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Abstract

A first-person video can generate powerful physical sen-
sations of action in an observer. In this paper, we focus on
a problem of Force from Motion—decoding the sensation of
1) passive forces such as the gravity, 2) the physical scale of
the motion (speed) and space, and 3) active forces exerted
by the observer such as pedaling a bike or banking on a ski
turn.

The sensation of gravity can be observed in a natural
image. We learn this image cue for predicting a gravity di-
rection in a 2D image and integrate the prediction across
images to estimate the 3D gravity direction using structure
from motion. The sense of physical scale is revealed to us
when the body is in a dynamically balanced state. We com-
pute the unknown physical scale of 3D reconstructed cam-
era motion by leveraging the torque equilibrium at a banked
turn that relates the centripetal force, gravity, and the body
leaning angle. The active force and torque governs 3D ego-
motion through the physics of rigid body dynamics. Using
an inverse dynamics optimization, we directly minimize 2D
reprojection error (in video) with respect to 3D world struc-
ture, active forces, and additional passive forces such as air
drag and friction force. We use structure from motion with
the physical scale and gravity direction as an initialization
of our bundle adjustment for force estimation. Our method
shows quantitatively equivalent reconstruction comparing
to IMU measurements in terms of gravity and scale recov-
ery and outperforms method based on 2D optical flow for an
active action recognition task. We apply our method to first
person videos of mountain biking, urban bike racing, ski-
ing, speedflying with parachute, and wingsuit flying where
inertial measurements are not accessible.

1. Introduction
A wingsuit BASE jumper, Jeb Corliss, dives from a cliff

in Alps with his body-mounted GoPro camera1 (Figure 1).
This camera records a beautiful scenery that he had seen
but also captures what he experienced and controlled via
the camera egomotion. This egomotion is a resultant of

1https://www.youtube.com/watch?v=IM1vss7FXs8
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Figure 1. This paper presents Force from Motion—decoding the
sensation of 1) passive forces such as the gravity, 2) the physical
scale of the motion (speed) and space, and 3) active forces exerted
by the observer. We model egomotion with rigid body dynam-
ics integrated in a bundle adjustment that allows us to recover the
three sensations (left) via the physical scale and gravity aware re-
construction of the egomotion (right).

physical interactions between passive forces from environ-
ments (e.g., gravity and air pressure) and active forces ex-
erted by him to control his egomotion, e.g., angular momen-
tum change along the roll axis to shift the heading direction.
In this paper, we study a problem of Force from Motion—
reconstructing force and torque from an egocentric video to
revive the physical sensation.

Extracting such forces requires to explicitly measure his
muscle tension—the acceleration computed by a camera or
inertial measurement unit (IMU) is not directly applicable
to find active forces exerted by him because only net ac-
celeration can be measured. Our key question is “can we
extract his input in a form of active force and torque with-
out measuring muscle tension from an egocentric video?”

We show that it is possible to estimate an active force and
torque profile that generates the egomotion. This requires to
overcome three fundamental challenges: a) limited observa-
tions of body parts (body pose is often not visible from an
egocentric video); b) scale and orientation ambiguity inher-
ent in structure from motion; c) scene and activity variabil-
ity (different appearance, camera placement, and motion).

We address these challenges by modeling the observed
camera egomotion with rigid body dynamics that integrates
three key sensations: 1) gravity force; 2) physical scale of
the world; and 3) input force and torque.

The gravity force sensation is captured in the visual im-
age itself. The gravity affects how physical environment is
formed, i.e. trees and buildings are usually vertical and hori-
zon perpendicular to gravity direction. We learn such image
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cues to predict a 2D gravity direction in a 2D image using a
convolutional neural network designed to recognize the ori-
entation of the image. The prediction of multiple frames is
consolidated using 3D reconstructed camera orientation to
estimate the 3D gravity direction. Note only the camera ori-
entation information is needed in this step, and we are still
affected by the unknown scale factor.

The physical scale of the space is important sensation
since it tells us how fast we are going exactly. The abso-
lute scale of our motion is revealed to us when the body is
in a dynamically balanced state. During a banked turn, the
torques produced by centripetal force and gravity force are
balanced with the body leaning angle. This physical con-
straint together with the known gravity constant, i.e., 9.81
m/s2, allows us to compute the physical scale exactly.

