Reflection in Attribute Grammars

Lucas Kramer
krame505@umn.edu
University of Minnesota
Minneapolis, MN, USA

Abstract

This paper shows how reflection on (undecorated) syntax
trees used in attribute grammars can significantly reduce the
amount of boiler-plate specifications that must be written.
It is implemented in the SILVER attribute grammar system
in the form of a reflect function mapping syntax trees and
other values into a generic representation and a reify func-
tion for the inverse mapping. We demonstrate its usefulness
in several ways. The first is in an extension to SILVER itself
that simplifies writing language extensions for the ABLEC
extensible C specification by allowing language engineers to
specify C-language syntax trees using the concrete syntax
of C (with typed holes) instead of writing abstract syntax
trees. Secondly, a scrap-your-boilerplate style substitution
mechanism is described. The third use is in serialization and
de-serialization of the interface files SILVER generates to sup-
port separate compilation; a custom interface language was
replaced by a generic reflection-based implementation. Fi-
nally, an experimental implementation of staged interpreters
for a small staged functional language is discussed.

CCS Concepts -« Software and its engineering — Trans-
lator writing systems and compiler generators.
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1 Introduction

Strong static type systems are lightweight, yet effective, for-
mal methods for ensuring that run-time type errors cannot

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
GPCE ’19, October 21-22, 2019, Athens, Greece

© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 978-1-4503-6980-0/19/10...$15.00
https://doi.org/10.1145/3357765.3359517

Ted Kaminski
tedinski@cs.umn.edu
University of Minnesota
Minneapolis, MN, USA

48

Eric Van Wyk
evw@umn.edu
University of Minnesota
Minneapolis, MN, USA

happen when executing type-correct programs, and many
find the benefits of type safety outweigh the restrictions that
such systems necessarily impose. Some meta-programming
languages and systems enjoy the benefits of strong static typ-
ing, e.g. the Kiama [Sloane 2011] system embedded in Scala,
the Java-based JAsTADD [Ekman and Hedin 2007] attribute
grammar system, and the SILVER [Van Wyk et al. 2010] at-
tribute grammar system used in the work presented here.
The type systems in these ensure that all object-language
syntax trees are well-sorted, that is, they correspond to the
context free grammar defining the language.

But as many have observed, for example in the “scrap-
your-boilerplate” work [Lidmmel and Jones 2003], this often
comes at a price. Transformations over syntax trees from
syntactically rich languages are cumbersome to express re-
cursively; for example, implementing a program transforma-
tion that rewrites x + 0 to x requires code or specifications
not only for the case of addition, but for all other constructs
in the language. For these other constructs the specification
simply duplicates each construct with its rewritten compo-
nents, leading to lots of uninteresting, cumbersome boiler-
plate code. Other (non-boilerplate) challenges in language
development include the construction of non-trivial syntax
trees and their serialization/de-serialization to/from strings.

One approach to this problem is to use a form of reflec-
tion [Demers and Malenfant 1995]. In our approach, a (well-
sorted) syntax tree is reflected into a generic form over which
transformations such as the one described above can be more
easily written. This ease of writing is traded for the loss of
some type-safety as well-sortedness is not guaranteed when
constructing or manipulating object-language trees in this
form. This paper presents a technique for bringing reflection
of undecorated syntax trees (those without attributes) to
attribute grammars and evaluates it on several examples.

Motivating Example: The reflection system presented here
is implemented in SILVER and some example uses are in an
extensible specification of C, ABLEC [Kaminski et al. 2017a],
all of which are written in StLvER. Consider a language ex-
tension introducing an exponent operator to C that should
translate, for example, x ** y to the code shown in Figure 1.
Constructing the syntax tree of this translation by directly
using abstract syntax is quite tedious and imposes barriers
to entry for new language developers who must learn the nu-
merous productions in the ABLEC abstract syntax grammar to
become productive. Instead it is desirable to extend the meta-
language allowing abstract syntax trees to be constructed
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1 ({ float _res = 1;

2 for (int _i = 0; _i <y; _i++) {
3 _res *= x;

4 }

5 _res; })

Figure 1. The translation of an exponent expression x *x vy,
where x is a float and y is an int. Note this uses a statement-
expression ({...; ...;}),aC extension supported by GCC
and other compilers, to embed a statement in an expression.

using the actual concrete syntax of the object-language, as
is done in systems such as STRATEGO [Visser 2002].

An example of this is shown on the left in Figure 2. Here
the extension developer introduces a new production (named
exponent) for an exponent operator that extends the ABLEC
host language, and specifies that exponent constructs trans-
late down (via the forwards to specification [Van Wyk et al.
2002]) to a syntax tree like the one in Figure 1. Some at-
tributes (such as pp, the “pretty-printed” version of the con-
struct) may be defined directly on the new production, while
all other attributes (such as a translation to machine code)
are automatically computed on the forwarded-to tree.

Object-language concrete syntax, in this case C, is writ-
ten here as an expression in SILVER using a “quote” pro-
duction that wraps a piece of code in the object-language
for which the abstract syntax tree should be constructed;
ableC_Expr{. ..} beginning on line 6 of Figure 2 is an exam-
ple of a quote production that introduces an Expr term from
the C language. Sometimes portions of the desired tree are
not fixed but instead should be constructed using SILVER
code. Such holes in the tree may be filled in using “antiquote”
productions that escape from the object-language syntax
back to SILVER expressions, such as $TypeExpr on line 7. This
line specifies the declaration and initialization of _res seen
on line 1 of Figure 1. The specification on the right of Fig-
ure 2 is what is needed when writing the abstract syntax
directly to specify this same single line. Since SILVER itself is
an extensible language, language developers may easily con-
struct a version of SILVER tailored to their object-language
by introducing these productions (such the ABLEC extension
to SILVER used here, referred to as STLVER-ABLEC.)

The reflection system presented here is used to simplify
the implementation of this extension to SILVER for using
object-language concrete syntax in specifying trees. Comput-
ing the translation for quote productions such as ableC_Expr
presents a difficulty without reflection; we must generate
the abstract syntax for the SILVER expression which, when
compiled and evaluated, will construct the specified object-
language syntax tree. In systems like STRATEGO this pro-
cess may be accomplished by the use of rewrite rules; this
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is permitted as terms have a uniform/generic representa-
tion, and weak typing allows for an incremental transfor-
mation of object-language into meta-language abstract syn-
tax. However in a strongly typed system such as SILVER,
object-language trees are strongly distinguished from meta-
language expressions that construct trees; thus a direct trans-
formation is required from the former to the latter.

