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Abstract
Extensible language frameworks aim to allow independently-

developed language extensions to be easily added to a host

programming language. It should not require being a com-

piler expert, and the resulting compiler should “just work” as

expected. Previous work has shown how specifications for

parsing (based on context free grammars) and for semantic

analysis (based on attribute grammars) can be automatically

and reliably composed, ensuring that the resulting compiler

does not terminate abnormally.

However, this work does not ensure that a property proven

to hold for a language (or extended language) still holds when

another extension is added, a problemwe call interference.We

present a solution to this problem using of a logical notion of

coherence. We show that a useful class of language extensions,

implemented as attribute grammars, preserve all coherent

properties. If we also restrict extensions to only making use

of coherent properties in establishing their correctness, then

the correctness properties of each extension will hold when

composed with other extensions. As a result, there can be

no interference: each extension behaves as specified.

CCS Concepts • Software and its engineering → Ex-
tensible languages;

Keywords language extension composition, attribute gram-

mars
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1 Introduction
There exist many systems that allow language extensions to

be developed, composed together with a host language, and

used together to write programs. These include tools like

JastAdd [4] and SugarJ [6]. However, most of these tools do

not ensure composition will automatically be successful, and

may require a compiler engineer to intervene. For example,

newly introduced syntax from two extensions may result in

ambiguities or errors in parser generation.

Our working hypothesis is that reliable composition is

required for language extension to achieve practicality. It

should not be possible for two extensions to conflict, and so

the ordinary programmer, simply attempting to make use

of them, will not need to ever debug their compiler. Cop-

per [26] is a parser generator with a modular determinism

analysis [23] that ensures extension syntax will compose

without conflict (i.e. yield a deterministic LALR(1) parser). Sil-

ver [11, 24] is an attribute grammar-based [14] language with

forwarding [25] that comes with a modular well-definedness

analysis [12] that ensures extension semantics (in the form

of an attribute grammar) will compose without conflict (i.e.

the composed attribute grammar has no missing equations).

Together, these analyses ensure composition will be success-

ful and the compiler will not terminate abnormally, but they

do not guarantee that it behaves as expected.

Each of these analyses restricts the range of possible ex-

tensions, however. These restrictions cannot be too onerous:

we need to be able to produce useful extensions, and we

need the user experience to be like that of native language

features. In this paper, we wish to solve this final source

of conflict, and ensure the composed compiler behaves as

expected, and do so without seriously compromising the

capability of language extensions.

1.1 The Problem of Interference
The problem of interference between extensions arises be-

cause the developers of independent extensions (EA and EB )
are unable to examine the composition of these two exten-

sions with a host language H . In the notation of Erdweg

et al. [5] this is H ◁ (EA ⊎∅ EB ), where ⊎∅ denotes automatic

extension composition and ◁ denotes extending a host lan-
guage. Each artifact for H , H ◁ EA, and H ◁ EB are language

specifications about which their developers can reason or
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nonterminal Expr;
syn eval :: Bool occurs on Expr;

production or
e::Expr ::= l::Expr r::Expr
{

e.eval = l.eval || r.eval;
}
production literal
e::Expr ::= b::Bool
{

e.eval = b;
}

production ors
e::Expr ::= es::[Expr]
{

forwards to
foldr(or, literal(false), es);

}

syn tainted :: Bool occurs on Expr;

production taint
e::Expr ::= x::Expr
{

e.tainted = true;
forwards to x;

}
aspect or
e::Expr ::= l::Expr r::Expr
{

e.tainted =
l.tainted || r.tainted;

}
aspect literal
e::Expr ::= b::Bool
{

e.tainted = false;
}

syn transform :: Expr occurs on Expr;

production id
e::Expr ::= x::Expr
{

forwards to x.transform;
}
aspect or
e::Expr ::= l::Expr r::Expr
{

e.transform =
or(l.transform, r.transform);

}
aspect literal
e::Expr ::= b::Bool
{

e.transform = literal(b);
}

Figure 1. A simple example of interference. Left: a small host language H . Middle: EA. Right: EB .

write tests. It may not be possible to construct any flawed

trees in these languages, but we may be able to do so for

the composed language. Indeed, it may be difficult to pre-

cisely identify what “flaw” means without a semantics for

the composed language specifying how the two extensions

should interact. Worse still, having found a tree that reveals

an apparent flaw in the composed compiler, there may not be

any obvious way to fix it. Both extensions may seem correct

in isolation, and the flaw may be the result of an unfortu-

nate interaction that seems the fault of neither or seems to

require “glue code” to fix. When extensions are developed

independently, the developers may simply point their fingers

at each other, resolving nothing.

Consider Figure 1, showing the abbreviated Silver attribute

grammar specification for two extensions to a very primitive

Boolean expression language. The host consists of or and

literal constructs, as well as the “syntactic sugar” ors that
expands to an equivalent tree by folding up the list of expres-

sions es using or and literal. Equations defining attributes
can be written for forwarding productions, but they are not

required because forwarding automatically introduces “copy

equations” that use the value from the tree they “forward

to” instead. Thus, the synthesized attribute eval only needs

equations for or and literal productions as the value of

eval on ors is copied from folded-up forwards-to tree.When

language extensions introduce new productions on host non-

terminals, they must having forwarding equations, as we see

in the figure. Extension EA describes a simple sort of “taint-

ing” analysis, introducing both a new attribute (tainted)
and a new production (taint). The attribute gets its meaning

by defining equations for each production using aspects.
Extension EB introduces a simple identity tree transforma-

tion, including the attribute that computes it (transform)
and a production that invokes it (id). Although this latter

extension might seem useless, it is actually the simplest form

of tree transformation, which are generally quite useful.

Because transform is only defined on host language pro-

ductions (and is unaware of other extensions like EA and so

cannot handle taint except via forwarding) this attribute

has the effect of replacing forwarding productions with what

they forward to. In the figure, we see that taint production

of EA simply forwards to whatever expression it wraps. Thus,

the analysis’s success depends on their tainted attribute

being evaluated on the forwarding production. However, this

means there is trouble for a composed language tree:

id(or(literal(false), taint(t))).tainted

Here, id (which should do nothing) will essentially transform
away the reference to taint, leaving the tainted analysis
nothing to discover, even though it should be discovering a

tainted subexpression in this case.