The input force sensation includes 3D active force
(thrust) and torque (roll and yaw). For each type of first
person sport video, we construct a rigid body dynamics and
model egomotion as a function of the input forces and grav-
ity. Given the physical scale and gravity direction, we min-
imize the 2D geometrical reprojection error (in video) with
respect to the unknown 3D world and egomotion governed
by rigid body dynamics. The reconstructed camera egomo-
tion that is corrected by physical scale and gravity direction
is used for an initialization of the bundle adjustment for ac-
tive force and torque estimation.

In total, our system takes an input, a first person sport
video, and outputs active force and torque profile in metric
scale as shown in Figure 1. We predict the 3D gravity di-
rection by integrating 2D prediction by a convolutional neu-
ral network and recover physical scale using the roll torque
equilibrium. These factors are embedded in the bundle ad-
justment that finds a plausible active force and torque profile
that can simulate the camera egomotion via inverse dynam-
ics while simultaneously minimizing reprojection error.
Why Egocentric Video? As a form factor of a video
camera facilitates seamless integration into body, hundreds
of thousands of egocentric videos are captured and shared
via online video repositories such as YouTube, Vimeo, and
Facebook. For instance, currently more than 6,000 GoPro
videos are posted in YouTube in a day. Many of these videos
capture speed sport activities such as downhill mountain
biking (1-10 m/s), glade skiing (5-12 m/s), skydiving (60-
80 m/s) from first person view. These videos excite visual
motion stimuli that are strongly dominated by physical sen-
sation. Decoding such physical sensation provides a new
computational representation of such videos that can be not
only applied to vision tasks such as activity recognition,
video indexing, content generation for virtual reality [32]
but also computational sport analytics [28], sensorimotor
learning [39], and sport product design [7].
Contributions This paper includes three core technical
contributions. (1) Force from motion: we integrate rigid
body dynamics into a bundle adjustment to estimate active
force and torque profile; (2) Gravity direction estimation:
we learn image cues to predict gravity direction and up-

grade to 3D by employing the reconstructed camera orienta-
tions; (3) physical scale recovery: we recover a scale factor
from the roll torque equilibrium relationship. We quanti-
tatively evaluate our method using a controlled experiment
with inertial measurement units (IMU). Our method shows
quantitatively equivalent reconstruction comparing to IMU
measurements in terms of gravity and scale recovery and
outperforms method based on 2D optical flow for an active
action recognition task. We apply our method to first per-
son videos of mountain biking, urban bike racing, skiing,
speedflying with parachute, and wingsuit flying where iner-
tial measurements are not accessible.

2. Related Work
This paper studies physics based human behavior model-

ing via egocentric vision. In this section, we briefly review
the most related work.

2.1. Human Behavior Modeling in 3rd Person View
Johansson’s experiment [12] has shown that human mo-

tion can be perceived and predicted by a sparse represen-
tation with short duration of visual observation. However,
enabling such perception for a machine is still challenging
without prior knowledge due to a large degree of freedom of
an articulated body structure. This requires a compact rep-
resentation to describe human body motion. While a large
body of literature have studied this problem based on geom-
etry [2, 34, 42] and statistical model [33, 6, 35], we focus
on physics based representation.

Markerless motion capture often benefits from physics
based approaches2. Brubaker et al [4, 3] explicitly mod-
eled the ground reaction force as an impulse function during
bipedal walking. Wei and Chai [38] have shown a keyframe
based human motion reconstruction where physics based
simulation interpolates between keyframes. Vondrak et
al. [37, 36] introduced a feedback control system based on
multibody dynamics that provides a Bayesian prior to track
human body motion.

2.2. Egocentric Perception
An egocentric camera is a powerful tool to understand

human behaviors as it records what the camera wearer has
experienced. Therefore, it is a viable solution for behavior
science and quality of life technology [13, 27, 26], and this
motivates many vision tasks such as understanding fixation
point [18], identifying eye contact [43], and localizing joint
attention [9, 24].