One approach is to define a translation-to-SILVER attribute
on all nonterminals of the object-language attribute grammar,
on each production writing an equation that constructs the
SILVER expression for a call to that production. With nearly
500 abstract productions in the ABLEC specification doing this
would require writing a tremendous amount of boilerplate
code. An important observation is that the desired translation
does not depend on the semantics of particular productions,
but rather is only based on the name of the production and
number of children. Thus, some approach is demanded for
dealing with a generic representation of an abstract syntax
tree, rather than performing a computation on the tree itself.

There are other, similar problems that can best be ex-
pressed as generic analyses on trees. For example consider
serializing/de-serializing between a tree and a string; this can
easily be done with a uniform untyped term representation,
but not so easily with a tree represented by a variety of non-
terminals. Thus we want a general-purpose mechanism that
can represent a tree in a generic way, and convert between
well-sorted trees and this generic representation.

Reflection in SILVER: Problems of this nature benefit from
some form of reflection in the meta-language. The reflection
capability developed here consists of two primary functions:

e reflect: which converts a well-sorted syntax tree in
SILVER into a generic tree representation of type AST.

e reify: which converts generic AST trees back to their
original form. This requires run-time type checking
and may fail if the generic form does not correspond to
a well-sorted object-language tree. Thus reify returns
a value of type Either<String a>: either a string error
message or the tree of the correct type (represented
by type variable a).

Transformations and analyses on AST trees are implemented
by specifying attributes and their defining equations. This
leads to specifications that are much less verbose with much
less boilerplate code.

This follows a common thread found in a wide variety
of reflective systems; one in which data can be viewed in
two ways. The first is through the regular type system of
the language, be it Java objects or SILVER well-sorted syntax
trees. The second view is a more generic one in which values
of different types or sorts can be viewed in a uniform way;
this may be by reflective methods in Java available to work
on an Object super-type (Field.get, Method. invoke, etc.) or,
in our case here, though the reflect transformation into a
generic AST representation.
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1 abstract production exponent 1 declStmt(

2 top::Expr ::= base::Expr exp::Expr 2 variableDecls(

3 { 3 nilStorageClass (),

4 top.pp = base.pp ++ "_*x*x_" ++ exp.pp; 4 base.typerep.typeExpr,

5 forwards to 5 consDeclarator(

6 ableC_Expr { 6 declarator(

7 ({$TypeExpr{base.typerep.typeExpr} _res = 1; 7 name (" _res"),

8 for ($TypeExpr{exp.typerep.typeExpr} _i = 0; 8 baseTypeExpr (),

9 _i < $Expr{expl}; _i++) { 9 justInitializer(

10 _res x= $Expr{base}; 10 exprInitializer(
11 } 11 integerConstant (
12 _res;}) 12 "1", false,

13 }; 13 noIntSuffix())))),
14 3} 14 nilDeclarator())))

Figure 2. An example using SILVER-ableC to implement an exponent expression in ABLEC. On the right is shown the tedious
code that would be written using only plain SILVER, for just line 7 of the exponent production on the left.

Contributions: The primary contributions of the paper are
enumerated below.

e We integrate reflection and attribute grammars using
a special AST nonterminal and a bidirectional reflect/
reify transformation between AST trees and well-sorted
object-language syntax trees; discussing the system
design in Section 3 and its implementation in Section 8.

e We demonstrate the use of reflection in mapping object-
language concrete syntax to the SILVER constructs that
would construct it, supporting specifications like those
in Figure 2. This saved almost 18,000 lines of speci-
fication over several ABLEC extension specifications,
amounting to 40% of the code base by character count.
The code generation for many extensions was complex
enough that they would likely not have been imple-
mented using the direct method of specifying transla-
tion as shown on the right in Figure 2. (Section 4)

o We demonstrate the use of reflection in attribute gram-
mars to implement “scrap your boilerplate”-style [Lam-
mel and Jones 2003] substitutions of particular subtrees
within much larger abstract syntax trees. This saved
over 2,500 lines of specification between ABLEC and
several extensions, amounting to 11.8% of the ABLEC
specification code base. (Section 5)

e We use reflection in conjunction with SILVER’s at-
tribute grammar and parser specification features to
provide a serialization / de-serialization library for ar-
bitrary trees. This allowed 1,698 lines of hand-coded
environment tree serialization/de-serialization code in
the SILVER compiler to be replaced with only 257 lines,
removing 3.75% of the SILVER code base. (Section 6)

e Use of reflection to allow a staged language evaluator
to be specified as an attribute grammar and directly
interpreted. (Section 7)
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SILVER version 0.4.1 ! [Van Wyk et al. 2010] is the attribute
grammar system used in this paper. The ABLEC? [Kaminski
et al. 2017a] code and extensions to it [Kaminski et al. 2017b]
are from version 0.1.3 and the SILVER-ABLEC® code is from
version 0.1.0. Specifications from each are shown in several
figures below and can be found in grammars directory of the
corresponding repository in the directory or file name given
in caption in each figure. When indicating the number of
lines of SILVER code or ableC extension code saved by using
reflection it is a comparison between these and previous
versions in the corresponding repositories.

2 Background: Attribute Grammars

As this paper presents an integration of reflection into at-
tribute grammars (AGs) we provide some background on
them, and their embodiment in SILVER [Van Wyk et al. 2010]
here. In essence, attribute grammars provide a “semantics
of context free grammars” [Knuth 1968] by associating/dec-
orating nodes in a syntax tree with attributes that carry
information (semantics) about that language construct. For
example, in an AG for type checking a functional language,
a nonterminal for expressions may be decorated with an
attribute identifying the type of the expression and another
providing a context that maps variable names to their types.
Equations associated with productions are used to determine
the values of the attributes.

More formally, an attribute grammar AG = (G, A, O, T, E)
where G is a context free grammar (NT, T, P) with a finite set
of nonterminal symbols NT, a finite set of terminal symbols

! Available at http://melt.cs.umn.edu/silver and https://github.com/melt-
umn/silver, archived at https://doi.org/10.13020/D6QX07.

2 Available at http://melt.cs.umn.edu/ableC and https://github.com/melt-
umn/ableC, archived at https://doi.org/10.13020/D6VQ25.

3 Available at http://melt.cs.umn.edu/ and https:/github.com/melt-umn/
silver-ableC, archived at https://doi.org/10.13020/hbr0-9z50.
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T which includes basic types for integers and strings, and P
a set of grammar productions. Productions have the form
n:NTy=ng = Xq..np = X,

with a left-hand side nonterminal NTy and 0 or more right-
hand side symbols in NT U T. These are labeled (n, n;) so
that tree nodes can be easily referenced. In SILVER, produc-
tions are labeled as concrete if they are passed to the Cop-
PER [Van Wyk and Schwerdfeger 2007] scanner and parser
generator bundled with S1LvER. Those labeled by abstract
are not; they are used to define the abstract syntax of a lan-
guage and are our primary focus here.

