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Abstract

In this paper we describe the usage of temporal logic

and model checking in a parallelizing compiler to an-

alyze the structure of a source program and locate op-

portunities for optimization and parallelization. The

source program is represented as a process graph in

which the nodes are sequential processes and the edges

are control and data dependence relationships between

the computations at the nodes.

By labeling the nodes and edges with descriptive

atomic propositions and by specifying the conditions

necessary for optimizations and parallelizations as tem-

poral logic formulas, we can use a model checker to

locate nodes of the process graph where particular opti-

mizations can be made. To discover opportunities for

new optimizations or modify existing ones in this paral-

lelizing compiler, we need only specify their conditions

as temporal logic formulas. We do not need to add or

modify the code of the compiler. This greatly simplifies

the process of locating optimization and parallelization

opportunities in the source program and makes it eas-

ier to experiment with complex optimizations. Hence,

this methodology provides a convenient, concise, and

formal framework to carry out program optimizations

by compilers.

1 Introduction

There are many known optimizing and parallelizing
program transformations [ABC+88, ASU86, CFS90,
CHH89, HAM95, HMPT94, KP79, PEH95, Pol88,
Wol96, ZC90] that can be applied by a compiler to sig-
nificantly decrease the execution time of the program.
These transformations depend on both the peculiar-
ities of the machine architecture and on the semantic
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properties of the language constructs that undergo such
transformations. However, there is no systematic way
to determine the context in which these transforma-
tions can be performed while preserving the computa-
tion expressed by the transformed constructs. Hence,
discovering where in the program such transformations
can be made is a difficult problem. In most instances,
the compiler represents the program as a graph which
is searched for opportunities to make these transfor-
mations. Neither the graph nor the search are based
on the source language specification rules and therefore
they cannot lead to a systematic approach to discov-
ering parallelism opportunities. Usually this search-
ing process is performed by code written by the com-
piler implementer and is performed in various phases
of the compilation process. Writing such code is time
consuming and error prone and thus makes adding
and modifying optimization and parallelization trans-
formations difficult and may affect program portabil-
ity. These difficulties prevent compiler developers from
fully exploring the range of optimization and paral-
lelization transformations.

To encourage compiler designers to experiment with
varied and complex transformations, a methodology is
needed that allows the properties of optimization and
parallelization transformations of source language con-
structs to be expressed by formulas. These formu-
las are compositional semantic macro-operations ex-
pressing properties of the computation denoted by the
source language construct in terms of the properties
of the construct components. The semantic proper-
ties we use characterize optimization conditions and
are parameterized temporal logic formulas where pa-
rameters are properties of the construct components.
This methodology is obtained by (1) developing a logic
that allows the expression of optimization properties
and (2) attaching formulas expressing these properties
to the language specification rules. In this proposal
we describe such a methodology which allow the com-
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piler developer to write temporal logic formulas instead
of computer code to find optimization and paralleliza-
tion opportunities. This encourages more experimenta-
tion with advanced optimizations and parallelizations
as the compiler developer is not burdened with modify-
ing code which locates optimization opportunities, but
must only modify the formulas which specify the condi-
tions necessary for the optimization. This methodology
also provides the foundation for an interactive dialog
between the compiler and the programmer which al-
lows the programmer to control the granularity of the
sequential processes in the program and thus tune the
performance of the parallel program.

The methodology presented in this paper relies on
an extension to the branching time temporal logic
called Computation Tree Logic, CTL, and its model
checking algorithms [CES86]. Model checking is a for-
mal verification technique often used to check the cor-
rectness of real-time and concurrent programs by writ-
ing the correctness specification as a temporal logic for-
mula and using a model checker to determine which
states in a graph representation of the program, called
a model, satisfy the formula. Here, the compiler devel-
oper can specify the necessary conditions for a partic-
ular optimization or parallelization as a temporal logic
formula and a model checker is then used to find, in a
graph representation of the source program, the loca-
tions in the program which satisfy the formula and are
thus candidates for the optimization.

The graph representation of the source program
used in our compiler is a directed graph called a process
graph. When the process graph is labeled with atomic
propositions, it is referred to as a process model. The
nodes of the model represent sequential processes dis-
covered in the source program. These processes are
the units of computation which are executed sequen-
tially and are the components of a parallel program.
The programmer can control the granularity of the se-
quential processes by specifying as the units of com-
putation those types of language constructs desired to
be executed sequentially. These nodes are labeled by
atomic propositions representing fundamental proper-
ties of the computations at the nodes. The edges rep-
resent the control and data dependency relationship
between the nodes. Both nodes and edges are labeled
with descriptive propositions. We thus extend the tem-
poral logic CTL and its satisfaction rules to allow for-
mulas which reference these edge propositions. Tempo-
ral logic formulas written over these propositions allow
the compiler developer to describe the conditions nec-
essary for particular optimizations. Thus, during com-
pilation, a model checking algorithm can be invoked to
find the computations in the program that satisfy the

conditions described by the optimization formula.
Specifying optimizations formally in a temporal

logic provides a formal foundation for program opti-
mizations. In addition, this technique promotes quick
implementation of new program optimizations because
a compiler is obtained by automatic integration of
stand alone algorithms (scanner, parser, semantic gen-
erator, code generator) [Rus97] that are determined by
the specification rules and allow independent develop-
ment of the language lexicon, constructs, and types.
The compiler developer writes formulas, not programs,
to find optimizations and attaches them to the rules
specifying the constructs involved in the optimization
targeted by these formulas. Consequently this tech-
nique does not freeze the notation a compiler can han-
dle thus allowing a dynamic development of the com-
piler within a dynamic problem domain. Therefore this
technique can be used to improve the quality of the
compiler, adapting the compiler dynamically to lan-
guage changes while experimenting with new optimiza-
tion strategies.
The fundamental property on which much of our re-