An egocentric video is biased by camera egomotion
which is highly discriminative for activity recognition.
Fathi et al. [8, 9] used gaze and object segmentation cues
to classify activities. 2D motion features were exploited
by Kitani et al. [14] to categorize and segment a first per-
son sport video in a unsupervised manner. Coarse-to-fine

2Other applications of physics based approaches have been used to in-
fer motion [20, 40].
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Figure 2. (a) We compute a maximum a posteriori estimate of the 3D gravity direction, ĝ ∈ S2. We model the prior using a mixture of
von Mises-Fisher distributions and learn a likelihood function using a convolutional neural network (CNN). (b) We show the likelihood
given an image with the red heatmap. The dotted lines are the ground truth gravity direction. The per pixel evidence [19] is encoded as
transparency, i.e., the stronger evidence, the more transparent. The CNN correctly predicts gravity direction while the last image produces
15 degree error due to the tilted bicycler.

motion models [30] and a pretrained convolutional neural
network [31] provided a strong cue to recognize activities.
Yonetani et al. [44] utilized a motion correlation between
first and third person videos to recognize people’s identity.
Kopf et al. [15] stabilized first person footage via 3D re-
construction of camera egomotion. In a social setting, joint
attention was estimated via triangulation of multiple camera
optical rays [24] and the estimated joint attention was used
to edit social video footage [1].

Another information that the egocentric camera captures
is exomotion or scene motion. Pirsiavash and Ramanan [25]
used an object centric representation and temporal corre-
lation to recognize active/passive objects from a egocen-
tric video, and Rogez et al. [29] leveraged a prior distribu-
tion of body and hand coordination to estimate poses from
a chest mounted RGBD camera. Lee et al. [17] summa-
rized a life-logging video by discovering important people
and objects based on temporal correlation, and Xiong and
Grauman [41] utilized a web image prior to select a set of
good images from egocentric videos. Fathi et al. [9] used
observed faces to identify social interactions and Pusiol et
al. [26] learned a feature that indicates joint attention in
child-caregiver interactions.

Our approach: To our best knowledge, this is the first
paper that provides a computational framework to under-
stand an egocentric video based on physical body dynam-
ics. We leverage two motion cues: 1) 3D reconstruction
from egomotion, and 2) gravity and scale recovery from ex-
omotion. As an egocentric video has limited observation
of body parts, estimating force and its control significantly
differs from previous problems of physics based tracking
and reconstruction. We introduce a novel Force from Mo-
tion method that computes the control input applied by the
camera wearer. It also produces a scaled and oriented 3D
reconstruction via dynamics.

3. Force from Motion

Gravity, scale, and active force are three key ingredients
that generate physical sensation in movement. In this sec-
tion, we estimate these physical quantities.

3.1. Gravity Direction
A natural image encodes gravity direction because it af-

fects how physical environment is formed, i.e. trees and
buildings are usually vertical and horizon perpendicular to
gravity direction [23, 10]. We exploit such image cues
learned by a convolutional neural network [16] to predict a
gravity direction in a 2D image. This per image prediction
is integrated over multiple frames by leveraging structure
from motion.

We define a 3D unit gravity direction, ĝ(θ, φ) =[
sin θ cosφ sin θ sinφ cos θ

]T ∈ S2. We normalize
the representation with respect to the instantaneous velocity
direction such that ĝ(0, 0) = v/‖v‖ where v is the instan-
taneous velocity. This allows us to register different camera
orientations in an unified coordinate system (with respect to
the gravity).

We compute the maximum a posteriori (MAP) estimate
of the gravity direction given a set of images, {Ii}Fi=1:

ĝ∗ = argmax
ĝ∈S2

p(ĝ|I1, · · · , IF )

= argmax
ĝ∈S2

p(ĝ)

F∏
i=1

p(Ii|ĝ), (1)

where p(ĝ) is a prior distribution of the gravity direction
and a likelihood p(Ii|ĝ) measures how well the 3D gravity
direction is aligned with image, Ii.