The set of attributes A is partitioned into synthesized at-
tributes Ag that propagate information up the syntax tree
and inherited attributes A; that propagate information down
the tree. In the example above the attribute for types is syn-
thesized and the attribute for typing contexts is inherited.
Attributes can hold various types of values beyond primitive
types such as strings and integers. Vogt et al. [1989] intro-
duced higher-order attributes in which attributes contain
(yet undecorated) syntax trees. Reference [Hedin 2000] and
remote [Boyland 2005] attributes that allow decorated syntax
trees to be passed around as attribute values; these are some-
times thought of as references or pointers to distant nodes
in the syntax tree. An occurrence-relation O indicates which
attributes decorate which nonterminals and a typing context
I tracks the types of attributes and productions for use in
type checking the equations E that are used to determine
the values of attributes for a specific syntax tree, perhaps as
produced by a parser for the language.

Equations in E are associated with a single production
p € P and typically have the form n;.a = e with n; being
a label for a symbol in p. If i = 0 then a is a synthesized
attribute used to compute a value decorating ng, otherwise a
is an inherited attribute computing a value for a child of n,.
Equations can be written separately from their production
definition in aspect productions.

3 Design of the Reflection System

In this section we describe the design of reflection features
and how they are used in attribute grammars. The imple-
mentation is discussed later in Section 8.

We first introduce the AST type, a generic representation
for well-sorted syntax trees. There are two operations over
these: reflect which transforms a well-sorted syntax tree
into a generic AST, and reify, which maps generic trees back
into well-sorted trees.

Part of the reflection system is a SILVER library that de-
fines AST as a nonterminal, shown in Figure 3 on line 2.
AST trees are constructed in the same way as other trees in
S1LvER through the application of productions to primitive
values or other trees. Each AST production in Figure 3 corre-
sponds to a type (or class of types) in the SILVER language: e.g.
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1 grammar silver:reflection;

2 nonterminal AST;

3 abstract production nonterminalAST
4 top::AST ::=

5 prodName::String children::ASTs
6 abstract production terminalAST

7 top::AST ::=

8 terminalName::String lexeme::String
9 location::Location

10 abstract production 1listAST

11 top::AST ::= vals::ASTs

12 abstract production stringAST

13 top::AST ::= s::String

14 abstract production integerAST

15 top::AST ::= i::Integer

16 abstract production anyAST

17 top::AST ::= x::a

18 nonterminal ASTs;

19 abstract production consAST

20 top::ASTs ::= h::AST t::ASTs

21 abstract production nilAST

22 top::ASTs ::=

Figure 3. Some of the SILVER nonterminals and produc-
tions used to represent abstract syntax trees. Production
bodies, which contain attribute equations, are not shown.
See core/reflect/AST.sv

stringAST to String, nonterminalAST to nonterminals (well-
sorted trees), terminalAST to terminals (tokens returned from
a scanner), 1istAST to SILVER lists. Trees built by the poly-
morphic anyAST production contain values (represented by
type variable a) that do not typically occur in abstract or
concrete syntax trees and for which we cannot inspect in
the same way: this includes productions, functions, and ref-
erences to decorated trees. The ASTs nonterminal encodes a
sequence of AST trees.

The reflect operation uses these productions to produce
an AST value from any value and thus has the type AST ::= a.
(A more familiar writing of this type might be a -> AST, but
functions use the same type ::= notation as productions.)
For example, reflect will transform the SILVER tree

integerConstant("1", false, noIntSuffix())
on lines 11-13 on the right of Figure 2 into the AST tree
nonterminalAST("integerConstant",
consAST(stringAST("1"),
consAST (booleanAST (false),
consAST (nonterminalAST("noIntSuffix", nilAST())
nilAST()))))

As with all nonterminals, attributes may be associated
with the AST nonterminal. Aspect productions then associate
new equations for the abstract productions in Figure 3. Most
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uses of the reflection system do this. The SILVER-ABLEC ex-
tension discussed in Section 1 introduces a new translation
attribute on AST and provides equations for this attribute on
AST production to produce the SILVER abstract syntax that
is needed, as described in more detail in Section 4. Another
aspect-defined attribute is serialize, used to print out an
AST tree and discussed in Section 6.

In many of the applications discussed in the following sec-
tions a generic AST tree is converted back into a well-sorted
object-language tree by the reify operator. This has type
Either<String a> ::= AST and takes an AST and returns ei-
ther a String error message or the well-sorted tree. Because
AST trees can be constructed directly using the productions
in Figure 3 it is possible to construct trees that do not corre-
spond to a well-sorted tree. An attempt to reify such a tree
will result in an error, returning left(s), where s is an error
message of type String. A successful reification wraps the
tree of type a in the right constructor. The reflection system
satisfies the following invariant for any tree t:

reify(reflect(t)) = right(t)

In practice large AST trees are rarely constructed directly;
they usually are constructed by reflect.?. Thus ill-sorted
ASTs (and thus failures when calling reify) rarely occur. Even
when an error does occur it is reported immediately by the
call to reify, and we have found finding and fixing the source
of such errors to be straightforward.

Despite this, during the reification process we must check
that the AST in question actually corresponds to the inferred
result type of reify. This requires a run-time type checking
process that looks up productions and terminals to ensure
they are defined and match the expected types. Since SILVER
supports polymorphic algebraic data types (nonterminals
such as Either<a b>), it may not be possible to compute the
final type of a sub-tree from only its arguments, so type
checking also requires full Hindley-Milner type inference.

4 Reflection for Tree Construction Using
Object-Language Concrete Syntax

This section further describes the reflection system in SILVER
and demonstrates its use in an extension to SILVER itself
that lets language developers specifying trees in the object-
language being developed using the concrete syntax of that
language instead of its inconvenient abstract syntax. We
demonstrate this on ABLEC, an extensible specification of
C, defined in SiLvER. The extension to SILVER for ABLEC is
referred to as SILVER-ABLEC below. Since C is a large and
complex language the ability to write concrete syntax instead
of abstract saves a tremendous amount of effort on the part
of the language developer, and has lead to the development
of ABLEC extensions that we may not have even undertaken

4 Transformations that result in a new AST are less common but do occur,
as will be demonstrated with substitution. But even in this case, most of the
AST nodes are copied unchanged.
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without this capability. This was briefly demonstrated in
Section 1 by Figure 2; the question we answer here is how
reflection is used in translating the nice specification in the
left of Figure 2 into the implementation on the right.

