Electronic Notes in Theoretical Computer Science 67 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume67.html 13 pages

The Suspension Notation for Lambda Terms
and its Use in Metalanguage Implementations

Gopalan Nadathur '2

Department of Computer Science and Engineering
University of Minnesota
Minneapolis, MN 55455, U.S.A

Abstract

Many metalanguages and logical frameworks have emerged in recent years that use
the terms of the lambda calculus as data structures. A common set of questions
govern the suitability of a representation for lambda terms in the implementation
of such systems: a-convertibility must be easily recognizable, sharing in reduc-
tion steps, term traversal and term structure must be possible, comparison and
unification operations should be efficiently supported and it should be possible to
examine terms embedded inside abstractions. Explicit substitution notations for
lambda calculi provide a basis for realizing such requirements. We discuss here the
issues related to using one such notation—the suspension notation of Nadathur and
Wilson—in this capacity. This notation has been used in two significant practical
systems: the Standard ML of New Jersey compiler and the Teyjus implementation
of AProlog. We expose the theoretical properties of this notation, highlight prag-
matic considerations in its use in implementing operations such as reduction and
unification and discuss its relationship to other explicit substitution notations.

1 Introduction

Metalanguages and logical frameworks manipulate a variety of symbolic ob-
jects such as formulas, programs, proofs and types whose structures naturally
involve the notion of binding. LLambda terms have been found to be a useful in
capturing the abstract syntax of such objects. Suppose, for example, that we
wish to represent the formula Vz((p z) V (¢ ¢)) in which p and ¢ are predicate
names and c is a constant. Noting that a quantifier plays the dual role of de-
termining a scope and of making a predication, the essential structure of this
formula can be captured by the lambda term (all (Azx or((p z), (g ¢)))); in this

1 This work has been partially supported by the NSF under the grant CCR-0096322.
2 Email: gopalan@cs.umn.edu

(©2003 Published by Elsevier Science B. V.

NADATHUR

term, all is a constructor that represents universal quantification and or is a
constructor that represents disjunction. The explicit treatment of binding in
this representation makes for a simple and transparently correct implementa-
tion of several logical operations on formulas. Thus, the task of instantiating
with ¢ the quantifier in a formula represented by the term (all P) is realized
immediately by writing the term (P t). Actual substitution is carried out,
with all the necessary renamings, by the [-reduction operation on lambda
terms. Similarly, structure analysis of formulas that is sensitive to binding
can be performed through an enhanced unification operation. For example,
suppose that we wish to recognize that the given formula is one that has a uni-
versal quantification over a disjunction where the quantified variable does not
appear in the second disjunct. This property can be ascertained by attempting
to unify the term representing it with the ‘template’ (all (Az or((P z),Q)))
in which P and @) are instantiatable variables. The variable () here cannot
be substituted for in such a way that the second disjunct comes to depend on
the quantifier and will therefore only match with the ‘right’ kind of term.

The programming convenience of such higher-order abstract syntax must,
of course, be complemented by an efficient representation for lambda terms
within the implementation of the relevant metalanguage or logical framework.
While lambda term realizations have long been of interest in the functional
programming context, the present intensional use of these terms places new
constraints on adequate representations. Thus, the comparison of lambda
terms must be possible and so their structures cannot be sacrificed in a compi-
lation process. At a more detailed level, the notion of equality between lambda
terms must ignore the particular names used for bound variables. For this rea-
son, the representation must support the rapid determination of identity up
to a-convertibility. Another operation that is important to realize efficiently
is B-reduction. For reasons that we discuss later, two requirements must be
satisfied relative to this operation: it should be possible to perform the substi-
tutions generated by [-contractions lazily and to percolate such substitutions
as well as to perform [-contractions inside abstraction contexts. Finally, the
higher-order unification computation is central to many metaprogramming
tasks and consideration must be given to the treatment of meta variables and
to operations that are important in its implementation.