The prior distribution encodes how the gravity is oriented
with respect to the heading direction. Given a gravity direc-
tion in a training dataset3, we model this prior distribution
using a mixture of von Mises-Fisher distributions:

p(ĝ) =

K∑
k=1

κk
4π sinhκk

exp
(
κkĝTm̂k

)
(2)

3Our training data consists of 32 Bike, 19 Ski, 23 Urban bike, 23 Jetski,
29 Wingsuit fly, and 30 Speed fly sequences and each sequence ranges be-
tween 1 mins to 38 mins. We annotate the 2D gravity direction of images
in the training set and reconstruct it in 3D. This 3D reconstructed grav-
ity allows us to propagate over 100 frames. Optionally, we also use IMU
attached camera to automatically annotate the gravity. See the supplemen-
tary material for the detailed description of the training data.
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Figure 3. (a) We recover the physical scale of a 3D reconstruction by exploiting the torque equilibrium at a banked turn where the torques
generated by normal force and centripetal force TN + TL = 0 must be canceled to maintain the leaning angle, θb. (b) The scale factor can
be estimated by the slope, |ax|/ tan θb. (c) We model the egomotion of a camera wearer using single rigid body dynamics (6 degree of
freedom). Force and torque are decomposed into passive components (gravity, mg; centripetal force, FL; normal force, FN; friction force,
FF; air drag, FD; pitch torque, TP) and active components (thrust, FT; roll torque, TR; yaw torque, TY).

where {m̂k, κk} is a set of modes and concentration param-
eters that can be learned by an Expectation-Maximization
algorithm as shown in Prior of Figure 2(a).

The image likelihood, p(Ii|ĝ) measures how well the
projected 3D gravity direction onto the ith image agrees
with the image cues learned from the training data. By the
projection, we measure the orientation of the image, ξ =

atan2(rT2 ĝ, rT1 ĝ) ∈ S where R(ti) =
[

rT1 rT2 rT3
]T

and R(t) ∈ SO(3) is the camera orientation at the tth time
instant. We learn this likelihood function using the convo-
lutional neural network (CNN) proposed by Krizhevsky et
al. [16] with a few minor modifications. We correct the fish-
eye lens distortion and warp the image with a homography,
H = KRvR(ϕp)R(ϕr)R

TK−1 where K and R are the
camera intrinsic parameter and orientation matrices, respec-
tively. Rv is the rotation matrix whose Z axis aligns with
the instantaneous velocity, v. The body coordinate system,
{B} is defined in Figure 3(c), and R(ϕp) is the constant
rotation about the pitch axis to minimize the area outside
of the image. R(ϕr) is a rotation about the roll axis used
for data augmentation. The warped image (1280 × 720)
is resized to 320 × 180 as an input for the CNN. We train
the network to predict a probability of the projected angle ξ
discretized by 1 degree between −30◦ and 30◦, i.e., ξ = 0
means the gravity direction is aligned with y axis of the im-
age. We augment the data by rotating the image with R(ϕr)
and its horizontal flip. Figure 2(b) illustrates the likelihood
of the gravity directions learned by CNN as shown in the red
heatmap and the ground truth gravity direction with dotted
line.

Predictions on multiple images are consolidated by the
3D reconstructed camera orientations. Note that a single
image cannot predict the 3D gravity direction due to 2D
projection. Each image produces a streak in a likelihood
distribution as shown in Likelihood of Figure 2(a)—any
gravity direction along the streak is projected onto the same
direction in 2D. The product of multiple image predictions
in Equation (1) by leveraging the 3D reconstructed camera

orientations can collapse the streak into a unimodal distri-
bution4.

3.2. Physical Scale

The leaning angle, θb, at a banked turn is formed to bal-
ance the roll torque at the center of mass. The normal force,
FN, produces a torque, TN = lFN cos θb and the friction
force, or centripetal force (no slip condition), FL produces
an opposite directional torque TL = lFL sin θb with respect
to the center of mass where l is the distance between the
center of mass to the ground contact point as shown in Fig-
ure 3(a) and 3(c). These two torques must be balanced to
maintain the leaning angle, i.e., the tangential velocity, v, is
defined by the leaning angle and the curvature of the turn.

By equating these two torques, i.e., TL + TN = 0, we
obtain the following relationship with gravity constant:

‖g‖ = 9.81 m/s
2
= c

|âx|
tan θb

, (3)

where âx is the linear acceleration in the lateral direction,
which is measured from the reconstructed 3D camera tra-
jectory in {W} (Figure 3(c)) and c is a scale factor that
maps from the 3D reconstruction to the physical world.

