Type Qualifiers as Composable Language Extensions

Travis Carlson
Computer Science and Engineering
University of Minnesota
Minneapolis, MN, USA
travis.carlson@cs.umn.edu

Abstract

This paper reformulates type qualifiers as language exten-
sions that can be automatically and reliably composed. Type
qualifiers annotate type expressions to introduce new sub-
typing relations and are powerful enough to detect many
kinds of errors. Type qualifiers, as illustrated in our ABLEC
extensible language framework for C, can introduce rich
forms of concrete syntax, can generate dynamic checks on
data when static checks are infeasible or not appropriate, and
inject code that affects the program’s behavior, for example
for conversions of data or logging.

ABLEC language extensions to C are implemented as at-
tribute grammar fragments and provide an expressive mech-
anism for type qualifier implementations to check for ad-
ditional errors, e.g. dereferences to pointers not qualified
by a “nonnull” qualifier, and report custom error messages.
Our approach distinguishes language extension users from
developers and provides modular analyses to developers to
ensure that when users select a set of extensions to use, they
will automatically compose to form a working compiler.

CCS Concepts « Software and its engineering — Ex-
tensible languages; Data types and structures; Transla-
tor writing systems and compiler generators;

Keywords type qualifiers, type systems, pluggable types,
extensible languages, dimensional analysis

ACM Reference Format:

Travis Carlson and Eric Van Wyk. 2017. Type Qualifiers as Com-
posable Language Extensions. In Proceedings of 16th ACM SIG-
PLAN International Conference on Generative Programming: Con-
cepts and Experiences (GPCE’17). ACM, New York, NY, USA, 13 pages.
https://doi.org/10.1145/3136040.3136055

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
GPCE’17, October 23-24, 2017, Vancouver, Canada

© 2017 Copyright held by the owner/author(s). Publication rights licensed
to Association for Computing Machinery.

ACM ISBN 978-1-4503-5524-7/17/10...$15.00
https://doi.org/10.1145/3136040.3136055

91

Eric Van Wyk
Computer Science and Engineering
University of Minnesota
Minneapolis, MN, USA
evw@umn.edu

1 Introduction and Motivation

Type qualifiers in C and C++, such as const or restrict,
enable the programmer to disallow certain operations on
qualified types and to indicate simple subtype relationships
between types. For example, only initializing assignments
are allowed on a variable declared with a const qualifier,
and a function with an argument declaration int *x cannot
be passed a value of type const int * as this would allow
changes to the const int via the pointer. The type int *
is considered to be a subtype of const int =*.

In their seminal paper “A Theory of Type Qualifiers”, Fos-
ter et al. [12] formalize this subtyping relationship and show
how user-defined type qualifiers can be added to a language
to perform additional kinds of checking. One example is a
nonnull qualifier for pointer types to indicate that the value
of the pointer is not null. A pointer p declared as

int * nonnull p = &v;

can be passed to a function as a parameter declared to have
type int *, but the reverse of passing an int * value as a
parameter with type int * nonnull is disallowed. Further-
more, dereferences to pointers whose type is not qualified
as nonnull raise errors. On the other hand, the qualifier
tainted induces a different subtype relationship in which
the type char xis a subtype of tainted char =, thus pre-
venting a value with this qualified type to be used where
an unqualified one is expected. These subtype relationships,
which form a lattice of qualified types, are described in more
detail in Section 2. In their paper, the qualifiers are called
“user-defined” and it is a programmer that specifies a new
qualifier, the form of subtype relationship that it induces,
and the operations that it disallows.

In this paper we reformulate these and other type qual-
ifiers as language extensions in the ABLEC extensible lan-
guage framework for C [17]. In the approach, we make a
clear distinction between the independent parties that may
develop various language extensions and the extension users
(programmers) that may select the extensions that address
their task at hand. These extensions may add new domain-
specific syntax (notations) or semantic analyses to their host
language, in this case C. While extension developers must
understand the underlying language implementation mech-
anisms used in ABLEC, the guarantees of composability pro-
vided by ABLEC and its supporting tools ensure that the users
of extensions do not.

https://doi.org/10.1145/3136040.3136055
https://doi.org/10.1145/3136040.3136055

GPCE’17, October 23-24, 2017, Vancouver, Canada

typedef datatype Expr

datatype Expr {
Add (Expr * nonnull, Expr * nonnull);
Mul (Expr * nonnull, Expr * nonnull);
Const (int);

3

Expr;

int value (Expr * nonnull e) {
match (xe) {
Add (el, e2) -> { return value(el) + value(e2); }
Mul (el, e2) -> { return value(el) * value(e2); }
Const (v) -> { return v; }
}
}

Figure 1. Algebraic datatype and nonnull extensions.