A good starting point for an adequate intensional representation of lambda
terms is the de Bruijn notation for lambda terms [3]. This notation eliminates
names for bound variables, thus simplifying identity checking modulo renam-
ing. Explicit substitution notations [1,2,4,8,13] that build on the de Bruijn
scheme provide the basis for meeting several of the other mentioned require-
ments. There are differences in the specific characteristics of such notations
and choices must also be made in the specific manner in which these are to be
deployed in the context of metalanguage implementation. This paper exposes
some of the issues that are important in this situation, gleaned from our ex-
perience in realizing the language AProlog. We orient the discussion around

2

NADATHUR

the suspension notation of Nadathur and Wilson that, to our knowledge, is
the only one to be used in two actual implementation tasks [12,14]. However,
our general comments apply to other schemes as well and we also compare the
different notations at the end.

2 The Suspension Notation

The combination of substitution walks that arise from contracting differ-
ent (-redexes can have a significant impact on efficiency. Thus, suppose
that we wish to instantiate the two quantifiers in the formula represented
by (all (Axz (all (Ay P)))), where P represents an unspecified formula, with
the terms ¢; and ¢;. Assuming a de Bruijn representation, such an instanti-
ation is realized through two contractions, eventually requiring ¢, and ¢; to
be substituted for the first and second free variables in P and the indices of
all other free variables to be decremented by two. Each of these substitutions
involves a walk over the same structure—the structure of P—and it would be
profitable if they could all be done together. Studies reveal that, by systemat-
ically exploiting this idea, structure traversal can be substantially reduced in
practice, down to as little as an eighth of the original in some cases [9]. Now,
an ability that is critical to combining walks in this manner is that of tem-
porarily suspending substitutions generated by S-contractions. In a situation
in which all the redexes are available in a single term, this kind of delaying
of substitution can be built into the reduction procedure through ad hoc de-
vices. However, in the case being considered, the two quantifier instantiations
are ones that can only be considered incrementally and, further, intervening
structure needs to be processed before the abstraction giving rise to the second
redex is encountered. The structure that leads to sharing is therefore not all
available within a single call to a reduction procedure and an explicit encoding
of substitution over P seems to be necessary for realizing this benefit.
Substitutions are delayed in the implementation of functional programming
languages by using environments and it may appear that a simple reflection of
such environments into term structure should suffice for the present purposes.
The problem, however, is that when lambda terms are used to represent ob-
jects, it may be necessary to examine structure embedded inside abstractions.
Consider, for example, the task of determining if the term that results from
instantiating the quantifier in a formula of the form (all R) has a shape that
is captured by the template (all (Azor((P z),Q))); we assume that R repre-
sents an unspecified term here and that P and () are instantiatable variables.
A positive determination involves percolating a substitution underneath the
abstraction corresponding to a quantifier and then checking if the embedded
structure is a disjunction. In carrying out this computation it is necessary to
consider a-conversion or an equivalent renumbering in the de Bruijn repre-
sentation, something whose incorporation into a environment model requires
care. Notice also that the actual form of R may require S-contractions to be

3

NADATHUR

performed within the abstraction capturing the quantifier scope in order to
reveal its top-level logical structure. This kind of calculation, further compli-
cates the structure of environments.

The suspension notation embodies a solution to the problems described
above. Formally, it encompasses a collection of expressions called terms, envi-
ronments and environment terms whose syntax is given by the categories (T'),
(E) and (ET) defined by the following grammar rules in which (C), (I) and
(N) represent constants, positive numbers and natural numbers, respectively:

(T) == {C) | #) | (T) (1)) | A(T)) | (T), (N),(N),(E)]
(E) = nil | (ET) :(E) | {(E), (N),(N),(E)}
(ET) == Q(N) | ((T),(N)) | {{ET),(N),{N),(E)).