The step-by-step example use of SILVER-ABLEC is shown
in Figure 4. At the top left is a simple term written using
S1LvER-ABLEC, while beneath it is an equivalent piece of
code written using plain SILVER (that is, without the SILVER-
ABLEC extension). Our goal is to translate the SILVER-ABLEC
code into the same abstract syntax tree as would result from
parsing the plain SILVER code. To keep things manageable,
a simpler example than in Figure 2 is used to explain this
process and the SILVER-ABLEC extension. The antiquoted
expression el is written in bold and we track its translation
through both processes of using and not using SILVER-ABLEC.
The name e1 will hold an ABLEC tree that is to be plugged into
the expression to be added to the C variable x and divided by
2. This is a shorter example, but qualitatively the same as on
the left of Figure 2. Below this is the equivalent SILVER source
specification that does not use the SILVvER-ABLEC extension
and requires one to write out the abstract syntax explicitly.
This is a shorter example of the same thing as shown on the
right of Figure 2. Both of these examples are functionally
equivalent specifications and both need to translated into
the same thing — a SILVER abstract syntax tree.

In the plain SILVER specification we see that division is
represented by the ABLEC production ableC:divExpr (line 1)
and the name e1 (line 3) is the first argument to the addi-
tion production ableC: addExpr (line 2)° This is simply parsed
by the SILVER compiler to generate the abstract syntax rep-
resentation in the lower left of Figure 4. Since SILVER is
bootstrapped in SILVER the abstract syntax of a SILVER speci-
fication implemented as a SILVER attribute grammar. Thus
the resulting abstract syntax is mostly applications of various
SILVER productions; the production silver:applyExpr repre-
sents the application of productions (tree creation). We see a
few instances of silver:applyExpr production with the first
argument being the name of the production in the object-
language, in this case ABLEC, and thus the names as strings
are those fully qualified names from the ABLEC grammar
and thus the string "ableC:divExpr" is seen on line 2 as this
use of applyExpr represents the application of this ABLEC
production for division. The second applyExpr is the list
(constructed by silver:consExpr and silver:nilExpr pro-
ductions) of trees to become the children of the constructed

5 In SILVER, names of productions and attributes have fully-quantified
forms that include the name of the grammar in which they were de-
fined, a bit like fully qualified names in Java (but using colons in-
stead of dots to separate names). Thus ableC:addExpr is the addExpr
production in the ableC grammar. For reasons of brevity, we use
ableC as the grammar name here but the actual grammar name is
edu:umn:cs:melt:ableC:abstractsyntax:host, as can be seen in the
specifications in the repository. Finally, note that when the context permits
we will also refer to grammar elements using their shorter un-qualified
name.
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S1LvER-ABLEC source code

1 ableC_Expr {

Lucas Kramer, Ted Kaminski, and Eric Van Wyk

1 silverAbleC:quoteExpr(
ableC:divExpr(
ableC:addExpr(

2 ($Expr{el} + x) / 2 parse

3}

Equivalent (plain) SILVER source code

1 ableC:divExpr(

silver:varExpr("e1")),
ableC:varExpr("x")),
ableC:intExpr(2)))
T
forwards (translates) to

2
3
4 silverAbleC:antiquoteExpr(
5
6
7

2 ableC:addExpr( +
3 el, ableC:varExpr("x")), 1 reflect(
4 ableC:intExpr(2)) 2 ableC:divExpr(
I 3 ableC:addExpr(
parse 4 silverAbleC:antiquoteExpr(
+ 5 silver:varExpr("e1")),
1 silver:applyExpr( 6 ableC:varExpr("x")),
2 ‘"ableC:divExpr", 7 ableC:intExpr(2))).translation
3 silver:consExpr( T
4 silver:applyExpr( reflect
5 "ableC:addExpr", +
6 silver:consExpr( 1 nonterminalAST("ableC:divExpr",
7 silver:varExpr("el"), 2 consAST(
8 silver:applyExpr( 3 nonterminalAST ("ableC:addExpr",
9 "ableC:varExpr", 4 consAST(
10 silver:consExpr( 5 nonterminalAST("silverAbleC:antiquoteExpr",
11 silver:stringExpr("x"), 6 consAST (
12 silver:nilExpr())))), 7 nonterminalAST("silver:varExpr",
13 silver:consExpr( 8 consAST(stringAST("el1"), nilAST())),
14 silver:applyExpr( 9 nilAST())),
15 "ableC:intExpr", 10 consAST(
16 silver:consExpr( 11 nonterminalAST ("ableC:varExpr",
17 silver:intExpr(2), 12 consAST(stringAST("x"), nilAST(Q))),
18 silver:nilExpr())), 13 nilAST())))
19 silver:nilExpr()))) 14 consAST(
AN 15 nonterminalAST ("ableC:intExpr",
translation 16 consAST (intAST(2), nilAST())))))
~17 .translation

Figure 4. The translation process for an ABLEC quote production. In bold is shown an antiquoted piece of SILVER code; note
that it is the same between the original parse result (top right) and the final translation abstract syntax tree (bottom left).
Production and grammar names have been shortened for clarity.

tree representing division: the first element being the repre-
sentation of the addition, the second the constant 2. We see
on line 7 then name e1 used as a SILVER variable reference
form of expression. From an abstract syntax tree like this,
the S1LvER compiler will type check the specification and
generate the Java code that forms the attribute grammar
evaluator [Van Wyk et al. 2010].

Using reflection: We now consider the other path to this
abstract syntax tree, using C concrete syntax in the SILVER-
ABLEC extension and the S1LVER reflection system. The first
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step is again parsing, but now using the SILVER-ABLEC parser.
This yields a SILVER tree containing quote (line 1) and an-
tiquote (line 4) productions in the upper right box of Figure 4.
The quoteExpr on line 1 contains the ABLEC abstract syntax
that was written out directly in the plain SILVER specifica-
tion. The S1LvER-ABLEC parser is a combination of the con-
crete syntax for SILVER and ABLEC with syntax for the quote
and antiquote productions for different ABLEC nonterminals
(such as ableC:Expr). The antiquote production, parsed from
$Expr{e1}, switches back into SILVER abstract syntax. Thus
line 5 here matches line 7 in the tree in the lower left.
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}

1 grammar edu:umn:cs:melt:exts:silver:ableC;

2 imports silver, ableC;

3 imports silver:reflection, silver:embedding;
4

5 abstract production quoteExpr

6 top::silver:Expr ::= e::ableC:Expr

7 { forwards to reflect(new(e)).translation;

8

9 abstract production antiquoteExpr

10 top::ableC:Expr ::= e::silver:Expr { }

11

12 aspect production nonterminalAST

13 top::AST ::= prodName::String children::ASTs
14 { antiquoteProds <-

15 ["ableC:antiquoteExpr",

16 "ableC:antiquoteTypeExpr", .15 03

Figure 5. A sampling of SiLvER-ABLEC quote and an-
tiquote productions, and the code to specify which
productions are to be translated as antiquote produc-
tions rather than quoted ABLEC abstract syntax. See
edu.umn.cs.melt.exts.silver.ableC/abstractsyntax

A few of the quote and antiquote productions introduced
by S1LVER-ABLEC are shown in Figure 5. Quote productions
such as quoteExpr, being extensions to the SILVER language,
must specify the equivalent silver:Expr that they translate
down to. This is done via forwarding; the details of which
are not important for understanding reflection in SILVER and
thus reading “forwards to” as “translates to” is appropriate.®
This translation is the result of applying reflect to the syn-
tax tree e,” converting the ableC:Expr into a tree of type AST.
These can be seen in the lower right of Figure 4; all produc-
tions (including antiquote ones) have been expanded into
their nonterminalAST counterparts: ableC:divExpr on line
2 becomes nonterminalAST("ableC:divExpr"...).