Each extension works as expected in isolation: no tree

exhibits any misbehavior. The trouble here is not just that
there is a problem with the composed language that is unde-

tected in isolation. We also have no guidance on how this

problem should be resolved. Did EA err in forwarding to its

wrapped expression for the taint annotation syntax? Did

EB err in transforming away the other extension’s syntax?

Both? Something else? For extensible languages to be useful

for mainstream software development this problem needs a

solution. After all, the space of potential interference grows

exponentially with each new extension in the ecosystem.

Interference can easily start off seeming like a non-issue,

and then suddenly seem like an insurmountable problem.

Outline As contributions, we show:

• How a class of properties proven for an attribute gram-

mar are automatically preserved when composed with

other extensions, using a logical tool we call coherence.
• That coherence assigns blame for interference.

• How to generalize on coherence, easing restrictions

enough for extensions to feel native.
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• That non-interference can be policed using ordinary

testing, without verification, and we apply this tech-

nique to a real compiler as evaluation.

In Section 2, we describe some background on how to

reason about attribute grammars. In Section 3, we define co-

herence, in Section 4, we define a non-interfering extension

in terms of coherence, and then in Section 5, we see how to

show that extensions are non-interfering. In Section 6, we

show how we can relax our approach to showing extension

is non-interfering, with the goal of allowing them to feel

like native language features. In Section 7, we show how

interference violations can be tested for, and in Section 8 we

apply this to a real compiler, before concluding.

2 Reasoning About Language Extensions
Wewill tackle this problem by considering the verification of

language extensions. Our model has each artifact (the host

language and each extension) come with an associated set

of correctness properties. For example, with the tainted
extension, we might wish to show a simple property:

∀t . taint(t).tainted = true

More generally, the host language H will have a set of prop-

erties P(H ) = {PH
1
, PH

2
, ...}, and proofs that each of these

properties holds, i.e. proofs of ∀t ∈ H . PHi (t) for each i . Simi-

larly, an extension EA will have a set of properties P(EA) =
{PA

1
, PA

2
, ...}, and proofs of the form ∀t ∈ H ◁EA. P

A
i (t). Note

that now quantification ranges over the extended language.

An extension will also contain all properties the host lan-

guage contains, so P(EA) ⊇ P(H ). This means the exten-

sion must provide proofs of ∀t ∈ H ◁EA. P
H
i (t) (i.e. proofs of

host properties but quantified over extended language trees.)

Our approach to eliminating interference is for all of these

properties to remain true of a composed language. That is,

given n language extensions, we want:

∀i ∈ [1 . . .n], P ∈ P(Ei ), t ∈ H ◁ {E1 ⊎∅ · · · ⊎∅ En}. P(t)

When the correctness properties for each extension are proven

to hold for the composed compiler, we have eliminated the

possibility of interference sneaking into the composed com-

piler. Each extension behaves as specified.

This must be accomplishedmodularly: we need to enforce
something on each individual extension in isolation, which

ultimately achieves this goal. We call this modular restriction

noninterfering, and we want to show:

Theorem 2.1 (Modular non-interference).(∀i ∈ [1,n]. noninterfering(H ◁ Ei )
)
=⇒

∀i ∈ [1,n], P ij ∈ P(Ei ). (∀t ∈ H ◁ Ei . P
i
j (t)) =⇒

∀t ∈ H ◁ {E1 ⊎∅ · · · ⊎∅ En}. P
i
j (t)

We can note right away that this goal gives us a pre-

cise notion of blame, despite not yet having a definition

for noninterfering. If an extension is non-interfering, then

correctness proofs for different extensions can be automati-

cally extended over it. If a bug exists in the final, composed

artifact, then either one extension is interfering (that is,

noninterfering does not hold of it), or one extension’s spec-

ification was incorrect. Both of these possibilities can be

observed in isolation from other extensions. Thus, even if an

end-user is not able to diagnose a problem, the extension de-

velopers involved will not be conflicted about who to blame

for causing interference.

2.1 Reasoning About Attribute Grammars
Definition 2.2 (Properties). A property over a tree is a log-

ical proposition with a free (tree-typed) variable. For the

purposes of this paper, we restrict the proposition to:

1. simple logical connectives (and/or/implies),

2. quantification over non-tree types (such as numbers),

3. the use of inductively-defined relations over trees (such

as equality), and

4. the use of attribute evaluation on trees (which we call

evaluation relations).

The results we later show of properties of this sort can be

generalized (e.g. to permit quantification over multiple trees,

see Kaminski [10, Chapter 6]), and we further conjecture

they can be generalized to any propositions. Note that eval-

uation relations are inductive relations, but the former come

from the equations written in the attribute grammar, and the

later are part of a verification, and so we distinguish them.

Examples of properties and relations appear in Figure 2.

Note that we talk about properties P that range over one

language, and then conflate them to also apply to an extended

language. For instance, the claim thatP(EA) ⊇ P(H ) seems

like a type error, since the properties range over different

languages (H ◁ EA and H alone respectively). We will fix this

issue in Section 3, but point out this imprecision now.

Also note that we abuse notation slightly by using a lan-
guage as the bound of quantification. This is a shorthand for

indicating which productions may appear in the tree. Prop-

erties actually quantify over decorated trees: trees rooted
in a particular nonterminal, that have been supplied with

an initial set of inherited attributes, and thus attributes can

be evaluated. When discussing properties from an abstract

language H , lacking any particular nonterminals, we just

indicate which language the nonterminal should be from.