The essential addition to de Bruijn terms to produce suspension terms is that
of expressions of the form [t,ol,nl,e], where ¢ is a term and e is an environ-
ment. Such a term, referred to as a suspension, represents the term ¢ with
its first ol variables substituted for in a way determined by the environment e
and its remaining bound variables renumbered to reflect the fact that ¢ used
to appear within ol abstractions but now appears within nl of them. In the
simplest form, the elements of an environment are either substitution terms
generated by contractions or are dummy entries representing abstractions that
persist in an outer context. However, renumbering of indices may have to be
done during substitution, and, to encode this, each such environment element
is annotated by a relevant abstraction level referred to as its index. Such sus-
pensions must satisfy certain wellformedness constraints that have a natural
basis in our informal understanding of their content: in an expression of the
form [t, 1, j, e], the ‘length’ of the environment e must be equal to i, the indices
of the entries in e must be non-increasing and they must be bounded by j. The
notation also allows for the combination of substitutions: an expression of the
form {ey, 1, j, ea }} represents the composition of the substitutions contained in
e1 and ey and ((et, i, j, es)) corresponds to the environment term et modified
by the substitutions in the environment e;. The numbers 7, j, the lengths of
environments and the indices of terms in the environments being composed
must satisfy certain constraints that arise naturally out of the restrictions
discussed on simple environments. Space limitations prevent a discussion of
these aspects here, but a detailed treatment appears in [13].

The usual S-contraction operation is realized in the suspension notation in
two phases: the generation and the subsequent percolation of a substitution.
This process is described formally by a collection of rewrite rules. These rules
are broken up into three categories: the 3, rule that generates suspensions, the
reading rules that percolate substitutions and the merging rules that permit
intermediate suspensions to be combined. These rule categories are presented
in Figures 1, 2 and 3, respectively. The merging rules are actually redundant
from the perspective of simulating (-reduction. However, without them it is
not possible to combine substitutions and the walks that effect them.

NADATHUR

(()\tl) tz) — |[t1, 1,0, (tQ,O) b ’I'LZZ]]
Fig. 1. The B rule

[c,ol,nl,e] — ¢, provided c is a constant.

[#i,0,nl,nil] — #7, where j =i + nl.

[#1,0l,nl,Ql :: e] — #j, where j =nl — .
[#1,0l,nl,(t,1) :: €] — [t,0,nl’,nil], where nl’ = nl — .

[#i,0l,nl, et :: €] — [#i',0l',nl, €],
where ¢/ =i —1 and ol’ = ol — 1, provided 7 > 1.

[(t1 t2),0l,nl, e] — ([t1,0l,nl, €] [t2,0l,nl,e]).
[(At),ol,nl e] — (A[t,ol',nl’,Qnl :: e]),
where ol' = ol + 1 and nl’ = nl + 1.

Fig. 2. The reading rules
[[t, ol1, nly, e1], ola, nls, e2] — [it, ol',nl’, {1, nlq, olz, ea }],
where ol' = ol; + (oly = nly) and nl’ = nly + (nly = oly).
{nil, nl,0,nil } — nal.

{nil,nl,ol, et :: e} — {nil,nl’,ol’, e},
where nl,ol > 1, nl'’ =nl —1 and ol’ = ol — 1.

{nil,0,0l,e} — e.

{et ::e1,nl,ol,ea} — (et,nl,ol,es)) :: {er,nl,ol,ex}.
{(et,nl,0,nil)) — et.

{@n,nl,ol,Ql ::) — Qm,

where m = [+ (nl = ol), provided nl =n + 1.
{@n,nl,ol, (t,1) ::) — (t,m),

where m =1 + (nl = ol), provided nl =n + 1.
{(t,nl),nl, ol et ::) — ([t,ol,l' et :: €], m)

where I' = ind(et) and m =" + (nl = ol).

(et,nl, ol et :: e)) — {et,nl',ol',e),

where nl' = nl — 1 and ol’ = ol — 1, provided nl # ind(et).

Fig. 3. The merging rules

Definition 2.1 The (one-step) reduction relations on suspension erpressions
generated by the reading and merging rules on one hand and by all the rules on
the other are denoted by Dy, and Dypg,, respectively. The usual B-contraction
relation on de Bruijn terms is denoted by >g. Finally, we denote the reflexive
transitive closure of a relation R by R*.

5

NADATHUR

The reading and merging rules are intended to expose the de Bruijn term
underlying any given term and we would expect them to always succeed in
doing so. The following proposition, proved in [13], shows this to be the case.

Proposition 2.2 The relation >, is strongly terminating, i.e. all sequences
of such reductions are finite.