search is developed results as a consequence of a differ-
ent way of solving problems with a computer which de-
parts from the Von Neumann program execution model
with its fetch, analyze, execute, and store operation
cycle. Rather than transforming a problem solving al-
gorithm into a sequence of fetch, analyze, execute op-
eration cycles we use universal constructs of algebra
to develop universal algorithms over problem domains
that map problem expressions into problem solutions.
An example is the universal algorithm that evaluates
an expression by extending a function defined on the
free generators of the expression (taking values in the
types of the generators) to a homomorphism that maps
from the problem (the term algebra that contains the
expression as a valid element) to the solution (the al-
gebra of values where the term algebra is interpreted).
Assuming that the term algebra is freely generated and
finitely specified this universal algorithm can be pa-
rameterized by the specification rules of the problem
expression algebra and can be adapted to all kinds of
problems that involve expression evaluation, such as
language translation, theorem proving, text-rewriting,
etc. The essential ingredient in this methodology is the
universal construct of algebra known as the unique ex-
tension lemma [BL69, Rus91], which is further used as
follows:

• Use structural properties of the specification rules
to identify valid stand-alone components of the
objects (programs, statements, expressions, etc.)
specified by these rules. We employ structural
properties of BNF specification rules of the form



A0 = t0A1 . . . tn−1Antn where n ≥ 0, t0, t1, . . . , tn
are fixed strings called terminals, and A1, . . . , An

are variables called non-terminals that stand for
valid constructs specified by BNF rules of the form
Ai = ti0A

i
1 . . . t

i
ni−1A

i
ni
tini
, [Rus87, RH94].

• Provide evaluation mechanisms that when given
the value of the objects wi, 1 ≤ i ≤ n, speci-
fied by the rules Ai = ti0A

i
1 . . . t

i
ni−1A

i
ni
tini
, 1 ≤

i ≤ n, construct the value of the object w spec-
ified by rule A0 = t0A1 . . . tn−1Antn using wi,
1 ≤ i ≤ n, as components. We use semantic
macro-operations [RH84, Lee90, RVW96] for this
purpose.

• Provide proof rules that allow formal correct-
ness proofs of the synthesis process of the
value of the object specified by the rule A0 =
t0A1 . . . tn−1Antn from its components specified
by the rules Ai = ti0A

i
1 . . . t

i
ni−1A

i
ni
tini
, 1 ≤ i ≤ n.

We use homomorphisms, derived operations, and
embeddings [BL69, Coh81, Rus91] for this pur-
pose.

We use this methodology for the construction of alge-
braic compilers [Rus95], and for the automatic genera-
tion of model checking algorithms [RVW96, RVW97b].
Here we illustrate this principle by integrating a model
checker algorithm into a compiler as a program paral-
lelization tool. For that we develop a temporal logic
that allows us to express properties of control flow
and data dependencies of a program and propose a
formal method of specifying locations where program
optimizations can be made.
Section 2 of the paper describes the temporal logic

we use to express program properties checked during
program transformation by the compiler. Section 3 is
devoted to the Kripke model we use as our program
representation graph called process model. Here we
specify the atomic propositions that we use to con-
struct temporal logic formulas expressing program op-
timization and parallelization properties. Section 4 dis-
cusses, with examples, the mechanism of program par-
allelization by the compiler using temporal logic and
model checking. Finally, section 5 discusses some pre-
vious results and introduces the reader to some of the
future developments we are currently pursuing.

2 Temporal logic and model checking

Model checking is a formal verification technique
used to validate the correctness of some system, be
it a concurrent or real-time program or representa-
tion of a physical system. The system is represented

by a model that describes how the state of the sys-
tem changes in time. A Kripke structure or model
M = <N,E, P : AP → 2N> is a directed graph with
a finite set of nodes N , a finite set of edges E, and
a proposition labeling function P which maps atomic
propositions from the set AP to the set of nodes in
N on which those propositions are true. A path in
M is a sequence of nodes n0, n1, . . . such that ∀i ≥ 0,
(ni, ni+1) ∈ E.
A specification of the correctness of the system is

written as a temporal logic formula over the proposi-
tions labeling the nodes of the model. Model checking
is the problem of finding on which nodes, n, in a model
M a temporal logic formula f is satisfied. In this pa-
per we describe CTL, Computational Tree Logic, a
branching time temporal logic, developed by Emerson,
Clarke and Sistla in [CES86] and an extension called
CTLe [RVW97b].

CTL formulas are defined by the following rules:

1. true, false and any atomic proposition ap ∈ AP

are CTL formulas.

2. if f1 and f2 are CTL formulas then ¬f1, f1 ∨ f2,
and f1 ∧ f2 are CTL formulas.

3. if f1 and f2 are CTL formulas then AXf1, EXf1,
A[f1Uf2], and E[f1Uf2] are CTL formulas.