From the reflected AST, we access the translation at-
tribute (written . translation), seen on line 7 in the middle-
right and line 17 in the lower-right of the figure. This at-
tribute constructs the SILVER abstract syntax tree in the lower
left, where ABLEC productions have been converted into
silver:Expr trees build by applyExpr as discussed above.
The same is true for the contents of antiquote productions
which have been reified directly into silver:Exprs. Note
how the antiquoted SILVER tree in the initial SILVER-ABLEC

¢ Antiquote productions are effectively extensions to the object-language. To
satisfy the requirements of the modular well-definedness analysis [Kaminski
and Van Wyk 2012] they should forward to a translation in C. However,
there is no semantic equivalent in the object-language and these will never
have attributes accessed on them. Thus they forward (not shown) to a
dummy value that raises an error if it is erroneously evaluated.

"The use of new(e) ensures the undecorated version of € is used; trees
in SILVER are treated as decorated when either is valid, which reflect
would (undesirably) return wrapped in anyAST.
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abstract syntax, shown in bold, has been preserved unchanged
in the final abstract syntax tree.

Some equations for translation are shown in Figure 6.
Every kind of SILVER value represented by AST has a straight-
forward transformation into a piece of SILVER code, for exam-
ple an integer value (integerAST on line 7) is translated to a
SILVER integer: silver:intExpr(i) on line 9. Here an aspect
production is defining the translation attribute on a produc-
tion defined in the silver:reflection grammar (line 14 of
Figure 3). An attempt to translate back to SILVER an anyAST
tree (line 9) results in an error being raised as these are
non-inspectable values that can be reified, but little else.

However, there is a complication introduced when dealing
with antiquote productions: they contain a piece of SILVER
code that should be evaluated to obtain a tree and thus their
translation should just be the wrapped piece of code. Unfortu-
nately, this silver:Expr tree is no longer directly available
as it has been “accidentally” reflected and turned into an
AST. So when an antiquote production is encountered by the
translation attribute, the child AST must be reified back
into the silver:Expr that was originally specified.

When translating a nonterminalAST, some method of
identifying whether a production is an antiquote production
is required. This is done by way of a collection production
attribute (line 17). The attribute antiquoteProds will contain
the full names of all known antiquote productions. Exten-
sions, such as the SILVER-ABLEC extension which imports
this grammar, can add the names of its antiquote productions
to this attribute. This is done using another aspect produc-
tion on line 14 in Figure 5 using the <- operator for injecting
new elements (names) into this list; these are combined using
the list append ++ operator as specified on line 18 in Figure 6.
Using this, the name of a production being translated may be
looked up, as can be seen in on line 21. If the name is not in
the list, the AST is translated normally, otherwise it is reified
for evaluation. Thus, the AST translation code forms a library
for use by tree-literal SILVER extensions that does not itself
have any special handling for particular object-languages.

The use of antiquoting and object-language concrete syn-
tax has been extended beyond the core implementation de-
scribed above. Since many languages have notions of lists
in their grammar, for example a sequence of function ar-
guments, the SILVER-ABLEC extension allows one to write
list-like expressions in such a sequence. For example, in

ableC_Expr { foo( $Exprs{a}, 3, x ) }

the list of expressions a, represented by the Exprs nonter-
minal, is naturally incorporated into this enclosing list of
arguments. Another useful extension lets the concrete syntax
of the object-language be used in writing patterns. (SILVER
does pattern matching on trees much the same way that
languages such as ML or Haskell do on datatypes.) Note that
these useful features add some complexity to the implemen-
tation that is not shown here.


https://github.com/melt-umn/silver-ableC/tree/v0.1.0/grammars/edu.umn.cs.melt.exts.silver.ableC/abstractsyntax
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}

1 grammar silver:embedding;

2 imports silver, silver:reflection;

3

4 synthesized attribute translation<a>::a;

5 attribute translation<silver:Expr>

6 occurs on AST;

7 aspect production integerAST

8 top::AST ::= i::Integer

9 { top.translation = silver:intExpr(i); }
10

11 aspect production anyAST

12 top::AST ::= x::a

13 { top.translation = error("anyAST_error");
14

15 aspect production nonterminalAST

16 top::AST ::= prodName::String children::ASTs
17 { collection antiquoteProds::[String]

18 with ++;

19 antiquoteProds := [];

20 forwards to

21 if ! contains(prodName, antiquoteProds)
22 then silver:applyExpr(

23 silver:varExpr (prodName),

24 children.translation)

25 else

26 reify(getOnlyChildOrError(children));
27 %}

28

29 attribute translation<[silver:Exprl>

30 occurs on ASTs;

31 aspect production consAST

32 top::ASTs ::= h::AST t::ASTs

33 { top.translation =

34 h.translation t.translation; }

Figure 6. Some of the equations in the SiLvER library for
computing the translation of AST to silver:Expr. See sil-
ver/hostEmbedding/Translation.sv

Discussion: Although this discussion has focused on SILVER-
ABLEC, any object-language implemented in SILVER can eas-
ily benefit from the ability to write concrete syntax for con-
structing trees and patterns. Adapting this for another object-
language amounts to specifying the concrete and abstract
(Figure 5) syntax for quote and antiquote productions for
the language, then importing this grammar and the concrete
syntax of the object-language into another SILVER instance.

In a complex language such as C, the use of concrete syn-
tax over abstract syntax is a tremendous saver of time and
effort. Trees can be specified directly and any syntax errors
in the object-language concrete syntax are detected when
the language specification is compiled, with error messages

55

Lucas Kramer, Ted Kaminski, and Eric Van Wyk

1 template<a> a min(a x, a y) {

2 if (x < y) return y else return x; }
3 min<int>(i, j)

1 int _template_min_int(int x, int y) {

2 if (x < y) return y else return x; }

3 _template_min_int (i, j)
Figure 7. Instantiating an ABLEC C++-style template exten-
sion (top) into plain C code (bottom) by substitution.

pointing to the precise location in the SILVER specification®.
We implemented several extensions to ABLEC using this new
approach, including an embedding of Prolog and a support-
ing unification framework. These involve generating quite
a bit of plain C code and we may not have attempted these
without being able to use of the SILVER-ABLEC extension
to SILVER. We did modify the implementation to count the
number of characters that are saved by writing in the object-
language concrete syntax (the left side of Figure 2) instead
of the abstract (the right side). For all extensions that use
S1LvER-ABLEC this saving is over 775K characters (or almost
18K lines of code based on pretty-printing the generated
code with a maximum line length of 80). This is about 40%
of the would-be code base size of 1.92M characters. Note
that this savings came from writing new extensions that
used this feature from the beginning, not from removing and
replacing specifications with the concrete syntax extension.