A term of the form [[[¢,0l1,nli,e1],0ls, nla, €3], ol3, nls, e3] can be ‘flat-
tened’ into a single suspension by two uses of the rule m1. However, this
flattening can be achieved in two different ways— Dby first composing e; and
ez and then composing the result with es or by first composing e; and ez and
then composing e; with the result—and we would like the outcome to be the
same in either case. Some explicit substitution calculi guarantee this by in-
cluding an associativity rule for composing substitutions. In our calculus, this
property is a consequence of the other rules:

Proposition 2.3 Let a and b be environments of the form

{{ei1, nly,olz, ea},nls + (nly = oly), ols, es }

and

{61, nll, Ol2 + (0l3 = nl2), Heg, ’I'ng, Ol3, 63}},
respectively. Then there s an environment r such that al>,,r and b>%, 7.

We would like a stronger property that the existence of ., normal forms
to hold: these forms should be unique for any given expression. In light of
Proposition 2.2, it is enough to show that ., is locally confluent. Towards
this end, we need to consider the nontrivial overlaps in the lefthand sides of
our rules and to show that the critical pairs corresponding to these can be
rewritten to a common form. The relevant overlaps are between m1 and each
of the reading rules, m1 and itself and m2 and m4. The only complicated
case amongst these is when the overlap is between m1 and itself. However,
Proposition 2.3 ensures reducibility to a common form in this case. Thus, we
have

Proposition 2.4 The relation ., s locally confluent and, hence, confluent.

We shall depict the >, normal form of an expression e in the suspension
calculus by |e|. The correspondence between the reduction relations on de
Bruijn terms and suspension terms can then be stated as follows.

Proposition 2.5 Let ¢ be a term in the suspension calculus. If i}, 5 v then
t[>5|r|. Conversely, if [t|>5s, then t, 5 s.

From this proposition it follows also that >, is confluent.

3 Eliminating the Merging Rules

The merging rules provide a versatile mechanism for combining substitutions.
However, their power derives from a fine-grained treatment of composition

6

NADATHUR

that is a little cumbersome for actual implementation. For this reason, it
is worthwhile to explore the possibility of capturing their common uses in
coarser, more efficient, derived rules. We observe two situations below to
which this approach can be effectively applied.

The first situation corresponds to the combination of substitutions arising
from the contraction of nested 3-redexes. As an illustration, we might consider
the reduction of the term ((A((A (A ((#1 #2) #3))) t2)) t3), in which ¢5 and
t3 are arbitrary de Bruijn terms. In a leftmost-outermost reduction regime,
the first step would be to use the 3, rule to produce the suspension

[(O (1 #2) #3))) t3),1,0, (t3,0) = nil].

The reading rules would now be used a few times to produce the term

(()‘ [[()‘ ((#1 #2) #3))7 27 1) @0 :: (t3a O) - ’)’L’Ll]]) [[t27]-7 Oa (t3a 0) - ’)’L’Ll]])
At this stage, the 8, rule would be used again, yielding the term

ITON((#1 #2) #3)),2,1,Q0 :: (t3,0) :: nil], 1,0,
([t2, 1,0, (t3,0) :: nil], 0) :: nal].

The m1 rule can now be used to compose the two environments, yielding

[(A((#1 #2) #3)),2,0,
{£@0 :: (¢3,0) :: nil, 1,1, ([t2, 1,0, (t3,0) :: nil],0) :: nil }].

Using the other merging rules, this term can be reduced to the form

TN ((#1 #2) #3)),2,0, ([t2, 1,0, (t3,0) :: nil],0) =: (t3,0) :: nil]
whose virtue is that ‘lookups’ of its environment are simple.
The sequence of rewriting steps starting from the second use of the [, rule

and ending in the final suspension term can be collapsed into one use of a
more ‘powerful’ 3, rule: 3

(8L) (A [t1,0l + 1,0l +1,@nl :: €]) t2) — [t1,0l + 1,nl, (ta,nl) :: €]

This rule can be shown to be a derived rule of the suspension calculus. The
advantage to using it is that the intermediate merging steps can be avoided.