We also assume that properties are proven by induction

on those decorated trees. Critically, this is not the same as

induction on the undecorated tree. A node in the decorated

tree not only has a child decorated node for each child of the

production, but also the forwarded-to tree. Consequently,

induction on decorated trees means the induction hypothesis

for a production allows us to assume the property holds of

the forward tree, just like any other child. This is valid so

long as expansion of forwarding equations terminates, which

we will simply assume for our purposes.
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nonterminal RepMin;
syn min :: Integer occurs on RepMin;

production inner e::RepMin ::= x::RepMin y::RepMin
{ e.min = min(x.min,y.min); }

production leaf e::RepMin ::= x::Integer
{ e.min = x; }

Relevant relations:

lte_all : RepMin → Integer → Prop
lte_all(inner (x ,y),m) :- lte_all(x ,m) ∧ lte_all(y,m)

lte_all(lea f (x),m) :-m <= x
exists : RepMin → Integer → Prop
exists(inner (x ,y),m) :- exists(x ,m) ∨ exists(y,m)

exists(lea f (x),m) :-x =m
Relevant property: min_correctness:
∀t ,m. t.min = m → lte_all(t ,m) ∧ exists(t ,m)

Proof: By induction on the decorated tree t .

Figure 2. Example of inductive relations and properties to

show of an attribute grammar-defined language.

Finally, we pay special attention to inductively-defined

relations over trees. These are relations defined by case anal-

ysis on the production at the root of a tree. Examples of this

appear in Figure 2, which is based on Bird [2]. We define

new relations lte_all and exists which exact different

requirements on leaf and inner nodes. (We use the reverse

implies notation (:-) to better show how each production

maps to its consequents.) The min_correctness property

also makes use of the evaluation relation for min, which we

write using the attribute grammar notation (t .min =m).

2.2 Extending Proofs to Extended Languages
If we have a fully verified host language, and we introduced

a language extension, what is involved in modifying the

verification to accommodate the extension? Note that we are

not yet considering the much harder problem of composing

extensions together, just the process involved in building a

single extension. In Figure 3, we describe a simple extension

to our RepMin example.

Our minimal host language only defines the min attribute.

Here we add in the usual rep transformation (replace leaf

values with the global minimum, preserving structure), as

well as the new production three, which merely serves as

an example of a new syntactic construct. For the verification,

we have a new property describing rep. This extension has

the following effects on the verification:

• The host language’s relations need extending to new

forwarding productions. In the upper right, we show

how to extend lte_all and exists to handle three.
• Any proofs of properties from the host language will

have new cases to show for new productions. The

production three
l::RepMin ::= x::RepMin y::RepMin z::RepMin
{ l.min = min(z.min, min(x.min, y.min));

forwards to inner(inner(x, y), z); }

syn rep :: RepMin;
inh gmin :: Integer;

aspect inner e::RepMin ::= x::RepMin y::RepMin
{ e.rep = inner(x.rep, y.rep);

x.gmin = e.gmin;
y.gmin = e.gmin; }

aspect leaf e::RepMin ::= x::Integer
{ e.rep = leaf(e.gmin); }

Extensions to existing relations:

lte_all(three(x ,y, z),m) :-
lte_all(x ,m) ∧ lte_all(y,m) ∧ lte_all(z,m)

exists(three(x ,y, z),v) :-
exists(x ,v) ∨ exists(y,v) ∨ exists(z,v)

New relations:

eq_all(three(x ,y, z),m) :-
eq_all(x ,m) ∧ eq_all(y,m) ∧ eq_all(z,m)

eq_all(inner (x ,y),m) :- eq_all(x ,m) ∧ eq_all(y,m)

eq_all(lea f (x),m) :-x =m
New property: rep_all_equal:
∀t ,m, r . t.global_min = m → t.rep = r → eq_all(r ,m)

New Proof: By induction on the decorated tree t .

Figure 3. An example of an extension, showing extension

productions, equations, attributes, relations, proofs.

proof of min_correctnesswill require a new case for

three, though we do not show this in the figure.

• Extensions may introduce new properties and rela-

tions defined inductively on nonterminals of the host

language, along with new proofs showing new prop-

erties about trees. (Such as the definition of eq_all
and proof of the associated property rep_all_equal.)
These can be properties about the unextended lan-

guage that the extension wishes to make use of, but

the host language had not shown itself. (No such prop-

erty is present in this example, but in principle the

min_correctness property may not have been in the

host language, and could be present here instead.)

• For new nonterminals introduced by the extension

(not a part of this example), there may also be new

properties and new proofs.

In isolation, the extension developers are capable of manu-

ally extending the definitions and proofs and introducing the

necessary new ones, as we have in this example. Extension

is not the problem. The challenges arise from composition

of independent extensions. As soon as we have two inde-

pendent extensions, each developer no longer knows about

the other’s new productions, nor do they know what new

properties other extensions might be relying on. There is
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also what seems to be a creative component: specifications

themselves have gaps, not just proofs. When a property is

introduced independently from a new production, we do not

have a complete specification. Somehow, we need to be able

to complete these automatically.

3 Coherence
We solve the problem of completing both specifications and

proofs by introducing the concept of coherence. This allows
us to write modular proofs about extensions, and be con-

fident they hold for a language composed with other ex-

tensions. To start with, coherence gives us a mechanism to

automatically complete the gaps in specifications that arise

as a result of composition of multiple language extensions.

Coherence can be thought of as requiring the “semantic

equivalence of forwarding”—a phrase used even in the origi-

nal paper on forwarding [25], but has been without a precise

definition until now. Properties that are not equally true of

a forwarding tree and what it forwards to are considered to

be incoherent.

Definition 3.1 (Coherent properties). A property P over a

language L is coherent if

∀t ∈ L. P(t) ⇐⇒ P(t . f orward)

Where t . f orward is defined as the tree that the root pro-

duction of t forwards to (or if the root is non-forwarding,

then t . f orward = t .) In other words, coherence requires

consistency between the properties that hold of a tree rooted

in a forwarding production and the tree it forwards to.