5 Reflection for Substitutions on Trees

A common problem with processing complex tree-structured
data is to update or substitute the value of a particular sub-
tree, without introducing large amounts of boilerplate. This
sort of problem may arise in a compiler when implementing
a feature such as C++ templates, where we wish to replace
all occurrences of a name with the tree for a particular type
or expression. An example of this transformation (shown in
Figure 7) comes from ABLEC in which a C++-style template
extension (top) is instantiated to plain C code (bottom). Such
a transformation may be implemented using type classes
[Ldmmel and Jones 2003], but in a system with a less sophis-
ticated type system, such as SILVER, it may also be expressed
nicely through the use of reflection. Here we describe how
reflection is useful in the ABLEC substitution library, but as
in the previous section, this can be adopted by any object-
language specified in SILVER with the reflection system.

A portion of the ABLEC substitution library is shown in
Figure 8. The substitution process works by reflecting the

8 The source location of a tree in SILVER is represented as an annotation.
These are extra pieces of information attached to syntax tree nodes, but are
omitted here for clarity as they are handled essentially the same as children.
Thus location information is preserved in a reflected AST.


https://github.com/melt-umn/silver/blob/v0.4.1/grammars/silver/hostEmbedding/Translation.sv
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1 grammar ableC:substitution;

2 type Sub = (Maybe<AST> ::= AST);

3 inherited attribute subs::[Sub]

4 occurs on AST;

5 synthesized attribute substituted<a>::a;
6 attribute result<AST> occurs on AST;

7 aspect production nonterminalAST

8 top::AST ::= prodName::String children::ASTs
9 { top.substituted = foldl ( fromMaybe,
10 nonterminalAST (prodName, children.result),
11 map(\ s::Sub -> s(top), top.subs));
12 children.subs = top.subs; 3

13

14 aspect production stringAST

15 top::AST ::= s::String

16 { top.substituted = stringAST(s); }

17

18 function substDecl

19 Decl ::= substitutions::[Sub] base::Decl
20 { local a::AST = reflect(new(base));

21 a.subs = substitutions;

22 return case reify(a.substituted) of

23 | left(msg) -> error(msg)

24 | right(d) -> d; 3

25

26 function typeExprSubstitution

27 Sub ::= n::String sub::BaseTypeExpr

28 { return \ a::AST -> case reify(a) of

29 | right(typedefTypeExpr(nl))

30 if n == ni

31 then just(reflect(new(sub)))

32 else nothing()

33 | _ -> nothing() ; }

Figure 8. A portion of the ABLEC substitution library. See
edu.umn.cs.melt.ableC/abstractsyntax/substitution/Substi-
tuted.sv

tree to be substituted into an AST, performing the substitu-
tion on the AST to get a new AST, and finally reifying the
result back to a tree of the original type. This process is
driven by functions such as substDecl (line 18) that takes a
list of substitutions and a tree on which to perform them,
base. It reflects a copy of base and names this AST tree a. A
substitution (Sub, line 2) is a function from AST to optional
AST, a Maybe type. When applied to an AST, a Substitution
returns just(a) if the AST matches and should be replaced
by a, or nothing() if there is no match and the AST should be
left unchanged. The substitution transformation on AST is
driven by a pair of attributes. First an inherited attribute subs
(line 3) that passes a list of substitutions ([Sub]) to perform
down the tree (line 21). A synthesized attribute substituted
of type AST (lines 5 and 6) is then reified (line 22). A failure
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to reify leads to an error (line 23) but otherwise the resulting
Decl tree d is extracted from the Either value from reify.

These attributes decorate AST trees, for which aspect pro-
ductions are used to define the substitution behavior. On all
productions aside from nonterminalAST, such as stringAST
on line 14, substituted consists of the same production
but with children that have been substituted, as it only
makes sense to define substitutions for particular produc-
tions and not strings or lists. The substituted equation on
nonterminalAST (line 9) first maps the substitutions in top. subs
over itself (top) and foldl folds up the Maybe results using
fromMaybe to pick the first successful substitution (which
would also include substitutions applied to its children). If
there are none it returns the tree with just the substituted
children (line 10). The function typeExprSubstitution on
line 26 returns a substitution (Sub) given a string n to replace
with a type expression sub. It returns a lambda function tak-
ing an AST that reifies its input and, if successful, matches it
against a pattern (line 29) to possibly return a different AST.
Here if a is type expression for a typedef name it checks if the
names are the same (line 30) and if so returns the substitution
(sub) wrapped in just to indicate success.

The original implementation of the ABLEC substitution
library defined a similar substituted equation for every pro-
duction in the ABLEC abstract syntax. These all follow the
same pattern and were replaced by this substitution grammar,
replacing over 2,500 lines of boilerplate code in the ABLEC
specification (11.8% of the code base), in addition to numer-
ous similar equations on ABLEC extension productions.

6 Reflection for Automatic Tree
Serialization and De-serialization

A significant source of boilerplate specification in the Srr-
VER specification of the SILVER language is in its module for
serializing and de-serializing syntax trees that represent the
environment for a grammar. These environments indicate
what grammar elements, such as attributes, productions, and
nonterminals, are declared and certain properties of them,
such as their type. The SILVER compiler separately compiles
grammar modules and uses the serialization of environments
as interface files to avoid reading an unchanged source gram-
mar imported by another grammar being compiled. The orig-
inal implementation of serialization of environments was
done by defining an attribute on all nonterminals and their
productions, representing the environment as a string, and
de-serialization by a parser using a custom grammar.
Using reflection and AST trees we can define a generic
implementation of this, replacing 1,698 lines in the SILVER
compiler with 257 lines, and saving 1,441 out of 38,400 lines
(3.75%) of the entire code base. This change does come at a
cost, as the generic interface files are on average 215% larger
than before (measured for the ABLEC code base), less readable
by humans, and adds 2-3 seconds to builds taking around 60


https://github.com/melt-umn/ableC/blob/v0.1.3/grammars/edu.umn.cs.melt.ableC/abstractsyntax/substitution/Substituted.sv
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[core:pair("x", 4), core:pair("y", 2)]
] £
reflect reify
¥ 1
1 1istAST(
2 consAST(
3 nonterminalAST ("core:pair",
4 consAST (stringAST("x"),
5 consAST (integerAST (4),
6 nilAST(O)))),
7 consAST(
8 nonterminalAST ("core:pair",
9 consAST (stringAST("y"),
10 consAST (integerAST (2),
11 nilAST(O)))),
12 nilAST())))
I 1+
serialize parse
+ |

"[core:pair(\"x\",_4),_core:pair(\"y\",_2)]1"

Figure 9. An example of serialization/de-serialization.

seconds. However we believe such penalties are worth the
significant savings in code complexity.