The temporal operator X (next-time) is used in the
formula AXf1 (respectively, EXf1) which is satisfied
on a node if all (respectively, on one or more) successors
satisfy f1. The temporal operator U (until) is used in
the formula A[f1Uf2] (respectively, E[f1Uf2] ) which
is satisfied on a node if on all (respectively, on one or
more) paths beginning on this node there is a node on
which f2 holds and f1 hold on all intermediate nodes.
The formal rules that determine if a node n in a

model M satisfies a formula f , denoted M, n |= f or
n |= f ifM is assumed, are given below:

n |= ap iff n ∈ P (ap)
n |= ¬f iff not n |= f

n |= f1 ∧ f2 iff n |= f1 and n |= f2

n |= f1 ∨ f2 iff n |= f1 or n |= f2

n |= EXf1 iff ∃m ∈ N [(n,m) ∈ E ∧m |= f1]
n |= AXf1 iff ∀m ∈ N [(n,m) ∈ E ⇒ m |= f1]
n |= A[f1 U f2] iff ∀ paths (n0, n1, . . .) with n = n0

[ ∃i [i ≥ 0 ∧ ni |= f2∧ ∀j[0 ≤ j < i⇒ nj |= f1] ] ]
n |= E[f1 U f2] iff ∃ a path (n0, n1, . . .) with n = n0

[ ∃i [i ≥ 0 ∧ ni |= f2∧ ∀j[0 ≤ j < i⇒ nj |= f1] ] ]

We extend CTL so that propositions labeling the
edges of the model can be used to quantify the paths
examined in determining the satisfaction of temporal



logic formulas. This extension of CTL with edge-
formulas, which we call CTLe, has important appli-
cations in reasoning about dynamic systems (such as
processes in parallel programs). We use this logic to
reason about the parallel processes discovered in a se-
quential program by a parallelizing compiler.
To label the edges of a model with propositions, we

extend the model toM = <N,E, Pn : APn → 2N , Pe :
APe → 2E>, where N is a finite set of nodes (as be-
fore), E is a finite set of edges, Pn maps node atomic
propositions in APn to the set of nodes on which they
hold, and Pe maps atomic edge propositions in APe

to the set of edges on which they hold. Here, the
model may be a multi-graph, that is, there may be
more than one edge between the same two nodes. This
is required in our application since there may be more
that one dependency between the same two computa-
tions in the source program. If these computations are
represented by distinct nodes, then the propositions
describing these distinct dependencies must be kept on
separate edges. An edge e from node s to node t, can-
not be uniquely identified by the ordered pair (s, t),
thus, we introduce the notation σ(e) and τ(e) to iden-
tify respectively, the source and target of an edge e.
For this reason, a path is redefined to be a sequence
of nodes and edges n0, e0, n1, e1, n2, e2, . . . where ∀i ≥
0, ni ∈ N ∧ ei ∈ E ∧ ni = σ(ei) ∧ ni+1 = τ(ei).
To allow path quantification, we extend the syntax

and semantics of CTL to create CTLe where we define
edge formulas over the edge propositions constructed
by the following rules:

1e. true, false and any atomic edge proposition ape ∈
APe are CTL

e edge formulas.

2e. if f1 and f2 are CTL
e edge formulas, so are ¬f1,

f1 ∨ f2, and f1 ∧ f2.

If an edge e ∈ E satisfies an edge formula f for a model
M we writeM, e |= f or e |= f . The formal rules that
determine the satisfaction of edge formulas are:

e |= ape iff e ∈ Pe(ape)
e |= ¬f iff not e |= f

e |= f1 ∧ f2 iff e |= f1 and e |= f2

e |= f1 ∨ f2 iff e |= f1 or e |= f2

To construct CTLe formulas we use the same log-
ical and temporal operators used in CTL. However,
the temporal operators in CTLe have as an additional
argument the edge formula which describes the con-
ditions that must be met on the edges of the paths
traversed in determining the satisfaction of CTLe for-
mulas. To preserve the familiar notation of the CTL
temporal operators, the edge formulas in CTLe are

written as subscripts to the CTL temporal operators
rather than as the second arguments of these opera-
tors. Thus, although the arity of the CTL temporal
operators changes when they are employed in CTLe

formulas, a familiar notation can still be used. CTLe

formulas are defined by the following rules:

1′. true, false and any atomic node proposition ap ∈
APn are CTL

e formulas.

2′. if f1 and f2 are CTL
e formulas then ¬f1, f1 ∨ f2,

and f1 ∧ f2 are CTL
e formulas.

3′. if f1 and f2 are CTLe formulas, and fe is a
CTLe edge formula, then AX{fe}f1, EX{fe}f1,
A[f1U{fe}f2], and E[f1U{fe}f2] are also CTL

e for-
mulas.

The formula AX{fe}f1 (respectively, EX{fe}f1) is sat-
isfied on a node if all (respectively, one or more) succes-
sors satisfy f1 and the edges to these successors satisfy
the edge formula fe. The formula A[f1U{fe}f2] (re-
spectively, E[f1U{fe}f2] ) is satisfied on a node if on
all (respectively, on one or more) paths beginning on
this node there is a node on which f2 holds, f1 holds on
all nodes before this node, and each edge in the path
before the node on which f2 holds satisfies fe.
The formal rules defining the satisfaction of the

CTLe formulas are:

n |= ap iff n ∈ P (ap)
n |= ¬f iff not n |= f

n |= f1 ∧ f2 iff n |= f1 and n |= f2

n |= f1 ∨ f2 iff n |= f1 or n |= f2

n |= EX{fe}f1 iff ∃e ∈ E, n = σ(e) ∧
(e |= fe ∧ τ(e) |= f1)

n |= AX{fe}f1 iff ∀e ∈ E, n = σ(e)⇒
(e |= fe ∧ τ(e) |= f1)

n |= A[f1 U{fe} f2] iff ∀ paths (n0, e0, n1, e1, . . .),
n = n0 and ∃i[i ≥ 0 ∧ ni |= f2∧
∀j[0 ≤ j < i⇒ (nj |= f1 ∧ ej |= fe)] ]

n |= E[f1 U{fe} f2] iff ∃ a path (n0, e0, n1, e1, . . .),
n = n0 and ∃i[i ≥ 0 ∧ ni |= f2∧
∀j[0 ≤ j < i⇒ (nj |= f1 ∧ ej |= fe)] ]