Coherence gives us an automatic and natural means of

dealing with the gaps in specifications that arise as a result

of composition. These gaps are created because relations

defined over nonterminals require new cases to handle any

new forwarding productions from other extensions. Because

any coherent property should be equally true of a tree and

what it forwards to, this gives us an automatic method of de-

termining what should hold of a new forwarding production

for an existing relation. Unary relations are just one kind of

property, and so a unary relation is coherent according to

the above definition of a coherent property. So let us begin

with unary relations:

Definition 3.2 (Coherent extension of unary relations). For
a coherent unary relation R over a language H , we can au-

tomatically extend this relation over an extended language

H ◁E. We leave the definition of R(t) alone for all cases where
t is a non-forwarding production, and for each forwarding

production define it as being equivalent to R(t . f orward).
Since we assume termination, this is well-defined because re-

cursive expansion of R(t . f orward) will ultimately terminate

in non-forwarding productions from the host language, a

restricted subset of cases where we already have a complete

definition of R. The resulting relation is still coherent, if all

of its dependent relations are still coherent.

As an example
1
, one of the missing cases for a relation

that we manually filled in back in Figure 3 was for the three
production, which forwarded to inner, and so we would

have the following coherent extension:

lte_all(three(x ,y, z),m) :-

lte_all(inner(inner(x ,y), z),m)

This defers the meaning of lte_all on three to the tree

that three forwards to, instead of the extension having to

manually specify it.

Coherent extension of unary relations can be generalized

to n-ary relations, and likewise, we can generalize the notion

of coherent property. Ultimately, we can show:

Theorem 3.3 (Coherent relations imply coherent proper-

ties). If every relation R in a property P is coherent, and P
contains no quantifiers, then ∀x . P(x) is a coherent proposition.

These proofs appear in Kaminski [10], though it remains

future work to show this holds for arbitrary propositions

(i.e. those that are not limited to leading universal quanti-

fiers, as in this theorem). As a consequence of this theorem,

coherent extension of properties is possible simply by coher-

ently extending each relation involved. Thus, we are able to

freely take any coherent property P over a language H , and

sensibly speak of that “same” property (really its coherent

extension) holding over an extended language H ◁ E.

3.1 Examples of Incoherence
In light of this new notion of coherence, let us revisit the

examples from Section 1.1. For tainted (from Figure 1) we

have a problem with the taint production. Recall the simple

example property we might wish to show, and let us choose

an example instantiation:

t .is_tainted = true where t = taint(literal(false))

This property asserts the attribute should evaluate to true on

t , but t forwards to just literal(false), where the attribute
evaluates to false. As a result, this property is incoherent.

Meanwhile, thoughwe have not yet written a specification,

we have no evidence of coherence problems with id. Indeed,
intuitively, it is hard to imagine any: its production just

forwards with no equations, so all attribute values are equal

between the original and forwarded-to tree. So this begins

to suggest an answer to our earlier questions about who is

to blame for the interference problem.

3.2 Coherent Equality
The traditional notion of equality of two trees turns out to

be incoherent. The trouble is that this notion refuses to see

a forwarding production as “equal to” what it forwards to.

We can introduce a new notion of tree equality to repair

the problem. This essentially corresponds to writing down

1
Already this example is not unary, but the second parameter is a primitive

type, so it still fits with our limited notion of property.
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an equality relation over non-forwarding productions, and

relying on coherent extension to fill in the remaining cases:

Definition 3.4 (Coherent equality). x =N y (where x ,y : N )

=


xi =M yi if x = p(x), y = p(y), and xi ,yi : M

x .forward =N y if x has forwarding root

x =N y.forward if y has forwarding root

That strict equality on trees is not coherent is actually an

advantage we make use of later.

4 Non-interference Through Coherence
Coherence provides a way to complete gaps in specifications;

this section describes how to complete proofs.

Definition 4.1 (Non-interference). A language extension is

defined to be non-interfering (noninterfering(H ◁ E)) if:
1. The extension is coherent. That is, each property in

its specification is a coherent property:

∀P ∈ P(E). ∀t ∈ H ◁ E. P(t) ⇐⇒ P(t . f orward)

2. The extension preserves all coherent properties. Or

in other words, any true coherent property about the

host is a true coherent property about the extended

language (and vice versa):

∀P . (∀t ∈ H . P(t) ⇐⇒ P(t . f orward)
)
=⇒(∀t ∈ H . P(t)

)
⇐⇒

(∀t ∈ H ◁ E. P(t)
)

It is certainly possible to violate only one of these re-

quirements. The developer of an interfering extension might

simply leave out an incoherent property and this must be

caught by requirement 2, e.g. if the tainted extension stated

no properties about its behavior. Or the developer might

state an “unreasonably strong” true incoherent property and

thus must be caught by requirement 1, e.g. if the id exten-
sion tried to use incoherent equality. However, as we will see

shortly, in practice these are almost always violated together.

4.1 Coherence Assures Modular Non-interference
With this definition, we can now see how to show Theorem

2.1, the definition for modular non-interference. Part 2 of the

definition of noninterfering means we can extend proofs of

coherent properties from the host to any extension. Let us

work up from there.

First, we exploit an interesting property about composi-

tion of modularly well-defined attribute grammar modules.

Only the set of modules included matters; the attribute gram-

mar’s behavior is never different for any “order” to how they

get included. This is because the only possible side-effect

of composing modules is the generation of copy equations

in forwarding productions, and these do not vary. Likewise

for the logical specification: coherent extension of a rela-

tion to a forwarding production can only be equivalent to

what it forwards to, so no different order of composition

could come to a different conclusion. This means the nor-

mal process for taking properties from H to an extended

language H ◁ E1 is exactly the same as for taking properties

from H ◁ E1 to a “rebased" language like (H ◁ E2) ◁ E1 (where
we “reinterpret" E1 onto a different host). In both cases, there

are simply some new modules with some potential new for-

warding productions, which we coherently extend relations

over. Effectively we are able to “rebase” an extension onto

an extended language, in the same manner and with the

same properties as we extend a language. That the above is

possible may be surprising, and so we wish to provide more

concrete intuition.

Theorem 4.2 (Coherent extension of proofs). Given a proof
of a coherent property ∀t ∈ H . P(t), and given a noninterfering
E, then ∀t ∈ H ◁ E. P(t).