A visualization of the serialization/de-serialization process
is shown in Figure 9. At the top is a simplified notion of an
environment consisting of a list of two pairs, mapping x
to 4 and y to 2. Serialization is done by reflecting a tree
into an AST, the middle box of the figure, and accessing
the serialize attribute on the AST, which then produces
the string value at the bottom. This attribute, lines 1-3 of
Figure 10, is actually of type Either<String String>. The
reason for this is that serialization may fail if a non-printable
value, such as a function, is a component of the reflected tree
constructed as a anyAST tree (line 20). The left side of Either
encodes an error message and the right side the successful
result, as seen before in the return type of reify. Integer and
string ASTs (lines 12 and 16) are serialized as expected, with
string special characters needing to be escaped first.

Of interest is the serialization of nonterminalAST trees
(line 8). This expression uses a monadic computation us-
ing Haskell-style do notation. In SILVER the bind and return
operation are not inferred as SILVER does not have type
classes and must instead be specified explicitly. Here cSer is
the result of serializing the child nodes. If any of these fail
the monadic computation passes the failure message along
automatically, otherwise a string using this, the production
name, and appropriate parens is constructed.

For de-serialization, we use SILVER’s built-in declarative
parser specification features to define concrete syntax match-
ing the serialization strings. The generated parser constructs
AST trees that are then reified to recreate an environment,
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1 synthesized attribute

2 serialize::Either<String String>

3 occurs on AST, ASTs;

4 aspect production nonterminalAST

5 top::AST ::= prodName::String

6 children::ASTs

7 { top.serialize =

8 do (bindEither, returnEither) {

9 cSer::String <- children.serialize;
10 return prodName ++ " (" ++ cSer ++ ")"
11 o3

12 aspect production integerAST

13 top::AST ::= i::Integer

14 { top.serialize =

15 right(toString(i)); 3}

16 aspect production stringAST

17 top::AST ::= s::String

18 { top.serialize =

19 right("\"" ++ escapeStr(s) ++ "\""); }
20 aspect production anyAST

21 top::AST ::= x::a

22 { top.serialize =

23 left("Cannot_serialize_an_anyAST"); }

Figure 10. Some of the SILVER attribute equations for serial-
ization. See silver/reflect/AST.sv

1 let square = fun x -> x * X

2 in let rec spower = fun n x ->

3 if n = @ then .<1>.

4 else if n mod 2 = 0

5 then .<square .~(spower (n/2) x)>.
6 else .<.~x x .~(spower (n-1) x)>.
7 in let power7 =

8 .bo.<fun x -> .~(spower 7 .<x>.)>.
9 in power7 2

Figure 11. An example use of staged programming to dy-
namically generate an efficient power function.

as illustrated on the right of Figure 9. Together, these pro-
vide a concise and convenient mechanism for specifying
serialization and de-serialization of SILVER syntax trees.

7 Reflection for Implementing Evaluators
for Staged Languages

In this section we provide the final example of reflection in
attribute grammars to implement an evaluator for a simple
staged programming language, a subset of MetaOCaml [Kise-
lyov 2018]. Staged programming is a programming para-
digm where pieces of code may be constructed at runtime,
passed around as values, and eventually run, all in a type-safe


https://github.com/melt-umn/silver/blob/v0.4.1/grammars/silver/reflect/AST.sv
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way. Examples of such languages include MetaML [Sheard
1998] and MetaOCaml. This paradigm can provide perfor-
mance improvements by generating a specialized piece of
code that is used more than once. The canonical example in
this area is a staged power function to efficiently compute
an exponent x" by generating code specialized for a given
value of n; a MetaOCaml implementation of this is shown in
Figure 11. Such languages use strong typing to allow well-
defined semantics when running generated code [Filinski
1999]. Calcagno et al. [2003] describes an approach to im-
plementing staged languages by translation to a lower-level
language containing constructs for reflection and term con-
struction. One can also build a direct evaluator for a staged
language, the approach we have chosen to demonstrate.

In addition to all the standard functional programming
constructs, MetaOCaml has 3 new operators: quote (.< >.),
escape (.~) and run (.!). Quote constructs a value of type
'a code, where 'a is the type of the quoted expression, cor-
responding to a fragment of code being constructed. The
escape operator can be written inside of a quoted expression,
indicating that the escaped expression, when evaluated, will
yield a piece of code that should be plugged into the result.
The run operator executes a code value. Static typing ensures
that no run-time type errors occur in evaluating quoted code,
although run-time checking is required to ensure that some
corner cases involving free variables are not evaluated (e.g.
.<fun x => .~(.! .<x>.)>., which is still well-typed).

The reflection system provides what is needed to ele-
gantly implement our subset of MetaOCaml using attribute
grammars °. The interpreter is structured using an Expr
nonterminal in the language’s abstract syntax. In addition
to the usual productions for expressions, there are produc-
tions quote, escape and run, each of which wraps a single
expression. A Value nonterminal has productions represent-

ing integers (intValue :: (Value ::= Integer)), functions
(closurevalue :: (Value ::= String Expr Env)), and code
(codeValue :: (Value ::= AST)), among other values. An in-

herited attribute on Expr passes down the value environment,
while a synthesized attribute computes the resulting value.
To evaluate a quote expression, the wrapped Expr is re-
flected, yielding an AST that contains reflected escape pro-
ductions. A synthesized attribute on AST is used to find each
escape production, reify the wrapped expression, evaluate
the expression (using the value environment also passed
down as an inherited attribute on AST) and replace the escape
production AST with the AST from the resulting codeValue
production. This process is somewhat similar to the previ-
ously described process of translating object-language lit-
erals or performing substitutions. Finally to evaluate a run
expression, the operand is evaluated and the AST is extracted
from the resulting codeValue, reified and itself evaluated.

% Available at http://melt.cs.umn.edu/ and https://github.com/melt-umn/
meta-ocaml-lite, archived at https://doi.org/10.13020/z10a-7g60.
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8 Implementing the Reflection System

This section provides a brief discussion of the implementa-
tion of the SILVER reflection system. SILVER is implemented
by translation to Java. Basic types (such as strings and inte-
gers) all have concrete Java equivalents. The Java abstract
class Node represents all nonterminals; every nonterminal
type becomes an abstract subclass of Node, and every pro-
duction of a nonterminal is a concrete subclass of that non-
terminal’s class. In this way, the Java type system encodes
the syntax of the object-language being defined in SILVER.

