Software and Systems Modeling
https://doi.org/10.1007/s10270-019-00772-7

EXPERT’S VOICE

®

Check for
updates

The Software Language Extension Problem

Manuel Leduc’ - Thomas Degueule? - Eric Van Wyk3 . Benoit Combemale*

Received: 5 September 2019 / Revised: 3 November 2019 / Accepted: 4 December 2019

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

The problem of software language extension and composition drives much of the research in Software Language Engineering
(SLE). Although various solutions have already been proposed, there is still little understanding of the specific ins and outs
of this problem, which hinders the comparison and evaluation of existing solutionsln this SoSyM Expert Voice, we introduce
the Language Extension Problem as a way to better qualify the scope of the challenges related to language extension and
compositionThe formulation of the problem is similar to the seminal Expression Problem introduced by Wadler in the
late 1990s and lifts it from the extensibility of single constructs to the extensibility of groups of constructs, i.e., software
languages. We provide a comprehensive definition of the actual constraints when considering language extension and believe
the Language Extension Problem will drive future research in SLE, the same way the original Expression Problem helped to
understand the strengths and weaknesses of programming languages and drove much research in programming languages.

Keywords Domain-specific language - Extension - Composition - Expression problem

1 Introduction

With the advent of language workbenches, the problem of
modular language extension has garnered considerable inter-
est from the research community in the past decade. This
problem informally. refers to the capability of extending
the syntax and semantics of an existing language while
reusing its specification (e.g., grammars, semantic infer-
ence rules) and implementation (e.g., parsers, interpreters).
Various authors have attempted to formalize this problem
(e.g., [5]), but the lack of a. clear definition makes it hard to

Communicated by Bernhard Rumpe.

B Benoit Combemale
benoit.combemale @irit.fr

Manuel Leduc
manuel.leduc @irisa.fr

Thomas Degueule
degueule @cwi.nl

Eric Van Wyk

evw @umn.edu
I IRISA, CNRS, Univ Rennes, Inria, Rennes, France
2 CWI, Amsterdam, The Netherlands
University of Minnesota, Minneapolis, USA

University of Toulouse and Inria, Toulouse, France

Published online: 21 December 2019

evaluate and compare the strengths and weaknesses of exist-
ing solutions w.r.t. a common, well-defined framework. This
paper is an attempt to define language extensibility in the
form of a well-defined problem.

2 From the Expression Problem to the
Language Extension Problem

Philip Wadler coined the term “Expression Problem” to name
a well-known problem in the programming languages com-
munity, and this name has been in common use for more than
two decades [21]. As Oliveira and Cook put it [15]:

The “expression problem” (EP) is now a classical prob-
lem in programming languages. It refers to the difficulty
of writing data abstractions that can be easily extended
with both new operations and new data variants.

Over time, the EP has made it possible to structure the dis-
cussions around the capabilities of different programming
paradigms and languages regarding datatypes extensibility
using a common set of constraints that candidate solutions
should address. There are different variations in the EP, but its
canonical definition includes the following constraints [22]:

Extensibility in both dimensions It should be possible
to add new data variants and adapt existing operations

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-019-00772-7&domain=pdf

M. Leduc et al.

accordingly. Furthermore, it should be possible to intro-
duce new operations.

Strong static-type safety It should be impossible to apply
an operation to a data variant that the operation cannot
handle.

No modification or duplication Existing code should nei-
ther be modified nor duplicated.

Separate compilation Compiling datatype extensions or
adding new operations should not encompass re-type-
checking the original datatype or existing operations.
Independent extensibility It should be possible to com-
bine independently developed extensions so that they can
be used jointly.

There is a striking parallel between the problem of mod-
ular language extension and the Expression Problem. As a
matter of fact, most approaches to modular language exten-
sion end up discussing and addressing the EP in some
way [8,12]. However, in the context of Software Language
Engineering (SLE), “data variants” are groups of syntactic
categories and their constructors and “operations” over these
data variants define their semantics. Due to the ambiguity in
the name Expression Problem, in which “expression” may
refer to a language of expressions, one might naively think
that the EP and the problem of modular language extension
are equivalent.