Language extension specifications for ABLEC are written,
as described in Section 3, as context free grammars (for con-
crete syntax) and attribute grammars (for semantic analy-
sis and code generation). The underlying tools that process
these specifications provide modular analyses of language
extension specifications that an extension developer uses to
ensure that their extension will automatically and reliably
compose with other independently-developed extensions
that also pass these analyses. This relieves the extension
users (programmers) of needing to know about the underly-
ing tools and techniques and thus frees extension designers
to write expressive language extensions that introduce new
syntax and semantic analysis with the knowledge that their
extension will be easily used by programmers as long as it
passes the modular analyses.

While this requires more sophistication of the extension
developer, this approach does provide them with the tools
for writing more syntactically and semantically expressive
type qualifiers than possible in other approaches. Syntacti-
cally, type qualifiers can define their own sub-language, e.g.
units(kg*m*2) which specifies a SI measurement in new-
tons. Another example is the sample program in Figure 1
that uses two language extensions: one introducing alge-
braic datatypes similar to those in Standard ML and Haskell,
and another introducing a nonnull qualifier like the one de-
scribed above. Here the algebraic datatype extension is used
to declare a datatype for simple arithmetic expressions and
to write a function to compute their value. This value func-
tion takes pointers to expressions qualified as nonnull. The
programmer writing this code would have imported both
of these independently-developed language extensions into
ABLEC in order to use both extensions in the same program.

Type qualifiers specified as ABLEC extensions can perform
the sort of analysis exemplified by a nonnull qualifier but
they can also introduce code into the C program that is
generated from the extended ABLEC program. These can be
dynamic checks of data when static checks are not possible

92

Travis Carlson and Eric Van Wyk

Use of watch type qualifier:
watch int sum = 0;
for (int i=1; i < 4; ++i) { sum = sum + i; }
Translation to C of assignment to sum:
sum = ({ int tmp = sum + 1i;

printf("example.xc:3: (sum) = %d\n", tmp);

tmp; 1)

Output:
example.xc:1: (sum) = @
example.xc:3: (sum) = 1
example.xc:3: (sum) = 3
example.xc:3: (sum) = 6

Figure 2. Code insertion by watch type qualifier.

or appropriate, or computations to perform data conversion
or generate print statements to monitor a changing variable
as is done with the watch type qualifier shown in Figure 2.

Contributions: This paper reformulates type qualifier work
of Foster et al. [12] in an extensible setting with guarantees
of composability for independently-developed type qualifier
extensions, extended with a more expressive mechanism for
specifying new static checks based on type qualifiers and
handling of parameterized type qualifiers (Section 3).

We describe a refactoring and extension of previously
ad-hoc handling of type qualifiers in ABLEC to support:

e Mechanisms for distinguishing behavior of type quali-
fier checking on code written by a programmer versus
code generated by a language extension or included
by the C preprocessor (Section 4.1).

e A technique for automatically combining type quali-
fier annotations to library headers from multiple ex-
tensions to alleviate a manual process in CQUAL, Foster
et al’s implementation of user-defined type qualifiers
in C (Section 4.2).

e Mechanisms for type qualifiers to be specific to a type
(and generate errors when applied to other types) and
for type qualifiers to be independent of the type they
qualify (Section 5).

e Qualifiers that add dynamic checks of data when static
checks are not feasible or appropriate (Section 6).

e Qualifiers that perform runtime conversion of data or
otherwise insert additional code (Section 7).

We demonstrate several type qualifiers such as nonnull
and qualifiers to indicate functions as being pure and associa-
tive, qualifiers with richer syntax such as one for dimension
analysis to check that physical measurement units (e.g. me-
ters, seconds, etc.) are used correctly, extensions that insert
code such as dynamic array bound checks, the watch quali-
fier, and data conversion (e.g. scaling values in millimeters
to meters in the dimension analysis extension).