The example just considered actually illuminates a tradeoff between shar-
ing in structure walks realized through merging and sharing in reduction.
After the first use of the (3, rule, we chose above to propagate substitutions.
We could have chosen to rewrite the inner §,-redex instead, producing

ITOXN((#1 #2) #3)), 1,0, (t2,0) == nil], 1,0, (t3,0) :: nil].
In a graph-based implementation of reduction, following this course ensures
that this rewriting step is carried out before substitution propagation breaks
any sharing relative to it. Note that to fully realize the benefits of such

sharing, it is necessary to perform the two substitutions embedded in the
term in separate walks over the structure of A ((#1 #2) #3). There is, thus,

3 There is an unstated proviso on this rule that holds of all terms derivable from de Bruijn
ones using our reduction rules: the index of terms in e must be less than that of @nl.

7

NADATHUR

a dilemma between two different choices in reduction. However, this dilemma
is genuine only when there are real cases of shared redexes. Our experiments
reveal very few such situations in practice [9], indicating a preference for an
approach that attempts to combine structure traversals.

The second situation in which merging rules are useful arises when in-
dices need to be renumbered in a suspension that is substituted inside an
abstraction context. We illustrate this by continuing the reduction of the
term ((A((A (A ((#1 #2) #3))) t2)) t3). Using the reading rules from where
we left off, this term can be transformed into

(A ((#1 [[t2, 1,0, (t3,0) = nil], 0,1, nil])
[#3,3,1,Q0 :: ([t2, 1,0, (t3,0) :: nil],0) :: (¢3,0) :: nil])).
The subterm [[t2, 1,0, (t3,0) :: nil],0,1,nil] here corresponds to t, embedded
within two suspensions, with the outer suspension representing a ‘bumping
up’ of the indices for the free variables in the inner suspension, necessitated
by its insertion inside an abstraction. Using the merging rules, the indicated
subterm can be rewritten into [ts, 1,1, (¢3,0) :: nil], thereby combining the
different substitutions into one environment.
This use of the merging rules can also be reflected into a derived rule:

(bump) [t ol,nl, €],0,nl', nil] — [t,ol,nl + nl', €].

In an actual implementation of reduction, this rule can, in fact, be rolled into
the application of the reading rule r4.

The disadvantage of the bump rule is that it, once again, prefers sharing
in structure traversal to sharing in reduction. Actual loss in reduction sharing
here is also something that differentiates between the de Bruijn representa-
tion and a name based representation of bound variables in implementing (-
reduction: using the bump rule, the extra renumbering work in the de Bruijn
scheme is subsumed into an already necessary traversal of the structure of the
embedded term but with a possible loss in reduction sharing. As before, our
observation has been that in practice there are very few real opportunities for
sharing in reduction, indicating a preference for the bump rule whenever it is
applicable and also little downside in reduction to using the de Bruijn scheme.

Definition 3.1 We denote the reduction relation defined by the reading and
the bump rules by ... The relation obtained when the B and the B, rules are
also included is denoted by D>y .

The following proposition shows the coherence of our derived rules.

Proposition 3.2 The >, relation is confluent and strongly terminating. Fur-
ther, for any term t, if t>y5 1 then t>),,5 7. Conversely, if t>,,5 7, then there
are terms s and s' such that t>74 s, 5,8 and s>i,,s". Finally g 1s con-
fluent.

The reduction of a de Bruijn term to (head) normal form may be carried
out using solely the rules defining the > relation. The main disadvantage

8

NADATHUR

to not using the merging rules is that some opportunities for sharing in struc-
ture walks may be missed. It turns out that, with an leftmost-outermost
implementation of reduction, there are very few such cases in practice. *

4 Instantiatable Variables, Confluence and Unification

The current syntax of suspension expressions does not allow for instantiatable
or meta variables. Such variables may be introduced in one of two forms.

In the first form, these variables would be treated just as in the normal
lambda calculus. In particular, instantiations for them must respect the notion
of scope. Thus, if X is an instantiatable variable occurring within abstractions
binding x4, ..., z,, then it cannot be replaced by a structure that depends on
any of the abstractions. This logical view is actually the one that is needed
in pattern recognition applications. The term (all (Az or((P z),Q))), for in-
stance, functions as a recognizer for formulas with a universal quantification
over a disjunction whose right part is independent of the quantifier precisely
because () cannot be instantiated to a form that depends on .