In this paper, we demonstrate that instantiating the EP in
the context of SLE requires to reformulate and refine the
existing constraints of the EP and to introduce new ones,
leading to a new problem: the Language Extension Problem
(LEP). While the EP is merely a programming problem con-
cerning programmers and focusing on the extensibility of a
single datatype, the LEP is a Software Language Engineering
(SLE) problem concerning language engineers and focusing
on the extensibility of languages (i.e., group of datatypes
representing the language constructs). The LEP must also
account for engineering practices that are specific to soft-
ware languages such as the use of language workbenches, the
duality of language specifications and implementations, and
the specificities of syntax definition. As extending a group of
datatypes entails extending the datatypes it is composed of, in
many cases solving the LEP (in the large) entails solving the
EP (in the small). We identify what is the meaning of the two
extension axes in this context and what is the set of constraints
that must be used to assess the success of a given solution.
Naturally, many partial solutions to the LEP already exist
in the literature, scattered from programming language the-
ory (e.g., modular visitor components [14], Revisitors [12],
Recaf [1]), to language workbenches (e.g., Rascal [10],
Melange [3], Silver [9,18]). We purposely limit ourselves
to the definition of the LEP and leave to future work the
positioning of existing solutions w.r.t. the constraints we list.

@ Springer

3 The language expression problem

The Expression Problem has been initially introduced in the
context of datatype extension and composition and hence pre-
sented in terms of datatypes and functions over the datatypes.
Conversely, the Language Extension Problem focuses on
language extension and composition, presented in terms of,
respectively, syntax in the form of multiple syntactic cat-
egories and constructors for each category, and semantics
over that syntax. In the following, we introduce the Language
Extension Problem by paraphrasing the original definition of
the Expression Problem by Wadler [21], but lifting the vocab-
ulary from datatypes to languages.

The Language Extension Problem (LEP) is a new name
for an old problem. The goal is to define a family of
languages, where one can add a new language to the
family by adding new syntax (i.e., new constructors for
existing syntactic categories as well as new categories)
and also new semantics over existing and new syntax,
while conforming to constraints similar to those in the
Expression Problem but specialized to language exten-
sion.

As an example, consider a language family regarding state
machines which starts from a core language over simple finite
state machines with a simple pretty-printing semantics and
constructs a new language by adding syntax to specify hier-
archical state machines and a new semantics to evaluate state
machines given an input sequence.

According to this characterization of the LEP, we now
review the constraints initially identified in the EP and
express them in the context of SLE for the LEP:

Extensibility in both dimensions It should be possible to
extend the syntax and adapt existing semantics accord-
ingly. Furthermore, it should be possible to introduce new
semantics on top of the existing syntax.

Strong static-type safety All semantics should be defined
for all syntax.

No modification or duplication Existing language speci-
fications and implementations should neither be modified
nor duplicated.

Separate compilation Compiling a new language (e.g.,
syntactic extension or new semantics) should not encom-
pass re-compiling the original syntax or semantics.
Independent extensibility Tt should be possible to com-
bine and used jointly language extensions (syntax or
semantics) independently developed.

Moreover, the distinction between the specification and
the implementation of new engineered languages raises a new
concern regarding automatic composition [8]. Indeed, “glue

The Software Language Extension Problem

(d) (e)

| base || base' |

(a) (b) (c)
base
extension extension

| extension | | extension || extension' | extension

extension'

Fig. 1 Approaches for language extension, applicable at the specification and implementation levels. a mixes up the extension into the base
language, while b—e keep them separated and use explicit operators (e.g., references, static/dynamic introduction) or glue code

code,” i.e., code dedicated solely to the interconnection of
extensions, must be limited or avoided from the user’s point
of view to compose a collection of language extensions.

4 The LEP in practice

Numerous approaches have been explored in the past decade
to address specific scenarios of languages extension, either
at the specification level (e.g., [2,4,6,9,11,13,17,19,20,22])
or at the implementation level (e.g., [7,16,22,23]). The spec-
ification level is based on metalanguages that provide the
relevant abstractions, often with limited and domain-specific
expressiveness. The specification level is then turned into
an implementation, thanks to compilation or interpretation,
often by targeting general-purpose programming languages
and following language implementation patterns specific to
each approach.

While all those approaches are heterogeneous and con-
ceptually operate at different levels, they share common
extension mechanisms which are summarized in the five
approaches depicted in 1 [5].

Complying exhaustively to the identified constraints is
extremely challenging, and trade-offs must be considered
for a given context. We present a selection of scenarios
illustrating such trade-offs. First, the constraint of separate
compilation usually impacts other non-functional properties
such as performance, readability, and accidental complex-
ity (e.g., large and complex glue code, unclear modules
dependencies). Consequently, it can be worthwhile to relax
the separate compilation constraint in order to comply with
other non-functional properties. Second, various actors can
be responsible for language extension. They each come with
very different skills, ranging from SLE experts with a deep
understanding of languages and language workbenches inter-
nals, to end users with minimal knowledge of software
development. While the former is capable of performing
composition using complex handwritten glue specifications,
the latter will typically require fully automatic composition
approaches. Finally, the boundaries of a language family are
important to consider. Two statuses can be considered, closed

(i.e., all its languages are known) and open (i.e., new lan-
guages can be added organically). Indeed, in the context of
closed families, the compatibility of the extensions can be
checked in advance and conforming to the type-safe con-
straints is not an issue. On the contrary, in the context of
open language families, restrictive-type systems can lead to
difficulty or impossibility to extend languages in unantici-
pated contexts.