As an example, Figure 1 shows a model with six
nodes, 1, 2, 3, 4, 5, 6, labeled with node propositions
P , Q, and R and with edge propositions a, b, and c.
State 1 satisfies AX P but not AX{b}P since although
all successors satisfy P , edge (1,4) does not satisfy b.
State 1 also satisfies E[P U{b}R] by the path 1,3,6.
State 2 satisfies A[P U{a}R] since edges in both paths
2,5,6 and 2,6 satisfy a, nodes 2 and 5 satisfy P and
node 6 satisfies R.

Theorem: CTL and CTLe have the same expressive
power.
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Figure 1. Example of a CTLe model

Proof: Any CTLe formula f and edge labeled model
M can be restructured, respectively as a CTL formula
f ′ and traditional modelM′ such that the set of nodes
in M which satisfy f is the same as the set of nodes
inM′ which satisfy f ′. The modelM′ is constructed
from the modelM by the procedure:

1. For each node n ∈ N we construct a node n′ ∈ N ′

and label n′ with the propositions labeling n.

2. For each edge ei ∈ E construct two edges, e′i, e
′′
i ∈

E′ and a node n′i ∈ N ′ such that the source of e′i
is the source ei, the target of e

′
i is n

′
i, the source

of e′′i is n
′
i, and the target of e

′′
i is the target of ei.

That is, σ(e′i) = σ(ei), τ(e
′
i) = n′i, σ(e

′′
i ) = n′i, and

τ(e′′i ) = τ(ei). Node n
′
i is labeled with the propo-

sitions which label ei and with the new proposition
edge, to indicate that this node replaced an edge
in the edge labeled model.

In the new model, the formula edge holds on all new
nodes and the formula ¬edge holds on all original
nodes. A CTLe formula f on the model M is an ab-
breviations for the CTL formula f ′ on the model M′

obtained by the following rules:

1. AX{fe}f is the abbreviation of AX((fe ∧ edge) ∧
AX(f ∧ ¬edge))

2. EX{fe}f is the abbreviation of EX((fe ∧ edge) ∧
EX(f ∧ ¬edge))

3. A[f1U{fe}f2] is the abbreviation of A[((f1 ∧
¬edge) ∨ (fe ∧ edge))Uf2 ∧ ¬edge)]

4. E[f1U{fe}f2] is the abbreviation of E[((f1 ∧
¬edge) ∨ (fe ∧ edge))U(f2 ∧ ¬edge)]

It is easy to show thatM, n |= f iffM′, n |= f ′, where
f is the abbreviation of f ′, q.e.d.

One of the major goals in our compiler development
methodology is to make the process of compiler devel-
opment as simple as possible. Hence, despite the fact
that CTL and CTLe have the same expressive power,
CTLe is required due to the complexity of the CTL
models and formulas expressing paths properties. In
addition, CTLe formulas express more naturally the
optimization and parallelization properties. This mo-
tivates our use of CTLe and its model checker in the
compiler.

3 A program abstraction model

The process graph is the intermediate representation
of the source program used by our parallelizing com-
piler [RVW97a]. When atomic propositions label the
nodes and the edges, we view this graph as a Kripke
structure, and call it the process model. Thus, we can
use a model checker and CTLe formulas to analyze the
source program. Here we describe the methodology we
use to construct the process model we use to identify
optimization and parallelization opportunities.
A process graph is a directed graph in which nodes

represent units of computation found in a source pro-
gram by a parallelizing compiler and edges represent
control and data dependency relationships between
these computations. The process graph is not a tra-
ditional “control flow graph” whose edges direct the
flow of control from one computation to the next. The
nodes of a process graph represent sequential processes,
i.e., stand alone computations; the edges represent the
minimal restrictions on the execution order of the com-
putations represented by the nodes required to ensure
a correct execution of the computation represented by
the graph.
To determine how a source program is broken into

the pieces that are represented by the nodes of a pro-
cess graph we define units of computation to be types
of computations that the programmer chooses to be
executed sequentially. Thus, constructs in the source
program that are not units of computation are either
too lightweight to stand as individual processes and
must be combined with other program constructs, or
have as their components units of computation and are
therefore represented as graphs whose nodes are units
of computation and edges are control and data depen-
dencies between the nodes of their component graphs.
For example, if assignment statements are units of com-
putation, then an assignment statement in a source
program will be represented as a node, whereas the ex-
pression on its right hand side is too lightweight to be
a process; a sequence of assignment statements is rep-
resented as a collection of nodes each representing the



individual assignment statements and edges represent-
ing the control and data dependencies between them.
Since computations are represented by language con-
structs, the rules specifying valid language constructs
allow us to provide the following formal definition of
the unit of computation: a unit of computation is any

valid construct recognized by one of the rules marked

by the programmer as specifying units of computation.
That is, the programmer specifies which rules generate
units of computation, and the compiler in turn gen-
erates sequential code from any construct recognized
by these rules. By allowing the programmer to specify
which constructs will be defined as units of computa-
tion the programmer can control the granularity of the
processes executing the parallel program generated by
the compiler.
Once a computation from the source program has

been identified as a unit of computation, it is repre-
sented as a node in the process graph. A node, n, is a
tuple <Types, State, T ransition> where:

• Types is the set of types of the variables and con-
stants used in the computation;

• State is the tuple <V, υ:V → Types>, where V is
the set of variables in the computation. Since dur-
ing the compilation process the values of the vari-
ables in V may not be known, υ maps a variable
to its type instead of mapping it to its value. This
provides an approximation to the variable value
which used in the abstract interpretation of the
program [CC77].