Proof. While this is a direct consequence of the definition

of noninterfering, we wish to show it in a slightly more con-

structive way, to build intuition. Take our given proof overH
(which we assume proceeds by induction on decorated trees)

and remove all cases for forwarding productions. We can

then uniformly prove the subgoals P(t) for each forwarding

production in the same way. The originating module of the

forwarding production meets noninterfering, and so require-

ment 2 ensures each forwarding production preserves all

coherent properties. Since P(t) is coherent property, we can
apply coherence to change the goal to showing P(t . f orward).
Because we are proceeding by induction on decorated trees,

this goal is discharged by our induction hypothesis. □

This gives us a procedure for how it is that proofs can be

preserved by extensions. And with that in mind, it becomes

clear how we are able to “rebase” extensions, including their

proofs. We restrict proofs to just the cases of non-forwarding

productions, which extensions can never alter, and then uni-

formly extend them over any forwarding production, regard-

less of origin. This procedure is not affected by whether we

are extending a language (going fromH toH ◁E1) or rebasing
a language extension (going from H ◁ E1 to (H ◁ E2) ◁ E1). All
these operations can do is add more forwarding productions,

which we can safely handle so long as all extensions are

non-interfering. And so we can do either.

Theorem 4.3 (Non-interference of two extensions). Given
H , E1, and E2 such that

• All are noninterfering,
• ∀P ∈ P(H ). ∀t ∈ H . P(t),
• ∀P ∈ P(E1). ∀t ∈ H ◁ E1. P(t), and
• ∀P ∈ P(E2). ∀t ∈ H ◁ E2. P(t)

Then ∀P ∈ P(H )∪P(E1)∪P(E2). ∀t ∈ H ◁ (E1⊎∅E2). P(t).

For a proof of this theorem, we refer to Kaminski [10]. We

can then prove Theorem 2.1 by repeated application of this

theorem.
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5 Showing Non-interference
The definition of noninterfering requires two properties hold
of an extension. The first requires that our extension’s ver-

ification properties are all coherent. The second requires

that our extension does not violate any coherent properties

about the host (known or unknown). Let us work through

this process for the example extension of Figure 3.

To show we meet the first requirement, we must show our

properties are coherent. Because properties are incoherent

only if they involve incoherent relations, this task reduces to

showing that the relations involved are coherent. This proof

turns out to be quite simple in this case. For example, the

inferred case lte_all(inner (inner (x ,y), z),m) expands in a

syntax directed way into lte_all(x ,m) ∧ lte_all(y,m) ∧

lte_all(z,m), which is exactly what we specified for three.
This repeats quite easily for exists and eq_all.

It might seem that we are now done with this task, but

we have to handle the last remaining subtlety. Properties

are coherent if their constituent relations are coherent, but

we have only looked at the inductively defined relations

of the verification. Evaluation relations can also introduce
incoherence. In this case, however, it is simple to show they

do not, as the values computed are identical between trees.

By showing that the stated properties are coherent, we

have done half of what we need to do justify this extension

as non-interfering. The remaining half is showing that the

extension preserves all coherent properties. In general, it is

not necessary to concern ourselves with manually extending

the proofs of properties we have inherited from the host lan-

guage. Instead, we need to show that the extension preserves

all coherent properties, not just those we have in mind. The

ones we have in mind will of course be included as a con-

sequence, since we have shown them to still be coherent as

our first step.

But this is a difficult problem: how can we be sure any

arbitrary coherent property is preserved when we introduce

a new forwarding production?

5.1 An “Unreasonable” Approach to Enforcement
On the other hand, how could an extension invalidate a co-

herent property? Coherent extension of a property only pre-

serves coherence if all relations used are still coherent. When

the property evaluates synthesized attributes, the property

depends on relations that may become incoherent with a

new extension. This suggests a solution: we can ensure that

evaluation relations stay coherent.

In Figure 4, we can see a visual depiction of the potential

space of interference with two language extensions shown.

For the purposes of this diagram, assume there are no for-

warding productions within H . This figure depicts an ex-

tension EA introducing a new forwarding production and

synthesized attribute, while EB introduces a new forward-

ing production only. The shaded regions are authoritative.

Attributes & relations

P
ro

d
u
ct

io
n
s

H

EA

EBforwarding overrides

implicit

explicit

definitions

Figure 4. A table showing synthesized equations and rela-

tions on one axis, and productions on the other. EA introduce

both a new production and new attributes, while EB intro-

duces only a new production. Shaded regions cannot cause

interference problems.

This includes the host (labeled H ), the definitions of new at-

tributes (“definitions”) on just non-forwarding productions

(where incoherence cannot possible arise), and forwarding

equations (“forwarding”). Implicit copy equations (labeled

“implicit”) also obviously preserve coherence.

All of our problems stem from the other areas: labeled

“overrides” and “explicit.” These explicit equations on for-

warding productions are a potential source of incoherence

in evaluation relations. As a result, it is actually (mostly)

possible to enforce non-interference syntactically: ban these

equations on forwarding productions. The safe “implicit”

region grows to cover the “explicit” and “overrides” spaces,

leaving no possible source of interference. Or, more formally:

Theorem 5.1. If there are no explicit equations on forwarding
productions, then all evaluation relations are coherent.

Theorem 5.2 (Coherent evaluation implies preservation of

coherent properties). If all evaluation relations are coherent,
then the extension preserves proofs of all coherent properties.

Proofs appear in Kaminski [10], but the intuition here is

straightforward: for a proof to fail on the extended language,

there must be some forwarding production induction fails

on, but all properties have had their coherence preserved,

so it would also have to fail on some completely equivalent

host language tree.

The “unreasonable” syntactic restriction is enough to en-

sure part 2 of non-interference, but it does not ensure part

1. It is always possible to state an incoherent property, no

matter how well-behaved the extension’s implementation.

However, it does make it very difficult to write such an inco-

herent property.