In Figure 3(b), we plot the scale factors measured from
different time instances with their median and variance. The
slope of the data points represents the scale factor of the
reconstruction. We compute these data points along the
video sequences that include a number of banked turns.
Figure 3(a) shows the torques produced by the scale fac-
tor and two torques are roughly canceled out. Note that
−TN is plotted for a direct comparison. This allows us to
reconstruct physical dimension of the terrain and speed as
shown in Figure 4(a). Note that the speed profile is physi-
cally meaningful, i.e., average speed of the mountain biking
ranges between 1-6 m/s2.

4If ones goes straight without changing camera orientation, the streak
remains constant as shown in Likelihood of Figure 2(a).
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Figure 4. (a) The recovered gravity direction and scale allow us to identify physical dimension of elevation and speed. (b) We compute
active force and torque by parametrizing them into a bundle adjustment in Equation (7). (b) The bundle adjustment in Equation (7) produces
plausible active force and torque profile that produces a camera trajectory concerting with the video ((c) and (d)).

3.3. Physics of Rigid Body Dynamics
A single rigid body that undergoes motion as a resultant

of forces and torque can written as:

ma = Fin + Fex (4)
Jα+ ω × Jω = Tin + Tex, (5)

where m is mass, a ∈ R3 is linear acceleration, α ∈ R3

is angular acceleration, J ∈ R3×3 is moment of inertia,
and ω ∈ R3 is angular velocity. We denote Fin and Tin

as active force and torque that are applied by the camera
wearer (input signal). Fex and Tex are passive force and
torque that are applied by external sources such as gravita-
tion force, centripetal force, and pitch moment created by an
unbalance impact between two wheels in a bicycle as shown
in Figure 3(c). Note that a biking is used for an illustra-
tive purpose while this dynamics can be applied general ac-
tivities such as skiing, jetskiing, speedflying, and wingsuit
flying with a few minor modifications such as body mass,
moment of inertia, and air lift instead of normal force for a
flying activities5.

We represent Equation (4) in the world coordinate sys-
tem, {W}, and Equation (5) in the body coordinate system,
{B}6 as shown in Figure 3(c). The active force and torque
are composed of thrust force FT, roll torque TR, and yaw
(steering) torque TY:

Fin = FT
v

‖v‖
, Tin =

[
0 TY TR

]T
,

where the thrust force is applied along the velocity direc-
tion, v7.

The passive force and torque are composed of the fol-
lowing components:

Fex = mg + (FD + FF)
v

‖v‖
+
[
FL FN 0

]T
Tex =

[
0 0 lFN sin θb − lFL cos θb

]T
,

5See the supplementary material for activity dependent coefficients.
6Forces in world coordinate system are semantically meaningful as the

Y axis aligns with the gravity direction while torques in the body coordi-
nate system are more interpretable (roll, pitch, and yaw) [21].

7The choice of the input force and torque components depends on the
constraints of motion while it has to satisfy the controllability criterion.

where g =
[
0 9.81 0

]T
m/s2 is the gravitational ac-

celeration, fD = −0.5CDρA‖v‖2 is the air drag force
where CD ≈ 1.0, ρ = 1.23 kg/m3, and A are air drag co-
efficient, air density, and cross sectional area perpendicular
to the velocity, respectively. FF ≤ 0 and FL are frictions
along velocity and lateral directions, respectively. l is the
distance between the center of mass and the ground contact
point, and θb is the body leaning angle.

Equation (4) and (5) can be together written as a compact
form:

Mq̈ + C(q̇) = Ju + E, (6)

whereM is the inertial matrix, C is the Coriolis matrix, E
is the passive force and torque, and u =

[
FT TR TY

]
is the active component. The state q =

[
CT ΩT

]T
describes the camera egomotion where C ∈ R3 is the cam-
era center and Ω ∈ R3 is the axis-angle representation of
camera rotation, i.e., exp

(
[Ω]×

)
= R ∈ SO(3) where

[·]× is the skew symmetric representation of the cross prod-
uct [21]. J is a workspace mapping matrix written as:

J =

 vT/‖v‖ 0 0 0
0 0 1 0
0 0 0 1

T

.