• Transition: υ → υ′ implements the computation
by mapping υ, the values of the the variables V
before the computation, to υ′, the values of the
variables in V after the computation.

By VW (n) and VR(n) we denote the sets of variables
which are written (i.e., defined) and read (i.e., used) in
the computation v → v′ on node n, respectively. Thus,
if assignment statement has been specified as a unit
of computation, an assignment statement x = i * y

where x and y are real variables and i is an integer
variable would be represented by the node

<{Real, Integer}, <{x, y, i}, υ = {x→ Real, y →
Real, i→ Integer}>, {x′ = i ∗ y, y′ = y, i′ = i}>

where x′, y′ and i′ represent the new values of the vari-
ables after the computation. The value of υ is specified
at compilation time using universal constants (that can
be chosen to be the type names) and is preserved by
program execution.
Each time a graph is constructed, two special nodes,

denoted e and x, are created which perform no com-
putation but stand for the entry and the exit points

of the computation represented by the graph. Hence,
when a unit of computation is discovered and its com-
putation is represented by a single node n, the graph
for this computation contains three nodes, e, n, x, and
two edges, e → n and n → x, i.e., this graph has the
shape e → n → x. The e → n and n → x edges are
control dependency edges since e initiates the execution
of n and n must complete before x.
Each node in the process graph is also labeled with

descriptive atomic propositions to create the process
model. All unit of computation nodes are labeled by
the proposition unit, the entry node is labeled with
proposition e, and the exit node is labeled with propo-
sition x.
In the construction of graphs from nodes and other

graphs we restrict our presentation in this paper to
four graph compositions, functional, branching, enu-
merated repetition, and conditional repetition. These,
respectively, correspond to the source language com-
position operations sequential composition, if-then-else,
do loop and while loop of the sample source language in
this paper. A graph composition of component graphs
is performed by a parallelizing compiler as the corre-
sponding source language construct is recognized by a
parser. For example, when a do loop is discovered by
the parser in the source program, a graph is created
with the enumerated repetition graph composition op-
erator using as components the graph previously con-
structed for the loop body and information from the
loop used to label a loop header node. The composition
is expressed by setting precedence relationships (con-
trol and data dependencies) between the nodes in the
component graphs and is constructed as labeled edges

between the nodes. Each source language composition
may define a relationship, ≺, between two nodes n1 and
n2, denoted, n1 ≺ n2, that indicates that n1 would exe-
cute before n2 in a sequential execution of the program.
Assuming that in a particular program with nodes n1

and n2 an instance of n1 may execute before an in-
stance of n2, then we have:

1. The computation represented by the node n2 is
data flow dependent on the computation repre-

sented by the node n1, n1
f
→ n2, if VW (n1) ∩

VR(n2) 6= ∅.

2. The computation represented by the node n2 is
data anti dependent on the computation repre-
sented by the node n1, n1

a
→ n2, if VR(n1) ∩

VW (n2) 6= ∅.

3. The computation represented by the node n2 is
data output dependent on the computation rep-
resented by the node n1, n1

o
→ n2, if VW (n1) ∩

VW (n2) 6= ∅.



The consistency of the computations at n1 and n2 re-

quires that if n1
d
→ n2, d ∈ {f, a, o}, then an instance

of the computation at n1 executes before an instance
of the computation at n2.

The data dependency edges are labeled also by
propositions describing the distance of the data depen-
dency [Ban88]. The distance of a data dependency
between two nodes n1 and n2 (which may be the same
node) is defined for each loop ` enclosing both nodes as
the number of iterations of loop ` between the execu-
tion of n1 and the subsequent execution of n2 causing
the data dependency. That is, if during iteration i of
loop `, n1 writes a value to a variable which is read
by n2 in iteration j, j ≥ i, then the data dependency
distance over loop ` is j− i. For example, if during the
iteration i of `, n1 writes a value to an array element
that is read in n2 on the iteration i + 1 of `, the data
dependency distance is 1 since i+ 1− i = 1, i.e., there
was one iteration between the instances of n1 and n2

that caused the dependency. In the general case, the
distance of a data dependency may not be a constant
value, but may change for different instances of n1 and
n2; this is a non-constant distance data dependency.
For example, in a loop with index variable I, a writing
array reference A[2 ∗ I] on node n1 and a reading ar-
ray reference A[I] on n2 (both enclosed in `) causes a
non-constance data dependency since a data flow de-
pendency exists between iterations 1 and 2, 2 and 4,
3 and 6, etc. Data dependencies that may have a dis-
tance of 1 or more for an enclosing loop ` are called
loop carried dependencies or dependencies carried by

loop `. The data dependency distances are computed
by solving a set of linear equations derived from the in-
dex expressions used in the loop body ` [Ban88]. Data
dependencies between nodes that are not enclosed in
the same loop structure are called loop crossing data
dependencies, because they cross the boundary of a
loop.

In the process model data dependency edges are
labeled with propositions describing the data depen-
dency distance for each enclosing enumeration loop.
Each proposition is indexed by the enclosing loop la-
bel and by a distance category. That is, for a loop `, a
data dependency is labeled with D{`,0}, D{`,+}, D{`,∗},
or D{`,×} to indicate respectively a zero distance data
dependency, positive distance data dependency, non-
constant or unknown distance data dependency, and
loop crossing data dependency.