Consider this: every test-case style property (i.e. some-

thing we could write as an expression in the language, even
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introducing novel attributes) must automatically be coher-

ent under this restriction. These kinds of properties do not

involve any inductive relations except evaluation relations,

so this claim is straightforward. This means an incoherent

property must somehow be strongly stated: seemingly admit-

ting the possibility of other extension’s production existing,

but then making claims about their behavior that should

probably seem suspect, and getting away with it because

(in isolation) there are no concrete counter examples. And

so although this “unreasonable approach” does not ensure

extensions do not violate part 1, it does make it harder.

6 Attribute Properties: More Useful
Non-interference

In the previous section, we banned attribute equations on for-

warding productions, in order to ensure evaluation relations

were coherent. However, we typically want to place some

equations on forwarding productions so that extensions “feel”

like native language features. For example, extensions should

generate error messages which refer to constructs in the ex-

tended program and not the generated code they forward to,

as it the case with macro systems. This is why we called this

approach “unreasonable.”

6.1 Host Language Adaptation
Part of what makes the “unreasonable” approach unreason-

able is that attribute values must be identical between the for-

warding production and the tree it forwards to. This means,

for example, that an attribute errors holding error mes-

sages on the forwarding tree must have the same value on

the forwards-to tree. Thus we are unable to raise any error

messages about an extension’s custom syntax. The errors

that can be raised are only those which the host language

raises on the forwarded-to tree, which may be about gener-

ated code that does not appear in the written program.

One way to mitigate this problem is to make a minor

change to the host language implementation. The errors at-
tributemust always be the same, but if we have host language

abstract syntax capable of raising arbitrary error messages,

this would not be an issue. To do this, we introduce into the

host language error productions, like that in Figure 5, that

simply always raise the error messages they are provided

with. Forwarding productions in extensions, instead of try-

ing to override the value of the errors attribute (which is

incoherent), can instead simply choose to forward to the

error production when they needs to raise custom errors.

We still demand strict equality on the part of the errors
attribute, but it is no longer a problem.

6.2 Exploiting Coherent Equality
Although errors turned out to be a problem with an simple

work around, what about the values that go into computing

error messages? For example, an extension expression for

production error e::Expr ::= msg::[Message]
{ e.errors = msg; }

production bridge e::Expr ::= x::ExtensionAST
{ forwards to if null(x.errors) then x.translation

else error(x.errors); }

Figure 5. An error production, and its typical use.

e.host =


e if e is a terminal

p(c.host) if e = p(c), p non-forwarding

e .forward.host if e has forwarding root

Figure 6. Transforming away forwarding productions.

constructing complex numbers may wish to have a type
attribute that gives an extension type. That way, error mes-

sages involving types would refer to complex numbers, and

not the underlying C struct that is an implementation detail

of the extension. This requires different values, though these

values are still related: what the extension type forwards to

(e.type.forward) is the same type as what the extension

expression forwards to has (e.forward.type).
Although the “unreasonable” approach bans attribute equa-

tions in forwarding productions, its arguments work equally

well just so long as attribute values are identical. That is,

so long at t.s = t.forward.s is true (which is exactly what

the forwarding copy equation does). For primitive types,

equality is coherent, these values must therefore be equal,

and so nothing changes. But strict equality is incoherent for

higher-order [27] (and reference [8]) attributes. This opens

up the possibility of different values for attributes between

the two trees.

In Figure 6, we define a transformation host that elimi-

nates all forwarding productions from a tree. This transfor-

mation has a very useful property:

Theorem 6.1. Given any coherent property P(t),

∀t . P(t) ⇐⇒ P(t .host)

Again, the proof is in Kaminski [10], but the intuition is

that this is achieved by repeated application of coherence

throughout the tree. With this tool, we can observe a useful

property about the evaluation relation (R) for a tree-type

(higher-order) synthesized attribute s:

R(t ,x .host) ⇐⇒ R(t ,x)

⇐⇒ R(t.forward,x)

⇐⇒ R(t.forward,x .host)

The outer two if-and-only-ifs ( ⇐⇒ ) are a result of this

theorem, while the inner one is a result of coherence. As a

result, if t.s.host = t.forward.s.host, this is enough to know

that the evaluation relation is coherent.
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This means that instead of explicit equations being point-

less (because we need t .s = t . f orward .s to preserve coher-
ence of evaluation), we actually can have a meaningfully

different value computed for a forwarding production com-

pared to what it forwards to. We have found a way to allow

some kinds of useful explicit equations. The values cannot

be arbitrary, though: the values must also be related by for-

warding. A simple example of this kind of relationship is

with types:

t .type.host = t .forward.type.host

In some sense, we can have different values, but they must

still be equal modulo forwarding.

6.3 Closing the World
Although coherent equality gives us a mechanism for allow-

ing differing values between trees, it actually has remarkably

little effect by itself. The trouble is that although tree-valued

attributes can differ, we can only observe the difference be-

tween trees by accessing attributes, which are either primi-

tive or also tree-valued. A short inductive argument leads

us to conclude that, in the end, we have to access some

primitive-valued attribute to make an observation, and those

have to be identical between the two trees!

Fortunately, there is one last trick in the toolbox. We have

required that every evaluation relation be coherent and thus

preserve all possible coherent properties. This is a good de-

fault assumption: we can never know what other property

some extension might someday want to rely on. But what if

there really is only a few coherent properties we could ever

want to know about a specific attribute?

Take the example of “pretty-print,” the pp attribute and a

property like t .pp.parse .host = t .host . This property essen-

tially claims that pretty printing composed with parsing is

equivalent to the identity function (once again using host in
order to make this modulo forwarding). That is essentially

all we need to know about a pretty printing, extensions do

not need to introduce new properties for this attribute.

So we can have the host language specify this property,

and then close the world for this attribute, so that only this

property need be preserved. No longer must extensions pre-

serve all possible coherent properties about this attribute,
just this one.

With this change, we can now have observably different

values for attributes on extension syntax versus the host

language syntax they forward to. Extension developers must

only prove t .pp.parse .host = t .host for each forwarding

production (essentially showing the explicit pretty printing

equations are correct). Combined with the trick for tree-

valued attributes like type and defs (for declarations), this

relaxation is quite useful. Error messages that use the pretty

printing of types of subexpressions (or variables looked up

in the environment) will now be about extension types and

extension syntax.