Equation (6) describes motion in terms of active force and
torque component, u, which allows us to directly map be-
tween input and the resulting motion. Solving for u is in-
verse dynamics that is integrated in our bundle adjustment
in Section 4.

4. Inverse Dynamics for Optimal Control
We integrate three ingredients for physical sensation,

gravity direction, physical scale, and active force and torque
into the following cost:

minimize
u(t),{Xj}

∑
i,j

D (P(ti)Xj ,xij) + λR

∫ T

0

u̇(t)Tu̇(t)dt

subject to P(ti) = KR(ti)
[

I3 −C(ti)
]

Mq̈ + C(q̇) = Ju + E, (7)
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Figure 5. (a) For quantitative evaluation, we design a control experiment with an experienced mountain biker. (b) We compare our prediction
with three baseline algorithms (see the description of the baseline algorithm in Section 5.1. The red heatmap indicates the likelihood at each
time instant p(I|ĝ). Our predictor uses the image likelihood in conjunction with the reconstructed camera orientation. (c) We measure
error across different scenes. (d) We recover physical scale and compare with IMU in terms of linear acceleration. Our method correctly
estimate the scale (perfect recovery if 1; median 1.0287 with 0.6186 standard deviation).

where D measures reprojection error, i.e., D(x1,x2) =

(x1/z1 − x2/z2)2 + (y1/z1 − y2/z2)2 where x =[
x y z

]T
. P(ti) ∈ R3×4 is the camera projection ma-

trix at time ti instant, X ∈ P3 is a 3D point, and xij ∈ P2

is the jth 2D point measurement at ti time instant. The goal
is to infer both the unknown 3D world structure X, as well
as control forces for the rigid body dynamics, u(t) , assum-
ing the gravity force and the scale of the space is given. The
last term in the cost function regularizes active forces such
that the resulting input profile over time is continuous. λR
is a control weight for input regularization.

Equation (7) consolidates a bundle adjustment cost from
structure from motion with the optimal control theory that
finds the optimal control profile to generate the desired out-
put trajectory. Equation (7) is highly nonlinear due to re-
projection error and rigid body dynamics, which requires
a good initialization. We reconstruct 3D discrete camera
pose trajectory, {P(ti)}, and a set of 3D points, {Xj}, us-
ing structure from motion. The acceleration and velocity
of the camera pose are approximated by differentiating the
discrete camera pose. This allows us to approximate active
and passive components, u and E, by solving statics, i.e.,
each time instant independently. Given this discrete input
profile, we build a continuous piecewise linear function as
an initialization of u(t).

We minimize the objective function using Levenberg-
Marquardt algorithm [22] where the ordinary differential
equations for rigid body dynamics are solved via the Runge-
Kutta 4th-order method on SE(3) [5] whenever evaluating
the objective function. Figure 4(b) shows comparison be-
tween initialization and the refined active force and torque.
The initialization contains implausible input profile due to
noisy acceleration computation. The optimization allows
us to find the smooth input profile that simultaneously min-
imizes reprojection error, which agrees with structure from
motion result as shown in Figure 4(c) and 4(d).

5. Result
We evaluate our algorithm on real world data. For all

sequences, a camera trajectory is reconstructed by struc-

ture from motion at 30 Hz. We assume all videos have
the fixed resolution (1280 × 720) and intrinsic parameters
(focal length, principle coordinates, and fisheye lens distor-
tion) because 97% of first person sport videos are taken by
the same mode of GoPro 2 Hero or GoPro 3 Hero. We use
29 Bike sequences ranging from 5 mins to 20 mins (about
1 million images8) to fine-tune the CNN pre-trained by [16]
using Caffe [11]. For computational efficiency, we divide a
video into a set of 10 second videos (300 frames) to opti-
mize Equation (7).