Section 8 discusses related work before Section 9 discusses
some future work and concludes.

Type Qualifiers as Composable Language Extensions

2 Background

Our work reformulates much of the previous work on type
qualifiers to implement them as composable language ex-
tensions and then extends them so that qualifiers have con-
siderable code-generation capabilities. Thus we review this
previous work and the ABLEC extensible language framework
in this section.

2.1 Positive and Negative Type Qualifiers in C

Type qualifiers in Foster et al. [12] are associated with a
sign that is used to induce subtype relationships on quali-
fied types. The sign of their nonnull qualifier is negative,
meaning that for some type 7, the qualified type nonnull 7
is a subtype of 7. Thus a nonnull pointer can be used any
place an unqualified pointer can be used, but not the reverse.
An example of a positive qualifier is tainted, intended to
represent data that may come from a possibly-malicious user
and so should not be passed to exploitable functions, which
has been shown to be effective in detecting format string
vulnerabilities [26]. Positive qualifiers induce the opposite
subtype relation so that a type 7 is a subtype of tainted z.
Thus tainted values cannot be passed into functions that do
not explicitly accept them. The standard C qualifiers const,
volatile, and restrict are positive. Qualifiers then form
a lattice of subtypes [12, Section 2] so that, for a type 7 and a
positive qualifier pq and negative qualifier nq the following
subtyping relations hold: nq 7 < 7,7 <pqr,nqpqt < pqr,
andng Tt < nqpqr.

A pointer type may contain qualifiers on the pointer type
itself as well as on the type that is pointed to. To determine
whether one qualified pointer is a subtype of another, first
the outer-level qualifiers on the pointers are compared based
on the subtype relation induced by their signs. Care must
then be taken in comparing the inner-level qualifiers. In
general, it is unsound to compare the inner-level qualifiers
using subtyping rules, so-called deep subtyping. Instead,
they must be checked for equality. For example, char #*x;
tainted char *y = x; should not be allowed even though
char is a subtype of tainted char. The exception to this
rule is when the inner type is qualified as const and hence
cannot be updated [11, Section 3.6].

When used as an l-value, a variable in C refers to the mem-
ory location where the value of that variable is stored. When
used as an r-value, it refers to the value itself. Thus a variable
declared to be of type 7 can be thought of as being of type
reference T and of being automatically dereferenced when
used as an r-value. Because this is left implicit, a programmer
wishing to qualify a type has no way to specify whether the
qualifier should apply to this outermost reference or to the
value it refers to, and so this behavior is set as a property
of each qualifier. For example, declaring a variable as type
const 7 specifies that the memory location that the vari-
able refers to cannot be written to—not that the value stored

93

GPCE’17, October 23-24, 2017, Vancouver, Canada

at that memory location cannot be written to. In contrast,
declaring a variable as type nonnull z specifies that the
value stored at the memory location that the variable refers
to is not null—not that the memory location itself is not null.
A qualifier like const that applies to the implicit outermost
reference is specified to apply at the ref level, while a qualifier
like nonnull that applies underneath it is specified to apply
at the value level [11, Section 5.2].

2.2 Additional Checking

While the subtypes induced by qualifiers are checked through-
out the program, there are some constructs in which addi-
tional checks are added. For example, the pointer dereference
operator * performs an additional check to verify that the
pointer being dereferenced is qualified as nonnull. If it is
not, an error message is raised. This ensures that all pointer
references are done safely.

CouAal allows users to define these sorts of checks in a
so-called prelude file. Users would specify these by writing
with which qualifiers the arguments to operators must be
annotated. For example, to require a that nonnull qualifier
on pointer dereferences the user would write the following:
$%$a _op_deref($$a *$nonnull);

2.3 Flow-Sensitive Type Qualifiers

Flow sensitivity allows a type system to infer different type
qualifiers for a variable at different program points [13]. It
may be possible to know at certain points that a pointer
cannot possibly be null, for example, but not at others. For
example, a declaration of a pointer p such as int *p = &v;
that is followed immediately by a dereference of p could be
allowed because it can be inferred that at that dereference
point the pointer p will always be non-null. By inferring the
locations at which a type is known to be a subtype of the type
it was declared to be, the number of annotations required of
the user can be reduced while retaining the error-checking
benefits [23].