The simplest graph construction results from the
functional composition of two unit of computation
nodes, n1 and n2. This graph will consist of four nodes:
e, n1, n2, and x, and control dependency edges e→ n1,
e→ n2, n1 → x, and n2 → x. We refer to this as func-

tional composition since the computation computed by
the graph is the functional composition of the transi-
tion functions on nodes n1 and n2. Formally, if g1

and g2 are process graphs then g1 ⊕ g2 is a the graph
representing the functional composition of the compu-
tations represented by g1 and g2 and has the shape in
Figure 2. If there is a data dependency (flow, anti,
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Figure 2. Functional composition

or output) from a node n1 of g1 to a node n2 of g2

requiring the sequential execution of some component

nodes, a data dependency edge is added, n1
d
→ n2,

d ∈ {f, a, o}, which ensures the correct execution order
of the computations at the nodes. If there were no such
data dependencies, there would be no edges between g1

and g2, indicating that they could be executed in paral-
lel. The graph representing the functional composition
g1 ⊕ g2 has no control flow edges from g1 to g2 since
they are not necessary. The data dependency edges
ensure the correct execution order or there is no data
dependency and the computations at the nodes of g1

and g2 can be executed concurrently. This allows us
to keep a minimal set of edges representing restrictions
on the process execution order.

The branch composition of two graphs g1 and g2

and a predicate p is denoted by Br(p, g1, g2) and has
the shape in Figure 3, where true and false are control
dependencies.
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Figure 3. Branch composition

An enumeration loop represents the repeated exe-
cution of a computation body with different values as-
sociated with a variable called the loop index. The



operator that constructs a loop from a loop index and
a loop body is denoted by Lp(h[i], g[i]) where i is the
loop index, h[i] is the graph representing the loop in-
dex range, and g[i] is the computation performed by
the body. A loop can also be seen as the repeated
functional composition of the loop body, each repe-
tition executing with a new value of the loop index.
That is, Lp(h[i], g[i]) = (h[l]⊕ g[l])⊕ . . .⊕ (h[u]⊕ g[u])
where i ∈ [l..u] is the range of values taken by i. The
copies of the nodes in the body of the loop could then
be labeled with their value of the loop index variable.
We could then add all the appropriate data depen-
dency edges between nodes in the loop body instan-
tiations to ensure the correct execution order of the
nodes and allow the loop header node to initiate the
execution of all iterations at once. Thus all copies of
the loop body could execute in parallel with the appro-
priate restrictions resulting from the data dependency
between them. However, representing loops in this way
is clearly not practical because the size of the process
graph grows exponentially in the depth of the largest
loop nest. In addition, because the range of the loop
index may not be known at compile time, this repre-
sentation is not always possible. Therefore, the graph

Lp(h[i], g[i]) has the shape in Figure 4 where h
i:l..u
−→ g

represents the instantiation of all iterations of the loop
body. This requires that we add data dependency edges
to ensure correct execution order of the loop iterations.
Note that the lack of control dependency edges between
nodes of g is reminiscent of the lack of control depen-
dency edges between nodes in a functional composition.
In both cases they are not necessary.

me
?≺mh
?≺, i : l..umg
?≺mx

Figure 4. Enumerated repetition composition

The conditional repetition composition corresponds
to the while loop construct. Its operator CondLp(p, g)
has as components a predicate p, and a loop body
graph g. The resulting graph has the shape shown in
Figure 5. The predicate and edges emanating from it
are similar to those in the branch composition and are
labeled with true and false indicating the conditional
control dependencies. We also add control dependen-

cies ≺ from each predecessor of the exit node of g to
the predicate node of the conditional loop. These en-
sure a sequential execution of the while loop. Because
of the sequential nature of the conditional loop and the
≺ edges, we do not concern ourselves with data depen-
dencies carried by a conditional loop. In many cases
it is possible to transform a conditional loop into an
enumerated loop, although these are not examined in
this paper.

me
?≺mp
?≺, true6≺ mg
mx-
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Figure 5. Conditional repetition composition

Our process graphs and process models are signifi-
cantly different from most program flow graphs found
in optimizing and parallelizing compilers [GP92, Pol88,
PW86, SA88, Sar89, SG91, SMD+89]. First, nodes
do not represent basic blocks - segments of target code
that contain no branching statements. The nodes of
a process graph represent source language constructs
and their creation is controlled by the programmer by
defining the set of units of computation. This allows the
programmer to control the granularity of the sequen-
tial processes executing the parallel program. We also
provide descriptive data dependency edges so that the
control dependencies implicitly provided by the textual
layout of the computation are irrelevant to the execu-
tion order of the statements in the program. Process
graphs are, however, very similar to the Kripke struc-
tures used in model checking. By representing some
of the information labeling the nodes and edges in the
process graph as atomic propositions, the projections
of our graphs containing the nodes, edges, and atomic
propositions, which we call process models, are Kripke
structures. Thus, many of the questions that optimiz-
ing and parallelizing compilers ask about programs can
be represented as temporal logic formulas. These ques-
tions can then be answered by a model checking algo-
rithm.
The propositions which label nodes and their mean-

ings are listed below:

`n - unique label for node n
e - entry nodes
x - exit nodes



unit - unit of computation nodes
func - functional composition nodes
branch - branch condition nodes
enum - enumerated loop header nodes
cond - conditional loop header nodes

The propositions which label edges and their meanings
are listed below:

≺ - control dependency
true - true branch control dependency
false - false branch control dependency
enum - enum control dependency
d - data dependency
f - data flow dependency
a - data anti dependency
o - data output dependency
Vvar - data dependency on variable var
D`,0 - constant distance data dependency with

distance 0 for enum loop node `
D`,+ - constant distance data dependency with

positive distance for enum loop node `
D`,∗ - non constant or unknown distance data

dependency for enum loop `

D`,× - data dependency that crosses loop
boundary `

4 Discovering optimization opportuni-

ties

During construction of the process graph and pro-
cess model we use a model checker to answer questions
about the source program structure posed in the form
of a CTLe formula. As the parser recognizes source
language constructs, it invokes a graph macro processor
which constructs the process graph and process model
which correspond to the source language construct dis-
covered. This graph is constructed from the process
graphs corresponding to the components of the source
language construct. During the process of compilation,
the model checker is used to answer questions about
the construct discovered by the parser. For example,
when a do loop is discovered, the compiler may ask if
the loop iterations are independent and can thus be
executed concurrently. This is done by constructing
the process model for the loop and checking if the loop
header node satisfies a CTLe formula that describes
the conditions necessary for the concurrent execution
of the iterations of the loop body. We illustrate this
technique by testing for loop iteration independence
and scalar expansion with a few simple examples in-
cluding the Dirichlet example [CT92].

One fundamental question a parallelizing compiler
will ask is if the iterations of an enumerated loop (do
loop) are independent and can thus be executed con-
currently. We consider this question first for the simple
loop in Figure 6. An enumerated loop has independent

`1: do i = 1, 100

`2: a[i] = b[i] * c[i]

`3: d[i] = a[i] * d[i]

end do
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Figure 6. Process graph of a Fortran do loop

iterations if there are no loop carried data dependencies
between the nodes representing the computations of
the loop body. An enumerated loop, with loop header
node labeled ` whose loop body does not contain any
loops or branching statements has independent itera-
tions if the node ` is an enumerated loop header, i.e.,
labeled by enum, and every successor reachable by an
enum labeled edge does not have any successors reach-
able by a loop carried data dependency edge labeled
with D`,+ or D`,∗. These requirements can be stated
as a CTLe formula allowing us to determine that loop
`1 has independent iterations if

`1 |= enum ∧AX{enum}¬EX{D`,+ ∨ D`,∗} true

The model checker would report that the node `1 does
in fact satisfy this CTLe formula. Even though there
is a data flow dependency from `2 to `3, it is not loop
carried. On the other hand, if we were to replace the
assignment statement `3 with d[i+1] = a[i] * d[i]

a loop carried data dependency edge would be added
from `3 to `3 with propositions f, Vd, D`1,+ which would
cause the iterations of `1 to not be independent and `1
to not satisfy the formula.

With the original assignment statement on `3 we
would still need to verify that this loop does not contain
any loop or branching statements. Knowing that only



unit of computation nodes are labeled with unit, we
can infer that this is the case if

`1 |= AX{enum} unit.

We can combine these two conditions into a single
CTLe formula such that if `1 satisfies

enum ∧AX{enum}(unit ∧ ¬EX{D`1,+ ∨ D`1,∗}true)

then `1 represents an enumerated loop with indepen-
dent iterations.
We use in this discussion (and will continue to do

so) temporal logic formulas with atomic propositions
specific to the examples we examine. However, in the
compiler, the temporal logic formulas must be specified
so that they are applicable for all language constructs
that can be potential subject to optimization trans-
formations. Therefore, attached to the specification
rules are temporal logic macro-operations which are ex-
panded by the compiler into the actual formulas that
are checked against the model. The expansion of these
macro-operations takes place when the source language
constructs (loops in this case) are recognized by the
parser using the corresponding specification rules.
The test above for loop iteration independence is of

course too restrictive in that if it was our only test for
iteration independence our compiler would not paral-
lelize many loops. As a case study in this paper, we

`1 :while (not converged(S))

`2 : do i = 1, N

`3 : do i = 1, N

`4 : sum=S[i,j-1]+S[i+1,j]

+S[i,j+1]+S[i-1,j]

`5 : Next S[i,j] = sum / 4

end do

end do

`6 : do i = 1, N

`7 : do i = 1, N

`8 : S[i,j] = Next S[i,j]

end do

end do

end while

Figure 7. Dirichlet Problem Code

examine the Dirichlet problem. A sample implemen-
tation of the problem is given in a simple imperative
programming language in Figure 7. The corresponding
process model, using the atomic propositions described
above, is shown in Figure 8.
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Figure 8. Dirichlet Process Model

To develop a more general iteration independence
test, we must handle loops that contain other loops
and branches. In the Dirichlet code, the enumerated
loop labeled `6 has no loop carried dependencies and
thus could execute its iterations concurrently, however,
it fails our previous iteration independence test. If we
re-examine this test, we realize that we really need to
consider possible loop carried data dependencies from
any unit of computation node in the graph of the loop
body, not just those that are immediate successors of
the loop header node as we did in the first version of
the independence test. Since any unit of computation
inside a loop or branch is reachable from the construct
header or predicate node by a path of edges labeled by
control dependency propositions, we can rewrite the
formula to test if loop ` has independent iterations as

` |= A[true U{≺}(unit ∧ ¬EX{D`,+ ∨ D`,∗}true)]