To close the world for a property, we have some con-

straints:

1. The property in question still has to be coherent, ulti-

mately.

2. Forwarding copy equations must still be valid. It is

not possible to guarantee the explicit equation will

always be the one used (consider, for example, the

id extension transforming the tree away before it is

accessed.)

3. We must be sure there are not any other properties we

might want for this attribute.

In practice, attributes like pp are the only ones we apply

this technique to, and so additional properties have not really

been a concern.

6.4 Summary
Putting all these techniques together, we are able to making

extensions feel like native language features. We do this

by allowing extensions to perform arbitrary analysis, and

then raise custom error messages. These error messages are

able to contain extension information by virtue of types,

definitions, and environments that can contain extension

trees (which are equivalent to some host trees.) But this hard

equivalence requirement can be relaxed for pp which is the

essential feature that allows extension types (for example)

to appear in error messages.

7 Property Testing
Although coherence is inherently about properties and veri-

fying language extensions, we do not often do verification in

practice. Fortunately, the attribute properties approach gives

us a satisfying way to detect interference through ordinary

property testing—without writing theorems or proofs.

We are able to shownon-interference by simply not stating

any incoherent properties and by ensuring attribute evalu-

ation relations are coherent. We showed that it is actually

hard (though not impossible) to write incoherent properties

when you have coherent evaluation relations. Evaluation

relations can be kept coherent by ensuring simple equalities

hold for every single attribute. These can be hard equality

(t .errors = t .forward.errors) or they can be the relaxed va-

riety we develop in the previous section. These equalities

are easily amenable to QuickCheck-style [3] randomized

property testing.

We will also apply QuickCheck-style testing in a some-

what novel way.Wemight wish to check that t .pp.parse .host
= t .host where t are expressions. In the usual QuickCheck

style, we would generate random trees t of that nonterminal

type, and check that each property holds on each of those

trees. Instead, while we still specify these properties in asso-

ciation with the nonterminal, we will emit QuickCheck-style

tests on a per-production basis. Values will be randomly gen-

erated for each child of each production (and for the inherited
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attributes given to the production), and all the nonterminal’s

properties will be checked on the resulting decorated tree

rooted in that production. In other words, we will specify

properties at the level of a type, but emit tests at the level of

each constructor of that type.

With this approach, properties can be specified by the

host language, and new tests will be applied to each produc-

tion introduced by an extension. By testing these attribute

properties, extensions will automatically be checked for in-

terference violations. Even properties as simple as actually

testing for t.errors = t.forward.errors can discover interfer-

ence problems.

8 Application to a Real Compiler
We wish to investigate two questions: first, does enforcing

coherence still permit useful extensions, and second, is the

testing-based approach effective in spotting violations? To

that end, we apply this property testing framework to ableC,

a specification of a C11 compiler front-end written in Sil-

ver. ableC offers a good, though small, natural experiment

for detecting interference. It comes with several language

extensions, but some were implemented prior to beginning

our work on non-interference. We know from inspection

that one of those extensions (one version of an extension

introducing algebraic datatypes and pattern matching) has

interference problems. (We call this a small experiment be-

cause there is just one extension of this sort, not because a

C front-end is small.) And so we look to see if the testing

approach successfully finds this violation.

As it turns out, the testing approach identified the inter-

fering extension in 100 out of 100 trials. Inspecting these

failures, we discovered that there were, in fact, two sources

of incoherence, while we had only discovered one of them

by inspection beforehand. The reason we found the non-

interference violations 100% of the time was that one of

these violations always occurred (the production was always

adding more declarations than the tree it forwarded to, so

the lists had different length.) When we restricted ourselves

to looking only for the other violation, the testing approach

discovered the failure in 86 out of 100 trial runs. This was

despite only generating 10 trees per production, a relatively

low number for random testing, and so we consider this quite

good. This particular violation was explicitly overriding the

errors attribute, rather than forwarding to an error produc-

tion, and so it was occasionally hidden when the check did

not raise an error.

While this is a modest evaluation of the ability for prop-

erty testing to find interference problems, ableC also serves

as an evaluation of the permissivity of non-interfering ex-

tensions. With ableC we were able to develop a number of

useful extensions, all without violating our non-interference

restrictions. We have built a “regular expression literals” ex-

tension and a matrix operations extension, we have added

algebraic data types and pattern matching to C, and we de-

veloped an extension to aid in the use of the Matlab foreign

function interface.

The experience we gained writing these extensions makes

it easy to say where non-interference leads to restrictions

on what extensions are possible. The central problem is that

there must be an equivalent host language tree wherever an
extension language construct appears. For ableC, this means

although we have a good extension for algebraic data types

and pattern matching, these data types cannot be parameter-

ized. That is, we cannot handle a type like List<a>. C has no

type representation for parameterized types, so this becomes

impossible. These sorts of restrictions are host language-

relative, however. This has lead to the desire to amend the

ableC host language with some internal features that enable

additional classes of extensions.

9 Related Work
The notion of interference of language extensions is similar

to that of feature interaction (e.g. Jackson and Zave [9]) in

software product lines [1, 13]. A primary difference is that in

software product lines it is typically assumed that an expert

in the domain of the software is involved in the composition

of various features, and can thus intervene (even though

this is undesirable) if some undesired interaction is detected.

This differs from our aims in which a programmer that is not

an expert in language design or compiler implementation

determines what extensions or features are to be composed

with the host language and thus intervention by an expert

is not possible. We wish to ensure there are no invalid con-

figurations.

The testing of context free grammars [16] and attribute

grammars [17] has been studied before. But this work investi-

gates issues of test coverage and focuses on a general notion

of correctness and not on non-interference of language ex-

tensions. Instead of a testing-based approach to ensuring

non-interference, formal verification of these properties is

possible as well. These properties could perhaps be expressed

in a dependent type system and then verified, for example

building on a dependently typed attribute grammar [19].

This particular approach encodes attribute grammars in the

dependently typed language Agda [20]. In this sort of frame-

work, non-interference could be proven.