2.4 ABLEC, Attribute Grammar-Based Language
Extensions for C

ABLEC [17] is a specification of C, at the C11 standard, us-
ing the SILVER [27] attribute grammar system and the Cop-
PER [29] parser and context-aware scanner generator em-
bedded in it. Language extensions, also written in SILVER,
can introduce new concrete and abstract syntax, definitions
for host language semantic analyses (such as type check-
ing and error-generation) over the new syntax, as well as
new semantic analyses over the host language and extension
syntax (such as a new pointer analysis). Because these speci-
fications are written in terms of context free grammars (both
for concrete and abstract syntax) and sets of attribute equa-
tions associated with grammar productions, the composition
of the host language and several independently-developed
extensions is a straightforward process.

GPCE’17, October 23-24, 2017, Vancouver, Canada

The composed language specifications defines a translator
that scans and parses extended C programs (which have the
.xc or .xh extension), constructs an abstract syntax tree
(AST), performs type-checking and potentially generates er-
ror messages, and finally translates the extended C program
down to plain C to be output and compiled using a traditional
C compiler. Extensions can perform error checking on the
initial untranslated AST and thus generate error messages
that refer to the programmer-written code.

Of special interest are the modular determinism analy-
sis [25] (MDA) in CopPER and the modular well-definedness
analysis [18] (MWDA) in SiLVER that provide guarantees
on the composability of independently-developed language
extensions. While these impose some restrictions on lan-
guage extensions, we have found that they still allow quite
expressive and useful extensions to be specified [17].

The MDA is an analysis run by a language extension de-
veloper on the concrete syntax specifications of their exten-
sion, with respect to the host language being extended. If
the analysis fails, the extension developer can make adjust-
ments to their extension to fix the composition problems.
This analysis guarantees that any collection of language
extensions that pass the analysis, in isolation from one an-
other, can be automatically composed by COPPER to create
a scanner specification with no lexical ambiguities and a
parser specification—a context free grammar—that is in the
LALR(1) class, meaning that there are no ambiguities and
a deterministic parser can be constructed for it [1]. One of
the restrictions of the MDA on concrete syntax that ensures
composability of concrete syntax specifications is that new
productions that extend a host language construct (that is,
they have a host language nonterminal on their left-hand
side) begin with a so-called “marking” terminal. Another
restriction is that extension productions cannot extend the
follow sets [1] of host language nonterminals; that is, they
cannot specify that new non-marking terminals now follow
host language nonterminals in valid programs. The single
caveat to these guarantees is that there may be marking
terminals that are valid in the same parsing context (for ex-
ample, the context of type qualifiers) that have overlapping
regular expressions. These ambiguities are easily resolved
by the programmer using a mechanism called transparent
prefixes [25]. This amounts to specifying a prefix for each
marking terminal to be typed before that keyword in the
program disambiguate it. It is similar to using full package
names in Java programs when two packages both define a
class with the same name.

The MWDA provides a similar modular guarantee for the
static semantics specified as attribute grammar fragments.
Specifically, it ensures that the composition of any collection
of extensions that pass the MWDA independently will form
a well-defined [31] attribute grammar. This ensures that at-
tribute evaluation will not terminate abnormally because of
a missing attribute-defining equation.

94

Travis Carlson and Eric Van Wyk

int square (int x) pure { return x * x; }

int add (int x, int y) pure associative
{ return x +y; }

int vector<int> square_all (vector<int> xs)
{ return map (square, xs); }

int sum (vector<int> xs) { return fold(add, @, xs); }

Figure 3. Use of pure and associative type qualifiers with
map and fold parallel programming extension.

3 Type Qualifiers as Extensions in ABLEC

This section describes how type qualifiers, in the spirit of
those in CQUAL, can be implemented as composable language
extensions in the ABLEC extensible language framework. The
following sections describe our enhancements and contribu-
tions to that line of work.

Motivating examples featuring the use of type qualifiers to-
gether with other extensions include the algebraic data type
example in Figure 1 and the qualifiers pure and associative
as applied to function types in Figure 3. These are used in
a parallel programming language extension that introduces
map and fold constructs that generate parallel implementa-
tions of these common functional programming concepts.