Building this view of instantiatable variables into the suspension notation
is easy. At the level of syntax, we simply change the rule for terms to

(T) == (V) 1{C) [#KD) | (T) (T)) [(A(T)) [[KT), (N}, (N), (E)]
where (V') represents the category of such variables. To account for the

fact that these variables cannot be affected by substitutions generated by
B-contractions, we add the following to our reading rules:

(r8) [z, 0l,nl,e] — z, provided z is an instantiatable variable.

This rule is similar to the one for reading constants. Thus, it should not be
difficult to see that confluence and termination properties extend naturally
to the syntax that includes the new variables. Note also that the smaller
collection of rewrite rules discussed in Section 3 suffices for reducing terms
containing such variables to normal form.

The other possibility is to view instantiatable variables as placeholders
against which any wellformed term can be grafted. Such ‘graftable’ variables
appear initially to fly in the face of pattern matching applications. However,
the necessary constraints for such applications can be built in through suitable
preprocessing. Thus, consider the template (all (Azor((P z),@))) that in
de Bruijn notation would be written as (all (A(or (P #1) Q))). This term
may be transformed into (all (A (or ([P,0,1,nil], #1) [@,0,1,nil]))). By so
embedding P and () inside suspensions, we insulate them from a dependence
on the external abstraction.

This kind of a view can also be incorporated into the suspension notation.
The syntax of terms needs to be modified exactly as before. In contrast

4 There should, in fact, be no such cases if reduction is the sole operation on terms. All
observed cases originate from unification substitutions for the meta variables discussed later.

9

NADATHUR

to the earlier situation, however, no new rewrite rules need be added. The
rationale is that the effect of reduction substitutions on instantiatable variables
is unknown until their instantiations are themselves known. At a point where
these variables have been instantiated, the rewrite rules pertaining to the other
forms for terms suffice for computing the effects of reductions.

Let us denote by Dy, Dy, Drmg, and D the previously seen reduction
relations on the extended syntax. While >, and > must still be strongly
terminating, confluence properties are more problematic. The relation >4 is,
in fact, not confluent. Thus, consider the term ((A((AX) ¢1)) t2) in which X
is an instantiatable variable and ¢; and ¢, are terms in normal form. Three
distinct terms may be posited as ‘normal’ forms for this:

[[X,1,0,(t1,0) :: nil], 1,0, (tz, 0) :: nil],
[[X,2,1,Q0 :: (¢2,0) :: nil], 1,0, ([t1,1,0, (¢2,0) :: nil],0) :: nil], and
[X,2,0,([t1, 1,0, (ts,0) :: mil], 0) :: (t2,0) :: nal].

Adding the merging rules changes the picture: the first two terms then reduce
to the last. The following proposition can, in fact, be shown:

Proposition 4.1 Assuming a collection of terms that includes graftable vari-
ables, the relations Dy, and Dy,p, are both confluent.

The key observation in the proof of this proposition is that associativity for
composing substitutions as described in Proposition 2.3 continues to hold.
Interest in the graftable interpretation of meta variables arises from the
new approach to higher-order unification described in [5] that exploits such
variables. The usual procedure [7] for the (typed) lambda calculus is based
on reducing any given unification problem into a set of equations of the form

Azy AT, (Xt o b)) = Az AT, (@ sy Ll os))

where X is an instantiatable variable and @ is a constant or one of the variables

x1,...,%,. Towards solving such an equation, substitutions of the form
AW AWy, (Q (Hy wy v wyy) - (Hp wy .. why)),
where @' is either @ or one of wy,...,w,, and Hy,..., H, are new instantiat-

able variables, are posited for X. Such substitutions try to get the heads of the
two terms that are to be unified to match while delaying decisions concerning
the arguments. The arguments of the substitution term are, in fact, chosen
so as to not preclude any dependencies on the arguments of the original term.
For example, if @ = @ and, correspondingly, [= k, then this substitution will
reduce the unification problem to one of simultaneously solving the equations

)\$1)\.Z‘n(HZ tl tm):)\$1)\iCnSZ

for 1 <2 < I. Note that H; is free to ‘use’ the arguments t,,...,%,, in any
fashion deemed necessary.