Node contains a number of abstract methods, such as to get
the SILVER name of a production or iterate over its children.
Since no extra type-level information is required, reflect
is a SILVER foreign function that calls a recursive Java func-
tion to walk a Node and call the appropriate constructors
corresponding to AST productions.

The implementation of reify is significantly more com-
plex due to its run-time type-dependent nature; reify is thus
alanguage construct in SILVER (as opposed to being a foreign
function as in the case of reflect). reify does run-time type
checking in constructing a SILVER tree to ensure that it is
well-sorted. To do this, reify requires the run-time repre-
sentation of the type of the tree it is to produce; this type is
provided by SILVER’s type inference system. For AST trees
representing integers or strings the reification into a Sir-
VER-value of type Integer or String is straightforward. For a
nonterminalAST-constructed tree, reify gets the production
name (the first child of production nonterminalAST) and uses
Java reflection to see if that production exists, and if so, gets
the Java Class object implementing that SILVER production.
On this it calls a static reify method (generated as a part
of the class), parameterized by the expected return type it
is to construct and the array of child AST trees yet to be
reified. It checks that the appropriate number of children
were provided, unifies the given expected type with the ac-
tual production left-hand-side nonterminal type, then reifies
the children using the corresponding right-hand-side types.
Finally, it constructs and returns a new production object
with the results.

To support this, runtime type information, as an object of
anew Java TypeRep class, is stored on each tree node. Because
SILVER supports parametric polymorphism, a runtime type
unification process was also added, to mirror the compile-
time type unification process. This is used when checking
that types are compatible when constructing new trees. If not,
reify returns an error. All SILVER value classes implement
a Typeable interface with a getType function returning a
TypeRep value. Any type, e.g. SILVER functions, or other new
foreign type to be reflected into an AST tree, using the type-
parametric anyAST production must implement this interface.


http://melt.cs.umn.edu/
https://github.com/melt-umn/meta-ocaml-lite
https://github.com/melt-umn/meta-ocaml-lite
https://doi.org/10.13020/z10a-7g60
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9 Related Work

Reflection, first introduced by Smith [1982], has been dis-
cussed in multiple contexts in computer science. Demers
and Malenfant [1995] more precisely defines reflection, and
distinguish between structural reflection where the language
provides introspection of the program being executed and
its abstract data types, and behavioral reflection where the
language deals with its own semantics. A more formal view
of reflection is given by Clavel and Meseguer [1996], essen-
tially defining reflective languages as ones in which there is
a mapping between certain data types in the language and a
portion of the language’s semantics.

Reflection is a common feature of object-oriented lan-
guages, such as Java [Kirby et al. 1998]. In such contexts
reflective operations are often coupled tightly to the objects
under consideration; for example, one may use reflection to
get the value of a field by a string representation of its name,
resulting in another object to be casted or reflected again.
This differs from our notion of reflection, in which a tree
composed of various nonterminals is reflected as a whole
into a distinct AST representation, upon which further opera-
tions may be performed. In our experience this approach is a
better fit for language meta-programming, as any operation
on trees is primarily either “structural” (best implemented
by attributes on AST) or “semantic” (best implemented by
attributes on the nonterminals in question.)

Numerous problems related to performing generic oper-
ations on algebraic/inductive datatypes, including substi-
tution and serialization, are described in the scrap-your-
boilerplate papers by Liammel and Jones [2003, 2004]. This is
mostly achieved through advanced use of the type system
(e.g. type classes), but an approach based on reflection to
a generic DataType representation is also described; this is
similar to our AST, (representing ADT values, lists, constants
etc.) however operations on DataType are expressed using
recursive functions and type classes rather than attributes.

The time savings of writing object-language concrete syn-
tax in a meta-language with quote and antiquote opera-
tors has been noted previously and seen in tools such as
ASF+SDF [Brand et al. 2001] and STRATEGO [Visser 2001,
2002]. The STRATEGO approach is particularly relevant; it
differs from our approach in that the transformation from
embedded object-language abstract syntax to meta-language
abstract syntax happens incrementally through term rewrit-
ing, during which ill-sorted intermediate trees composed of
meta- and object-language abstract syntax exist. Thus, ill-
sorted trees can still be represented. The TypeSmart feature
in STRATEGO [Erdweg et al. 2014] can be used to dynamically
disallow ill-sorted trees; when a constructor is applied it
checks that the arguments are of the required sort.

In our reflection-based approach, the dynamic checking is
only needed for antiquote productions in the reify operation,
the rest of the translation process is checked statically. This
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comes at the cost of the added complexity of a separate AST
representation, not required in a rewriting approach. Instead
of reify dynamically type-checking the AST, we could have
the AST constructors check the types of their represented
argument values, as done with the TypeSmart feature of
Stratego. However this would require a way to access (in
SILVER specifications, not just in its runtime as reify does)
the types of productions by name.

Squid quasiquotes [Parreaux et al. 2017a,b] provide con-
crete object-language syntax embedding for syntax tree con-
struction in Scala. These bear some resemblance to our AST-
based approach, most notably by allowing introspection via
pattern matching of quoted Code values, but Squid provides
stronger type safety guarantees about quoted fragments.

A definition of staged programming and the MetaML lan-
guage is given by Sheard [1998]. Calcagno et al. [2003] intro-
duces the MetaOCaml language and describes an approach
to implementing staged languages by translation to a target
language containing constructs for reflection and abstract
syntax tree manipulation. This differs from our design, in
which a meta-language supplying such constructs is used to
build a direct interpreter for evaluating a staged language.

10 Discussion and Conclusion

This paper integrates a form of reflection into attribute gram-
mars with a reflect construct of turning well-sorted trees
into a generic representation and an inverse reify operation.
In meta-programming systems, such as SILVER, in which
the type system of the the specification language enforces
the well-sortedness of syntax trees, writing analyses and
transformations of such trees can involve a lot of boilerplate
specifications. We show how reflection lets the language de-
veloper reflect a tree into a generic form, process or analyze it
in a convenient generic way, and then, in some applications,
reify the tree back to the well-sorted form. In the example
applications, many lines of boilerplate SILVER specification
were eliminated from existing applications or were avoided
from the beginning. In our experience, even though well-
sortedness is not guaranteed by the type system in the AST
form we rarely found this to be problem; it is easily out-
weighed by the savings in lines of specifications written.

There are many additional uses of reflection in attribute
grammars beyond those discussed here. Examples include
writing visitor-pattern-style traversals over trees, mecha-
nisms for (runtime) type-safe casts, and implementation
of generic map and reduce operations over arbitrary trees.
Reflection also opens up the possibility building a term-
rewriting extension to SILVER, something that is a topic
of future work. Other future work includes improving the
performance of the processing of SILVER interface files by
replacing the text-based serialization system with one that
generates more compact binary representations.
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