Prior to this work, ABLEC supported the standard C quali-
fiers in an ad-hoc manner. The ABLEC host language specifi-
cation was modified to treat qualifiers according to the model
presented here and to add extension points to allow code gen-
eration features. This involved refactoring the type-checking
code and adding attributes on the Qualifier nonterminal,
and several collection attributes presented in the following
sections. Now that this one-time enrichment of the host lan-
guage specification has been made, future type qualifiers can
be implemented as pure extensions with no further modifi-
cations needed to ABLEC itself, and non-qualifier extensions
can also make use of these code-generation extension points.

3.1 Concrete Syntax for Qualifiers

Figure 4 shows several parts of the implementation of the
nonnull [10] qualifier as an ABLEC extension, written in
S1LvER. Extension specifications indicate the name of the
extension, following the grammar keyword, and also import
the host language specification since extensions build on top
of many and translate to host language constructs.

The syntax that most type qualifiers add is quite sim-
ple, typically introducing a new keyword, such as pure or
nonnull. In SILVER this is implemented as a new terminal
symbol, in this case named Nonnull_t, with the constant
regular expression *nonnull’ defining its syntax. Since this
terminal marks the beginning of an extension’s syntax it is
a marking terminal, described below. This terminal is in the
Ckeyword lexer class to give it precedence over variable and

Type Qualifiers as Composable Language Extensions

grammar edu:umn:cs:melt:exts:ableC:nonnull;
import edu:umn:cs:melt:ableC;

marking terminal Nonnull_t 'nonnull'
lexer classes {Ckeyword};
concrete production nonnull_c
g::Qualifier_c ::= 'nonnull'
{ g.ast = nonnull(); }

abstract production nonnull
g::Qualifier ::= {- empty -}
{ q.isPositive = false;
q.isNegative = true;
g.applyAtVallLevel = true;
g.qualCompat = \ qualToCompare::Qualifier ->
case qualToCompare of nonnullQualifier() -> true

| _ -> false ;
}
function isNonNullQualified
Boolean ::= t::Type { return ... elided ...; }
aspect production dereference
e::Expr ::= d::Expr
{ lerrors <- case isNonNullQualified(d.type) of
| true -> []

| false -=> [err(e.location, "dereference on pointer
++ "without 'nonnull' qualifier")] ;

Figure 4. Fragments of nonnull type qualifier implementa-
tion.

type names whose regular expressions overlap with this one;
this is just the common notion of lexical precedence seen in
most scanner generators.

To add a new qualifier, extension developers write a new
production with a host language nonterminal Qualifier_c
on the left-hand side. We conventionally suffix names of
concrete syntax elements with “_c” to distinguish them from
their abstract syntax counterparts. The production named
nonnull_c defines the new nonnull qualifier and indicates
how to construct the abstract syntax tree for this qualifier,
using the nonnull abstract production defined below.

While the nonnull qualifier is syntactically rather simple,
our dimensional analysis qualifier is parameterized by arith-
metic expressions over the SI units in Table 1. For example,
a floating point variable to hold acceleration values can be
declared as

units(m/s*2) float acceleration;
in which the derived unit for acceleration is constructed
using the division and power operators over the symbols in
Table 1. Standard metric prefixes such as k for kilo or m for
milli can precede unit symbols allowing dimensions such as
units(kg*m/s*2) for newtons. Here the prefix k precedes
the base unit g.

95

GPCE’17, October 23-24, 2017, Vancouver, Canada

Table 1. Unit symbols and meanings.

Symbol Name Dimension

m meter length

g gram mass

s second time

A ampere electric current

K kelvin thermodynamic temperature
mol mole amount of substance

cd candela luminous intensity

An abbreviated specification of the concrete syntax for
this qualifier is shown in Figure 5. Note that line comments
in SILVER begin with --. Of interest here is the sub-language
for units rooted at the UnitExpr_c nonterminal. Terminals
for the base unit symbols in Table 1 are declared, though only
two are shown here. Next are terminals for the operators;
these are given appropriate precedence and associativity set-
tings and used in the concrete productions for UnitExpr_c
below. The last one derives base units with optional metric
prefixes, whose productions and prefix terminals are shown
below. Note that the construction of ASTs is elided in all of
these productions.