The above transformation involves the construction of a complicated term,
the contraction of several 3-redexes and a subsequent calculation of their sub-

10

NADATHUR

stitution effects. Using explicit substitutions and ‘graftable’ variables the ef-
fort involved in this percolation of dependency information can be consider-
ably reduced. By substituting the term Aw; ... Aw,, Y where Y is a graftable
variable for X, the original equation can be reduced at the outset to

Az1 . A, [Y,m, 0, (8,,0) o (8,0) = ndl] = Azq o Az, (@ sy ... 8p).
Notice that the considered substitution for X is meaningful only if ¥ can
later be replaced with something that might contain the variables wy, ..., wy,,

1.e., Y must be graftable. Now, after this reduction, a term of the form
(@ Hy, ... H;) can be posited for Y, allowing the equation to be transformed
into ones of the form

Azq . A, [Hiyym, 0, (8,,0) .o (t) = nil] = Az .. Ay s;

for 1 < ¢ < [. Significantly, the formation of a complicated term involving
applications and the subsequent reductions simply for the purpose of trans-
mitting dependency information can be avoided.

The above discussion actually indicates a tradeoftf between different ap-
proaches to implementing higher-order unification. The approach based on
graftable variables has the mentioned benefits but it also requires the use of a
more complete, and complicated, set of environment merging rules. An inter-
esting observation is that the new approach to unification depends mainly on
the generation of (head) normal forms that do not contain nested suspensions
at the top level. A possibility is that a special control regimen with a reduced
set of rewrite rules will ensure that only such forms are produced.

5 Comparison with Other Explicit Substitution Calculi

Three properties are coveted for explicit substitution notations: confluence in
a situation where graftable meta variables are included, the ability to compose
substitutions and the preservation of strong normalizability for terms in the
underlying lambda calculus. Of these, combinability of substitutions seems
to be the most important for metalanguage implementations. Unfortunately,
most explicit substitution calculi seem not to include this facility. Particular
calculi sacrifice other properties as well. The Av-calculus preserves strong
normalizability [2] but it does not admit meta variables. The As.-calculus
permits meta variables and is confluent even with this addition [8] but does
not preserve strong normalizability [6]. The M, -calculus alone both admits
meta variables and preserves strong normalizability [4].

The two calculi that do permit the composition of substitutions are the
Ao-calculus [1] and the suspension notation. There are several similarities be-
tween the two calculi that we hope to demonstrate via translation functions
in a longer paper. We restrict ourselves here to mentioning two differences
that might be significant to low-level implementation tasks. First, it appears
easier in our calculus to separate out rewrite rules based on function and to
thereby identify subsets like that in Section 3 that are easier to use in prac-

11

NADATHUR

tice. The second difference concerns the way in which the adjustments to
the indices of terms in the environment are encoded. In our notation, these
are not maintained explicitly but are obtained from the difference between
the embedding level of the term that has to be substituted into and an em-
bedding level recorded with the term in the environment. Thus, consider a
suspension term of the form [t1,1,nl, (t2,nl’) :: nil]. This represents a term
that is to be obtained by substituting ¢, for the first free variable in ¢; (and
modifying the indices for the other free variables). However, the indices for
the free variables in ¢t must be ‘bumped up’ by (nl — nl’) before this sub-
stitution is made. In the Ao-calculus, the needed increment to the indices
of free variables is maintained explicitly with the term in the environment.
Thus, the suspension term shown above would be represented, as it were, as
[t1,1,nl, (t2, (nl — nl")) :: nil]; actually, the old and new embedding levels are
needed in this term only for determining the adjustment to the free variables
in ¢; with indices greater than the old embedding level, and devices for rep-
resenting environments encapsulating such an adjustment simplify the actual
notation used. The drawback with this approach is that in moving substi-
tutions under abstractions every term in the environment is affected. Thus,
from a term like [(At1),1,nl, (tg, (nl — nl")) :: nil], we must produce one of
the form (A [tq,2,nl 4+ 1,@1 :: (t5,nl — nl’ + 1) :: nil]). In contrast, using our
notation, it is only necessary to add a ‘dummy’ element to the environment
and to make a local change to the embedding levels of the overall term.