This formula holds on node ` if all paths from ` are la-
beled by control dependency propositions ≺ and there
is eventually a unit node from which there are no loop
carried data dependencies.
Loops at nodes `6 and `7 satisfy this formula and

thus have independent iterations. The loops at `2 and
`3 do not satisfy this formula because of the scalar vari-
able sum and the loop carried anti and output depen-
dencies caused by sum. While this scalar is clearly un-
necessary and would be removed by most sequential
optimizers, we leave it in for demonstration purposes.
A scalar variable can often be expanded into an array

such that the output of the program does not change



but data dependencies on the scalar disappear. In gen-
eral, if a scalar, s, is written before it is read in all
iterations of an enclosing loop ` with index variable i,
it can be expanded into an array indexed by the loop
index variable, i.e., s[i]. We say that the variable
s is expanded over loop `. The semantics of the loop
do not change, and the loop carried data dependencies
disappear since each iteration of the loop works on its
own array element which replaces the scalar. Scalar
expansion over a loop ` is possible if there are no loop
` carried data flow dependencies on the scalar. (For
simplicity, we assume the scalar is not used elsewhere
in the code. This assumption can of course be removed
by modifying the CTLe formula below.) The presence
of a loop ` carried data flow dependency would indicate
that the scalar is written in one iteration and read in
a later iteration thus preventing the scalar expansion.
We can again write these requirements as a CTLe for-
mula. That is, a scalar s can be expanded over loop `

if
` |= A[true U{≺} (unit

∧ ¬EX{f∧Vs ∧(D`,+∨D`,∗}true)]

This formula is similar in structure to the previous it-
eration independence test and simply ensures that each
unit node in the body of the loop ` does not have an `
loop carried data flow dependency on variable s.
Returning to our example, we notice that both nodes

`2 and `3 satisfy the formula

` |= A[true U{≺} (unit

∧ ¬EX{f∧Vsum ∧(D`,+∨D`,∗}true)]

where ` is either `2 or `3. Thus, the scalar variable
could be expanded over either loop. If we first expand
sum over the inner loop `3, we will remove the data de-
pendencies for this loop, but not for the enclosing loop
`2. sum would be expanded to sum[j] and thus there
would be no data dependencies carried by loop `3, but
`2 data dependencies still exist. There is no reason to
consider only expanding scalar variables and not array
variables. We can, in fact, expand sum[j] over loop `2
to get sum[i,j]. To test for array expansion we can
use the same CTLe formula we used for scalar expan-
sion. Thus, after expanding sum over loops `3 and then
`2, there would be no loop carried dependencies in `2
or `3, and both would pass the above iteration inde-
pendence test. The only remaining data dependency is
the loop crossing data anti dependency on S from node
`4 to `8. Therefore the loops `2 and `6 can not execute
concurrently with each other.
By using these CTLe tests, we have verified that

loops `6 and `7 can be parallelized and we have modi-
fied loops `2 and `3 so that they to can also be paral-
lelized. Each analysis requires no special programming;

just writing the CTLe formulas defining the necessary
conditions for the optimization. Thus, the compiler
developer has much more freedom to experiment with
different optimization and parallelization requirements.
While the formulas we have written here are certainly
too restrictive in that they may reject loops for par-
allelization that could be parallelized, it is the process
of writing formulas to detect optimization and paral-
lelization opportunities that we want to emphasize. To
find more parallelizable loops, we need only modify the
CTLe formulas that detect them. We do not modify
code to detect them.

5 Conclusions and comments

We have successfully integrated a model checker into
our parallelizing compiler to locate opportunities for
optimization and parallelization in programs written
in a simple imperative language. The success of this
project has prompted us to begin work on the general
technology to be incorporated into a Fortran 90 com-
piler.
We developed the CTL and CTLe model check-

ers used in the parallelizing compiler in the framework
of an algebraic compiler which implements the model
checker as a language translator, MC, whose source
language is the language of the CTL or CTLe formulas,
and the target language is the language of sets of nodes
of the model [RVW96, RVW97b]. The model checker
then maps the source expression of a CTL formula f ,
into the set of nodes on which f is satisfied. That
is, MC(f) = {n|n ∈ N ∧ M, n |= f}. A significant
advantage of this approach is that the model checker
is automatically generated from the algebraic specifi-
cations of the source and target languages, thus, its
correctness is assured. Therefore the generated model
checkers are applicable to the verification of critical sys-
tems. Also, since the algebraic compiler methodology
is based on homomorphism computation, the generated
model checker algorithm is naturally parallel [RVW96],
[Kna94].
By specifying a model checker in this algebraic

framework, it is also very easy to extend the tem-
poral logic and model checker as the problem do-
main expands. We found that it was necessary to
label the edges of the process model with proposi-
tions to make decisions about optimization and par-
allelization opportunities. Thus, we extended the
CTL logic to include edge formulas. Since the model
checker was implemented in this algebraic framework,
we needed to only extend the specification of the source
and target algebras to generate a new model checker
[RVW97b]. Hence, we can view the logic and model



checker as evolving dynamic systems. These results
are also described on our World Wide Web page at
http://www.cs.uiowa.edu/~vanwyk/TICS/.
Our results so far are promising, but there is still

much to be done in this area. Besides the Fortran90
compiler, we are also experimenting with different
methods of expressing the temporal logic formulas to
make them easier to read and write.
There is also a continual effort to improve the for-

mulas to find and exploit more parallelism in the source
program. Formulas which identify induction variables
and conditional loops which may be transformed into
enumerated loop can be written. Of course new prob-
lems may require the extension of the temporal logic.
In anticipation of this possibility, we have investigated
extending the logic to include the past temporal oper-
ators. Again, given that the model checkers are de-
veloped in the algebraic framework, this extension is
straight forward.
In closing we observe that there is much research to

be done in this area, and we feel that there are many
possibilities to improve the methodology and quality of
parallelizing compilers through the use of these formal
methods.
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