It is worth noting that there is no lexical ambiguity be-
tween the base unit (and prefix) terminals and the host lan-
guage variable and type name terminal symbols even though
their regular expressions overlap. Nor are there lexical am-
biguities between the new operator terminals here and the
arithmetic operator terminals in the host language. This
is because COPPER generates context-aware scanners [29].
When the scanner is called for the token, it uses the current
LR parsing state to identity those terminal symbols that are
valid (those with a shift, reduce, or accept action in the cur-
rent state). The scanner then only scans for these terminal
symbols. Thus in the parsing context of UnitExpr_c the
host language terminals mentioned above are not valid and
thus there is no ambiguity. Context-aware scanning plays
an important role in making both lexical ambiguities and
LR table conflicts less common and thus makes the MDA
analysis practical.

Also note that we use the same terminal symbol, Meter_t
(m), for the base unit meter and the prefix “milli”. Context-
aware scanning is not enough to avoid the ambiguity of
introducing another terminal matching *m’ in this context.
This type of reuse is common in LALR(1) parser specifica-
tions and is an annoyance. It is important to note that this
annoyance affects the extension developer (who is expected
to understand these issues) and not the extension user (who
is not). The modular analyses described earlier ensure that
the composition of different language extension specifica-
tions is automatic and reliable so that the extension users
need not know of these concerns.

GPCE’17, October 23-24, 2017, Vancouver, Canada

grammar edu:umn:cs:melt:exts:ableC:dimensionanalysis;

marking terminal Units_t 'units' lexer classes {Ckeyword};

concrete production units_c
g::Qualifier_c ::= 'units'
{ g.ast = units(u.ast); }

"(" u::UnitExpr_c ')’

nonterminals UnitExpr_c, BaseUnit_c, UnitPrefix_c;
terminal Meter_t 'm';

terminal Gram_t 'g'; --other unit terminals elided
terminal Mul_t '*' precedence = 1; associativity = left;
terminal Div_t '/' precedence = 1; associativity = left;
terminal Pow_t '*' precedence = 2; associativity = right;
concrete productions u::UnitExpr_c
::= l::UnitExpr_c '*' r::UnitExpr_c { u.ast = ...; }
| 1::UnitExpr_c '/' r::UnitExpr_c { u.ast = ...; }
| 1::UnitExpr_c '*' i::IntLiteral { u.ast = ...; }
| '(" e::UnitExpr_c ')’ { u.ast = ...; }
| p::UnitPrefix_c b::BaseUnit_c¢ { u.ast = ...; }

concrete productions b::BaseUnit_c
'm'" { b.ast ..
| 'g" { b.ast .5 0

= --other unit productions
--elided

terminal Kilo_t 'k';
terminal Centi_t 'c'; --other prefix terminals elided

concrete productions p::UnitPrefix_c

i= 'k {{p.ast = ...;)
| '¢'" { p.ast = ...; }
| 'm'" { p.ast = ...; } --Reuse of Meter_t
| { p.ast = ...; } --empty, prefix is optional

Figure 5. Dimension analysis qualifier unit() and unit ex-
pressions.

3.2 Abstract Syntax for Qualifiers

After the parser has completed and the abstract syntax tree
(AST) generated by the specifications in the concrete syntax,
the AST is decorated with attributes to compute static seman-
tic information such as the types of expressions or the list of
errors found on a statement. SILVER is a higher-order [31]
attribute grammar system [19] with a simple notion of refer-
ence [15] / remote [3] attributes used for this process.

Attributes for qualifiers: Returning to the nonnull ex-
ample in Figure 4, note the abstract production named
nonnull that constructs an (abstract) Qualifier in the AST.
A list of qualifiers of this sort are associated with each Type
nonterminal in the ABLEC abstract syntax to represent types.
The Qualifier nonterminal is decorated with attributes to
define the semantics of a qualifier and equations that define
these attribute values for nonnull can be seen in the figure.
Similar productions for the pure and watch qualifiers are
defined in their language extensions.

96

Travis Carlson and Eric Van Wyk

grammar edu:umn:cs:melt:ableC;
abstract production dereference

e::Expr ::= d::Expr
{ attr lerrors :: [Msg] with ++ ;
lerrors := d.errors;

forwards to if null(lerrors)
then dereferenceFinal(d)
else errorkExpr(lerrors);

Figure 6. Partial specification of ABLEC pointer dereference
construct. This production is enhanced in Section 6.