The constraints of the Language Extension Problem define
a framework for comparing language extension approaches.
It is worth noting that conforming or not to some of the
constraints is often the consequence of interesting language
design choices, relative to some specific scenarios.

5 Conclusion

In this column, we describe the Language Extension Prob-
lem, a lift of the Expression Problem at the language level.
We lift the constraints drawn from the Expression Problem to
the context of software language engineering, and introduced
an additional constraint specific to this context. Through the
Language Extension Problem, we hope to provide a frame-
work to reason on language extension and its challenges and
help the comparison of existing and future SLE contributions.

References

1. Biboudis, A., Inostroza, P., Storm, T.V.: Recaf: Java dialects as
libraries. ACM SIGPLAN Notices 52(3), 2-13 (2017)

2. Butting, A., Eikermann, R., Kautz, O., Rumpe, B., Wortmann, A.:
Systematic composition of independent language features. J. Syst.
Softw. 152, 50-69 (2019). https://doi.org/10.1016/j.jss.2019.02.
026

3. Degueule, T., Combemale, B., Blouin, A., Barais, O., Jézéquel,
J.M.: Melange: A meta-language for modular and reusable devel-
opment of dsls. In: Proceedings of the 2015 ACM SIGPLAN
International Conference on Software Language Engineering, pp.
25-36. ACM (2015)

4. Degueule, T., Combemale, B., Blouin, A., Barais, O., Jézéquel,
J.M.: Safe model polymorphism for flexible modeling. Comput.
Lang. Syst. Struct. 49,30 (2016). https://doi.org/10.1016/j.c1.2016.
09.001

@ Springer

https://doi.org/10.1016/j.jss.2019.02.026
https://doi.org/10.1016/j.jss.2019.02.026
https://doi.org/10.1016/j.cl.2016.09.001
https://doi.org/10.1016/j.cl.2016.09.001

M. Leduc et al.

10.

11.

12.

13.

15.

16.

18.

. Erdweg, S., Giarrusso, P.G., Rendel, T.: Language composition

untangled. In: A. Sloane, S. Andova (eds.) International Work-
shop on Language Descriptions, Tools, and Applications, LDTA
’12, Tallinn, Estonia, March 31-April 1, 2012, p. 7. ACM (2012).
10.1145/2427048.2427055

. Erdweg, S., Rendel, T., Kastner, C., Ostermann, K.: Sugar]:

Library-based syntactic language extensibility. In: Proceedings of
ACM SIGPLAN Conference on Object Oriented Programming,
Systems, Languags, and Applications (OOPSLA), pp. 391-406.
ACM (2011). 10.1145/2048066.2048099

. Hills, M., Klint, P., van der Storm, T., Vinju, J.J.: A case of vis-

itor versus interpreter pattern. In: J. Bishop, A. Vallecillo (eds.)
Objects, Models, Components, Patterns: 49th International Con-
ference, TOOLS 2011, Zurich, Switzerland, June 28-30, 2011.
Proceedings, Lecture Notes in Computer Science, vol. 6705, pp.
228-243. Springer (2011). 10.1007/978-3-642-21952-8_17

. Kaminski, T., Kramer, L., Carlson, T., Van Wyk, E.: Reliable and

automatic composition of language extensions to C: The ablec
extensible language framework. PACMPL 1(OOPSLA), 98:1-
98:29 (2017). 10.1145/3138224

. Kaminski, T., Van Wyk, E.: Modular well-definedness analysis for

attribute grammars. In: Proceedings of the 5th International Confer-
ence on Software Language Engineering (SLE), Lecture Notes in
Computer Science, vol. 7745, pp. 352-371. Springer, Berlin (2012).
10.1007/978-3-642-36089-3_20

Klint, P., Van der Storm, T., Vinju, J.: Rascal: A domain specific
language for source code analysis and manipulation. In: Source
Code Analysis and Manipulation, 2009. SCAM’09. Ninth IEEE
International Working Conference on, pp. 168—177. IEEE (2009)
Leduc, M., Degueule, T., Combemale, B.: Modular language
composition for the masses. In: D. Pearce, T. Mayerhofer,
F. Steimann (eds.) Proceedings of the 11th ACM SIGPLAN Inter-
national Conference on Software Language Engineering, SLE
2018, Boston, MA, USA, Nov 05-06, 2018, pp. 47-59. ACM
(2018). 10.1145/3276604.3276622