Both the Ao-calculus and the suspension notation admit graftable meta
variables. The former calculus is known not to preserve strong normalizability
[10]. For the suspension notation, this is an open question. We conjecture that
it actually does preserve this property.

6 Conclusion

We have exposed the suspension notation in this paper with an eye to its use
in metalanguage implementations. Certain questions raised in this discussion
need a fuller treatment. In Section 4, we have considered the possibility of
utilizing our notation augmented with graftable meta variables in realizing
higher-order unification. In reality, this procedure needs to be spelled out
in detail and a careful, implementation level comparison with an approach
that does not use such variables needs to be done. The benefits of the dif-
ferent treatments of meta variables are likely to depend on the way in which
substitutions are generated and, for this reason, the experimentation should
also consider special cases of higher-order unification such as that described
in [11]. In another direction, it is of interest to manifest the connections be-
tween the suspension notation and the Ao-calculus more completely, possibly
via translations between them. Finally, the question of whether or not the
suspension notation preserves strong normalizability needs to be settled. We
hope to consider some of these aspects in a sequel to this paper.

12

NADATHUR
References

[1] M. Abadi, L. Cardelli, P.-L. Curien, and J.-J. Lévy. Explicit substitutions.
Journal of Functional Programming, 1(4):375-416, 1991.

[2] Z. Benaissa, D. Briaud, P. Lescanne, and J. Rouyer-Degli. Av, a calculus
of explicit substitutions which preserves strong normalization. Journal of
Functional Programming, 6(5):699-722, 1996.

[3] N. de Bruijn. Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the Church-Rosser
Theorem. Indag. Math., 34(5):381-392, 1972.

[4] R. David and B. Guillaume. A A-calculus with explicit weakening and explicit
substitution. To appear in Mathematical Structure in Computer Science, 2000.

[5] G. Dowek, T. Hardin, and C. Kirchner. Higher-order unification via explicit
substitutions. Information and Computation, 157:183-235, 2000.

[6] B. Guillaume. The As.-calculus does not preserve strong normalisation. Journal
of Functional Programming, 10(4):321-325, July 2000.

[7] G. Huet. A unification algorithm for typed A-calculus. Theoretical Computer
Science, 1:27-57, 1975.

[8] F. Kamareddine and A. Rios. Extending the A-calculus with explicit
substitution which preserves strong normalization into a confluent calculus on
open terms. Journal of Functional Programming, 7(4):395-420, 1997.

[9] C. Liang and G. Nadathur. Tradeoffs in the intensional representation of
lambda terms. In S. Tison, editor, Rewriting Techniques and Applications,
Lecture Notes in Computer Science. Springer-Verlag, July 2002. (To appear).

[10] Paul-André Mellies. Typed A-calculi with explicit substitutions may not
terminate. In M. Dezani-Ciancaglini and G. Plotkin, editors, Typed Lambda
Calculi and Applications, number 902 in Lecture Notes in Computer Science,
pages 328-334. Springer, 1995.

[11] D. Miller. A logic programming language with lambda-abstraction, function
variables, and simple unification. Journal of Logic and Computation, 1(4):497—
536, 1991.

[12] G. Nadathur and D.J. Mitchell. System description: Teyjus—a compiler and
abstract machine based implementation of AProlog. In H. Ganzinger, editor,
Automated Deduction—-CADE-16, number 1632 in Lecture Notes in Artificial
Intelligence, pages 287—291. Springer-Verlag, July 1999.

[13] G. Nadathur and D.S. Wilson. A notation for lambda terms: A generalization
of environments. Theoretical Computer Science, 198(1-2):49-98, 1998.

[14] Z. Shao, C. League, and S. Monnier. Implementing typed intermediate
languages. In Proc. 1998 ACM SIGPLAN International Conference on
Functional Programming, pages 313-323. ACM Press, September 1998.

13