5.1. Quantitative Evaluation

We quantitatively evaluate our algorithm with a con-
trolled experiment conducted by an experienced mountain
biker with head-mounted inertial measurement unit (IMU)
as shown in Figure 5(a). Additional IMU was attached on
his body to measure disparity between head and body mo-
tion9. Two cameras are also attached on the bike to monitor
his behaviors such as pedaling and braking. Our evaluations
are performed to verify our method in three criteria: grav-
ity prediction, scale recovery, and active force and torque
estimation.
Gravity prediction We compare our prediction using CNN
and reconstructed camera orientation with three baseline
methods: a) Y axis: prediction by the image Y axis as a
camera is often oriented upright; b) Y axis MLE: prediction
by a) consolidated by the reconstructed camera orientation;
c) ground plane normal. The ground plane is estimated by
fitting a plane with RANSAC on the sparse point cloud.
Figure 5(b) shows a comparison with baseline algorithms
where our method produces median error 2.7 degree with
3.64 standard deviation (mean: 4.40 degree). Note that we
do not compare our final MAP estimate for fair comparison.
We also test our method on manually annotated data in Fig-
ure 5(c) where our method consistently outperforms others
significantly (×2 ∼ ×10). Note that only biking sequences

8Note that the scenes change rapidly due to fast egomotion and thus,
the data capture variety of scene cues.

9A quantitative analysis on the relationship between body and gaze ori-
entation is included in the supplementary material.



Bike 1 Bike 2 Bike 3 Bike IMU Ski 1 Ski 2 Ski 3 Taxco 1 Taxco 2 Taxco 3
Mean Med. Std. Mean Med. Std. Mean Med. Std. Mean Med. Std. Mean Med. Std. Mean Med. Std. Mean Med. Std. Mean Med. Std. Mean Med. Std. Mean Med. Std.

Y axis 5.62 4.44 4.72 8.10 6.18 9.06 10.15 9.29 6.34 16.02 13.11 10.88 8.31 7.24 5.80 8.11 7.37 6.94 6.86 5.93 4.79 8.00 4.62 13.10 5.77 4.66 4.92 9.66 7.00 8.84
Y axis MLE 5.92 4.57 4.66 6.08 5.31 5.91 10.68 8.97 9.11 15.83 12.28 11.21 10.09 6.72 8.72 7.80 6.54 6.28 7.00 6.37 4.75 6.90 4.06 12.73 5.94 4.01 5.97 10.41 6.83 10.85
Ground plane 7.45 6.28 5.14 12.69 10.20 8.99 11.31 8.16 11.01 11.98 10.24 9.03 8.27 5.50 8.36 7.36 6.90 5.17 7.87 6.86 5.84 10.44 8.13 13.04 8.07 6.79 7.44 7.09 5.67 5.44
CNN MLE (ours) 0.76 0.61 0.60 2.53 1.00 4.38 4.40 2.70 3.64 11.21 9.11 8.18 5.17 4.37 4.08 4.97 2.59 11.17 4.53 3.05 4.88 3.37 2.68 3.02 4.60 2.89 5.06 5.86 4.26 6.80

Table 1. Gravity prediction error (degree). Med.: median, Std.: standard deviation

are used for the training data while Bike 1, 2, and 3 were
not included in the training dataset. Table 1 summarizes the
gravity prediction comparison.
Scale recovery We recover the scale factor and compare the
magnitude of linear acceleration with IMU, i.e., ‖a‖/‖am‖
where a and aimu are acceleration of ours and IMU, respec-
tively. Note that IMU data is noisier than our estimation but
the ratio remains approximately 1 (head: 1.0278 median,
1.1626 mean, 0.6186 std.; body: 0.9999 median, 1.1600
mean, 0.7739 std.). We recover scale factors for 11 dif-
ferent sequences each ranges between 1 mins to 15 mins as
shown in Figure 5(d). This results in overall 1.0188 median,
1.1613 mean, and 0.7003 std.
Active force estimation We identify the moment that thrust
force (pedaling and braking) is applied10. We use a thresh-
olding binary classifier, ξ+(t) and ξ−(t) to detect pedaling
and braking, respectively: ξ+(t) = 1 if