Leduc, M., Degueule, T., Combemale, B., Van der Storm, T., Barais,
O.: Revisiting visitors for modular extension of executable dsmls.
In: 2017 ACM/IEEE 20th International Conference on Model
Driven Engineering Languages and Systems (MODELS), pp. 112—
122. IEEE (2017)

Mernik, M.: An object-oriented approach to language compositions
for software language engineering. J. Syst. Softw. 86(9), 2451—
2464 (2013). https://doi.org/10.1016/j.jss.2013.04.087

. Oliveira, B.C.d.S.: Modular visitor components. In: European Con-

ference on Object-Oriented Programming, pp. 269-293. Springer,
Berlin (2009)

d. S. Oliveira, B.C., Cook, W.R.: Extensibility for the masses
- practical extensibility with object algebras. In: ECOOP 2012-
Object-Oriented Programming: 26th European Conference, Bei-
jing, China, June 11-16, 2012. Proceedings, pp. 2-27 (2012)
Torgersen, M.: The expression problem revisited. In: Odersky, M.
(ed.) ECOOP 2004-Object-Oriented Programming, pp. 123-146.
Springer, Berlin (2004)

. Vacchi, E., Cazzola, W.: Neverlang: A framework for feature-

oriented language development. Comput. Lang. Syst. Struct. 43,
1-40 (2015). https://doi.org/10.1016/j.c1.2015.02.001

Van Wyk, E., Bodin, D., Gao, J., Krishnan, L.: Silver: an extensible
attribute grammar system. Sci. Comput. Program. 75(1-2), 39-54
(2010). https://doi.org/10.1016/].scic0.2009.07.004

. Voelter, M.: Language and IDE modularization and composition

with MPS. In: Generative and Transformational Techniques in
Software Engineering IV, International Summer School, GTTSE
2011, Braga, Portugal July 3-9, 2011. Revised Papers, pp. 383—
430 (2011). 10.1007/978-3-642-35992-7_11

@ Springer

20.

21.

22.

23.

Wachsmuth, G., Konat, G.D.P., Visser, E.: Language design with
the spoofax language workbench. IEEE Softw. 31(5), 35-43
(2014). https://doi.org/10.1109/MS.2014.100

Wadler, P.: The expression problem (1998). http://homepages.inf.
ed.ac.uk/wadler/papers/expression/expression.txt. Posted on the
Java Genericity Mailing List, 12 Nov 1998

Zenger, M., Odersky, M.: Independently extensible solutions to the
expression problem. Tech. rep. (2004)

Zhang, W., Oliveira, BCdS: EVF: an extensible and expressive vis-
itor framework for programming language reuse (artifact). DARTS
3(2), 10:1-10:2 (2017)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Manuel Leduc is currently a
Ph.D. candidate at the University
of Rennes 1 in France. His research
interests include on Model-Driven
Engineering and Software Lan-
guage Engineering. Before this,
he worked in the industry for 4
years as a software engineer and
software system architect.

Thomas Degueule is a researcher
in the Software Analysis and
Transformation Group (SWAT) at
Centrum Wiskunde & Informatica
(CWI), Amsterdam. He received
his Ph.D. degree from Inria and
the University of Rennes 1. His
research pertains to software engi-
neering in general and focuses on
the design, implementation, and
use of software languages to assist
developers and domain experts in
the engineering of complex soft-
ware systems.

https://doi.org/10.1016/j.jss.2013.04.087
https://doi.org/10.1016/j.cl.2015.02.001
https://doi.org/10.1016/j.scico.2009.07.004
https://doi.org/10.1109/MS.2014.100
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt

The Software Language Extension Problem

Eric Van Wyk is an Associate Pro-
fessor in the Department of Com-
puter Science and Engineering at
the University of Minnesota. He
earned a Ph.D. at the University
of lIowa and was a post-doctoral
researcher at the Oxford Univer-
sity Computing Laboratory. His
research focuses on tools and tech-
niques for specifying extensible
programming languages. He was
the recipient of a National Sci-
ence Foundation CAREER Award
in 2004 and the College of Sci-
ence and Engineering Charles E.

Bowers Faculty Teaching Award in 2017.

Benoit Combemale is Full Pro-
fessor of Software Engineering at
the University of Toulouse, and
Research Scientist at Inria. His
research interests are in the field
of software engineering, including
Model-Driven Engineering, Soft-
ware Language Engineering and
Validation & Verification; mostly
in the context of (smart) Cyber-
Physical Systems and Internet of
Things. He is also teaching world-
wide in various engineering
schools and universities. More
information at http://combemale.fr

@ Springer

	The Software Language Extension Problem
	Abstract
	1 Introduction
	2 From the Expression Problem to the Language Extension Problem
	3 The language expression problem
	4 The LEP in practice
	5 Conclusion
	References

