrounding triangle unit normals.

2. The normalized average of the surrounding triangle unit normals, each weighted by the angle of the

triangle at p.
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3. The normalized average of the adjacent edges, each weighted by the sum of the cotangents of the angles

opposite the edge in the two triangles sharing the edge [2]. This weighting only makes sense if each pair

of triangles is acute, so another method must be used at vertices where a triangle is not acute.

We experimented with each of these schemes on our test surface, using the six local surface meshes described

above, at the same 575 randomly chosen sample points. In all cases, the vertices that we used lay in the

analytically-de�ned surface. Under these conditions, all of the normal approximation methods worked very

well. The average error in the approximated normal over all mesh types was 0.90 degrees for the unweighted

method, 0.97 degrees for the angle-weighted method, and 1.04 degrees for the edgelength-weighted method.

The median error over all mesh types was 0.41 degrees for the unweighted method, 0.50 degrees for the

angle-weighted method, and 0.54 degrees for the edgelength weighted method. Although the normal vector

approximation errors in the tabulated data appeared to be super�cially slightly smaller for the angle-weighted

method in the cases of the global meshes and for the unweighted method in the cases of the local meshes,

we do not believe that these di�erences are signi�cant either practically or statistically.

Figure 12, derived from Table 5, summarizes the results of using approximated rather than exact surface

normals in the principal direction estimation calculations for all three methods, pooling results from all �ve

local mesh rotations. The approximated normals at each point were obtained by taking the normalized

average of the surrounding triangle unit normals.

Figure 12. Distribution of errors in the approximated principal directions when computations

are performed using approximated, as compared to exact, values for the surface normals. The

results with the approximated normals are in the lighter colors, in the foreground, with the
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results using exact normals given in a background layer for reference.

The main e�ect, which can be seen even more clearly in the tabulated data, seems to be an increase

the amount of volatility in the accuracy of the estimates produced by the second order methods (for some

meshes, in some rotations, resulting in greater errors, and for other meshes, or other rotations, resulting in

fewer). Overall accuracy appears to be particularly good, for these methods, when the the approximated

normals are used in combination with the two 'regular' local mesh schemes - the local equi-angle and the

local 30-90, and not so good under the other mesh conditions. Consistent with our �ndings that the third

and higher order methods appear to be less sensitive to variations in the local mesh characteristics, the

impact on the accuracy of the estimates produced by the Cubic Method is more muted. There is a small but

consistent downward trend in accuracy with the use of the approximated, rather than exact surface normal

values, with the Cubic Method. However overall performance remains good, with over 75having errors of

less than 3Æ and fewer than 20% having errors of greater than 6Æ.

In a last set of experiments, detailed in Table 6, we investigated the impact of reducing the valence

at a vertex from 6 to 3. We computed this data for three di�erent local meshes at 625 randomly selected

points on a torus dataset. We also computed local meshes with valences 5 and 4 at the previously mentioned

575 selected points on the parametric surface dataset, and obtained similar results. We found, as might be

expected, that the accuracy of the results produced by all three methods decreases as the valence drops,

practically plummeting, for some meshes and methods, as the number of participating edges falls to 3.

However the situation is rarely worse in the case of the cubic method than it is when either of the secod

order methods is used.

Finally, we reexamined the our principal direction error �ndings considering all potentially 'near umbilic'

sample points, de�ned as having with a principal curvature di�erence of less than 0.2, separately from the

rest of the 575 points. In �gure 13 we highlight the distribution of errors at these points in red, within

the overall distribution. This explicitly reveals that large principal direction errors can occur away from

umbilical points.
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Figure 13. Histogram distribution of the angle error in the principal directions estimated

using the �ve di�erent methods and eight di�erent mesh con�gurations discussed above, with

the results due to 'near umbilic' points highlighted in red. As before, ranges for the bins are:

less than 3Æ, between 3Æ and 6Æ, and greater than 6Æ.
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In sum, our results suggest several conclusions:

1. The degree � 3 methods nearly consistently outperform both of the degree 2 methods.

2. The regular meshes tend to produce better results than the random ones.

3. The equiangular mesh (Local Mesh 1) produces good results for all three methods.

4. Aligning edges with principal directions does not seem to matter.

5. Enforcing equality of adjacent edge length does not seem to matter, but the shorter all of the edges are

the better.

6. Large errors can occur away from umbilical points.

After further mathematical investigation into potential sources of the errors encountered, we determined

that in the case of the cubic method, the sizes of the errors in the estimates of the normal curvatures seems

to be the factor most signi�cantly in
uencing the size of the error in the principal direction estimates. In the

case of the normal curvature method, the direction in which the errors were made seems, for some meshes,

to be nearly as signi�cant. In other words, the accuracy of the normal curvature method may be more

dependent on the incidence of situations in which errors are able to cancel out.

V. Conclusions

We have shown that approximating principal directions on a surface mesh can be a tricky business.

Although it is important to minimize the error in approximating various quantities such as normal curvature,

an unfortunate pattern of small errors can produce large angle errors. Using a non-trivial test surface, we

have shown that principal direction approximation methods are particularly prone to error when working

with irregularly sampled data, and that these errors appear to be more severe for second order methods than

for higher order methods that can take advantage of more of the known information about the surface.

There are many important directions for future work in this area. A major practical concern that we

did not touch upon at all in our work is the problem of surface smoothing. In many cases, approximate

meshes are obtained from a sampling process that is prone to a certain amount of intrinsic error. How might

we best recover the mesh that describes the continuous smooth surface that is approximated by a collection
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of noisy samples? If we have only a mesh that is highly irregular as well as noisy, how could we improve

our chances of obtaining a smooth principal direction vector �eld and avoiding the introduction of large

principal direction estimation errors? Would resampling to obtain a mesh in which the edge distribution is

more equiangular help? Finally, it would be interesting to see how well the �ndings we have made hold up

under further testing with a wider variety of mesh types and surface shapes.
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