∫ t

t−1 FT(t)dt > εT ,

and 0 otherwise; ξ−(t) = 1 if
∫ t

t−1 FT(t)dt < −εT , and
0 otherwise11. Figure 6(a) shows active force profile and
ground truth manually annotated from the videos of behav-
ior monitoring cameras as shown in Figure 5(a). Our active
force profile accords with the ground truth, i.e., pedaling
when FT > 0 and braking when FT < 0. In Figure 6(b) and
6(c), we compare our method with net acceleration mea-
sured by IMU and structure from motion. We also compare
against optical flow to measure acceleration that is often use
for egocentric activity recognition tasks [14, 30]. Also we
compare with Pooled Motion Feature representation [31],
which requires a pre-trained model. Our active force identi-
fication outperforms other baseline methods that do not take
into account active force decomposition. This verifies that
a trivial extension by attaching IMU on camera is not suf-
ficient enough to estimate the active force applied by the
camera wearer—the measured acceleration needs to be de-
composed.
Active torque estimation We compare the estimated an-
gular velocity with measurements from gyroscope in Fig-
ure 6(d). Note that the velocity computation by differenti-
ating the reconstructed camera trajectory does not directly
apply as different framerate between IMU and camera and
noisy reconstruction. The optimally estimated active force
and torque generate plausible angular velocity profile. Ta-
ble 2 summarizes error of angular velocity measured by 11

10Active force and torque are difficult to directly measure using IMU
because the measured acceleration is due to net force and torque not in-
put. This requires special force/torque sensors attached human bodies that
measures muscle tension.

11A sophisticated classifier such as recurrent neural networks can be a
complementary approach when supervision is available.

different scenes. The correlation is also measured, which
produces 0.87 mean correlation.

1 2 3 4 5 6 7 8 9 10 11
Mean(rad/sec) 0.25 0.31 0.27 0.31 0.27 0.26 0.41 0.29 0.30 0.30 0.40
Med. (rad/sec) 0.18 0.30 0.17 0.27 0.26 0.22 0.36 0.23 0.22 0.24 0.36
Std. (rad/sec) 0.24 0.20 0.26 0.23 0.19 0.19 0.32 0.23 0.27 0.26 0.31
Corr. 0.91 0.94 0.90 0.88 0.88 0.61 0.82 0.83 0.90 0.86 0.86

Table 2. Angular velocity comparison with gyroscope. Med.: me-
dian, Std.: standard deviation, Corr: correlation (perfect if 1)

5.2. Qualitative Evaluation
We apply our method on real world data downloaded

from YouTube. 5 different types of scenes are processed:
1) mountain biking (1-10 m/s); 2) Flying: wingsuit jump
(25-50 m/s) and speedflying with parachute (9-40 m/s) (); 3)
jetskiing at Canyon (4-20 m/s); 4) glade skiing (5-12 m/s);
5) Taxco urban downhill biking (5-15 m/s). Figure 1 and
7, estimated gravity direction, physical scale of force and
velocity, and active force and torque. Also passive compo-
nents such as air drag, pitch torque, and normal force are
shown. Thrust force is applied when climbing up the hill
in Biking or when accelerating in Jetskiing. For Skiing, pe-
riodic lateral forces and roll moments are observed as the
camera wearer was banking frequently. For flying case12,
strong air drag force and lifting forces are observed. Also
unstable angular momentum along the roll axis comparing
to other axes is observed, which requires skillful body con-
trol to balance left and right wings.

6. Discussion
In this paper, we present a method to reconstruct physical

sensation of a first person video. We recover three ingredi-
ents for the physical sensations: gravity direction, physical
scale, and active force and torque. The gravity direction
is computed by leveraging a convolutional neural network
integrated with the reconstructed 3D camera orientations.
We recover the physical scale by using a torque equilibrium
relationship along the roll axis at a bank turn. Active and
passive components are modeled using rigid body dynam-
ics which is integrated into a bundle adjustment that finds
active force and torque profile concerting with the video.
We quantitatively evaluate our method with controlled ex-
periments where our method outperforms other baseline al-
gorithms with a large margin (×2 ∼ ×10) and apply our
method on real world data of various activities such as bik-
ing, skiing, flying, jetskiing, and urban bike racing.

12Unfortunately, the gravity direction cannot properly estimated as it
was even challenging to a human annotator. Instead, we manually find
frames that contain the horizon to estimate the gravity direction.
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Figure 6. (a) We identify active forces by manually annotating frames when pedaling or braking. (b) and (c) Our method outperforms optical
flow based representation including [31] with a large margin. (d) We compare our estimation with a gyroscope attached to the camera. Our
estimation via active force and torque produces plausible angular velocity profile that accords with the gyroscope measurements.
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