While most extensible language frameworks seem to value

expressiveness over reliable composition, not all do. Wyvern

[22] and VerseML [21] are the only extensible language sys-

tem besides Silver, to our knowledge, that support reliable
composition of independently developed language exten-

sions, at least syntactically, without abandoning parsing in

favor of projectional editing. However, their approach does

not accommodate introducing new analysis of the host lan-

guage, and so is similar to syntactic macros in being non-

interfering, but more limited.
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SoundX [18] takes an interesting twist on macros by defin-

ing a desugaring over typing derivations rather than syntax

trees. This gives it added power above normal macros sys-

tems: the ability to make use of type information in expan-

sion, and the ability to define that type information for the

new syntax. Like Wyvern however, this approach is limited

because you cannot define new analysis (“judgements”) over

the host language. As such, the power of this system hov-

ers somewhere between a macro system and our approach.

It is able to achieve non-interference by ensuring that ex-

tensions are desugared before they are able to interact. Its

primary contribution is a process for automatically proving

that desugarings introduce no type errors, and so can be

safely applied. This approach is like a special case of coher-

ence: the type rule and rewrite rule are required to be correct

with respect to each other.

9.1 Relationship to Macro Systems
The “unreasonable” approach we describe can be compared

directly to many different kinds of macro systems. Macro

systems that do not permit case analysis of subtrees clearly

enforce non-interference, though this is a significant restric-

tion to the capabilities of extensions. If a system cannot

analyze subtrees, then this is equivalent to not only ban-

ning explicit equations on forwarding productions, but also

forbidding accessing synthesized attributes on children as

well.

When subtree analysis is permitted, it is still possible to do

so in a non-interfering way. Bottom-up expansion of macros,

for instance, would mean extensions (in the form of macros)

are non-interfering because subtree analysis could only ever

examine host language trees (all macros in subtrees would

already be expanded away). This would be similar to the

unreasonable approach in capability.

In practice, many macro systems use top-down evalua-

tion order, in part for lack of grammar: the system does not

know what pieces of a macro invocation’s arguments might

be host language constructs, within which we might looks

for more macros. The lack of grammar makes it difficult to

be disciplined in trying to “play nice” with other macros:

where might another unknown macro appear, so that (e.g.)

we should anticipate evaluating it before matching on the

result? (Indeed, the answer could be “almost anywhere.”)

Still, a top-down approach can be slightly more permissive

than outright banning subtree analysis while still managing

non-interference. Racket [7], although it has no resolution to

the interference problem, is more capable than other macro

systems if one attempts to observe the “banning subtree anal-

ysis” discipline. The reason is that, while many macros sys-

tems treat trees as simple objects, Racket ascribes a minimal

(name-binding) semantics to them, in order to support hy-

giene [15]. Instead of being equivalent to banning accessing

of all synthesized attributes on children, this would instead

permit access to a limited set of host language attributes.

10 Future Work
This development made a few critical assumptions, all of

which could be relaxed by future work. First, we generally

assumed that our properties are proved by induction on

decorated trees. Some properties are proved by induction

on other types, for example by induction on the derivation

of a well-typedness relation (rather than by induction on a

term or type). It may be possible to develop a framework for

reasoning about such proofs.

Likewise, we restricted propositions (and relations) to a

very simplified form. We only permit universal quantifica-

tion, and we did not allow nesting. Generalizing the notions

of “coherent proposition” and “coherent relation” to remove

these restrictions would be a useful future direction. Doing

so would likely require picking a particular logic, however.

There may be other approaches to non-interference, as we

somewhat implicitly noted when making a comparison to

macro systems. Our definition of noninterfering is just one

way of achieving this result, making use of coherence.

This solution, together with previous work on compos-

ing grammars and attribute grammars, offers a candidate

solution for composing language extensions into a working

compiler, without the possibility of conflict. Although an

exciting milestone in this research program, there remains

more research problems to be solved. It is not enough to

have a working compiler, we also need other language tool-

ing, such as debuggers, documentation generators, and IDE

tooling. These problems remain future work.

11 Discussion
Coherence in the end provides us with a precise definition

of what it means to forward to a “semantically equivalent”

tree. We have shown that all coherent properties can be

preserved by extensions, and so when extensions rely only

on coherent properties, they can compose reliably. Ensuring

our extensions are non-interfering places restrictions on the

kinds of extensions we can make. These restrictions largely

take two forms: we cannot over-promise with incoherent

properties, and we cannot violate coherent properties with

our extension’s behavior.

Returning to our opening example of the taint extension,
we see an example of an extension that is not possible, due to

inherent interference. Note, however, that this extension is

not possible for this particular (primitive) host language. The
host language is so simple, there is no alternative implemen-

tation strategy available except interfering ones. However,

this is a host language-relative restriction. A language like

Java, which has annotations built into the host language,

would have no trouble implementing an analysis of this sort.

The testing methodology we propose is imperfect. How-

ever, we believe it can effectively inform well-meaning ex-

tension developers of mistakes they are making before they

have invested too much into an unworkable approach. As for
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more hostile extension developers, we still have a notion of

blame for interference problems that arise in practice. Users

should not be confused about the cause of their problems.

We also note that the typical language extension devel-

opment methodology is unlikely to yield interference bugs.

A typical language extension will start its development in a

“macro-like” fashion, without explicit equations on forward-

ing productions. We called this “unreasonable” ultimately

because it does not permit language extensions to behave

like built-in language features: error messages in particu-

lar suffer. But this problem does not matter during initial

development, it only matters when the extension is being

“polished” for delivery to end-users. However it does mean

that extensions are unlikely to rely on interfering behavior

in the first place, especially with the interference tests imme-

diately warning extension developers of their early attempts

to do so. As a result, we believe this approach to preventing

interference will be quite effective.

As a final note, this system provides a precise boundary

between language features that can be introduced as exten-

sions, and those that would instead require modification of

the underlying host language. We believe this can be a very

helpful tool in future language design, by focusing attention

on core features that truly change the language.
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