Our implementation splits the sign of a qualifier among
two Boolean attributes, isPositive and isNegative, on
the Qualifier nonterminal. A qualifier that sets only one of
these to true works as expected and as described in Section 2.
Since nonnull is a negative qualifier, it sets isNegative to
true and isPositive to false. It applies at the value level
and thus applyAtVallLevel is set to true.

It is possible to set both isPositive and isNegative to
true on a qualifier g, thus indicating thatq7 < randr < g,
or r = q 7. This is done for the watch qualifier so that no
subtyping restrictions arise. Both attributes can also be set
false; this effectively creates a new type since ¢ 7 £ 7 and
T £ qr,or7 # g 7. Since ABLEC already has extension
mechanisms for creating new types we have not yet found a
compelling use for this capability.

Type expressions and type checking: As mentioned above,
abstract Type nonterminals representing types have an at-
tribute named qualifiers that is a list of Qualifier trees.
To determine whether a qualified type q; 7 is a subtype
of q; 7, we check if all qualifiers in ¢; but not in g, are
negative, and if all qualifiers in g, but not in ¢; are posi-
tive. Thus, annotating a type with a qualifier that sets both
isPositive and isNegative has no effect on type compat-
ibility. Each Qualifier defines a qualCompat attribute that
is a function that compares itself to another qualifier for this
check. For simple qualifiers like nonnull this is just a lambda-
expression (written \ v: : ¢t -> expr) that checks for equality.
For more sophisticated qualifiers like unit, this function is
more complex as it must convert the unit expressions, such
asm * mand m”2, into a canonical form to compare them.
These qualCompat functions are used to detect that, e.g., an
int const * typed value cannot be passed into a function
parameter with type int #*. All type checking in ABLEC
performs this subset check on qualifiers.

Another error checking feature in Foster-style type quali-
fiers is the additional checking for qualifiers on specific host
language operations, such as requiring dereferenced point-
ers to be qualified by nonnull. Thus, specifications in the
nonnull grammar in Figure 4 need to add new errors to the
host language dereference construct. In ABLEC, operations

Type Qualifiers as Composable Language Extensions

such as this are implemented by abstract productions in the
host language; one example is the pointer dereference pro-
duction in Figure 6. This production uses a few advanced
S1LVER features. The local errors attribute lerrors is a list
of messages ([Msg]). It is also a collection attribute, meaning
that additional messages can be added remotely (in this case
from the nonnull specification) and these are all combined
with the list append operator ++. This attribute is initially
populated by the errors on the dereferenced expression d
using the special collection attribute initializer :=. If there
are no errors then this construct translates to a final, post-
processing version of the construct. Otherwise it is translated
into an error construct that contains the errors.

This translation is done via forwarding [28]. When an AST
node is queried for an attribute for which it has no equation,
it constructs the tree defined by the forwards to clause
and automatically queries that tree for the attribute value.
This is primarily used by language extensions to define their
translation to host language constructs.

For the nonnull specification to add new error messages
to lerrors it uses an aspect production, as seen in Figure 4.
Such productions can add new attribute defining equations
to an existing abstract production. In this case, new error
messages are contributed to lerrors on dereference using
the contribution operator <- if the type of the dereferenced
expression d. type is not qualified with nonnull. If it is so
qualified, then the empty list, [], is contributed.

Productions for host language operators in ABLEC follow
the general pattern exemplified by dereference and thus
aspect productions in language extension grammars can add
new errors to existing operators. The host language const
qualifier works in this way to check assignments and the
dimensional analysis extension works similarly to check for
compatible unit qualifiers on arithmetic operators.

4 Type Qualifier Analysis in the Presence
of Other Language Extensions and
Libraries

Type qualifiers introduced as language extensions must work
well with other language extensions and libraries used by
the programmer. This raises two challenges whose solutions
are discussed in this section. First, any useful system that
allows extensions to work together must not generate error
messages on code generated by a language extension since
the programmer cannot annotate that code with the neces-
sary type qualifiers. We must assume the generated code is
correct and thus the analysis introduced by type qualifiers
needs to take its context (programmer written code versus
extension generated code) into account when doing error
checking. Second, library code in header (. h) and source (. c)
files must also be handled properly so that qualifiers can be
easily added to library header files without editing them.

97

GPCE’17, October 23-24, 2017, Vancouver, Canada

4.1 Context-Aware Type Qualifier Analysis

Consider again the extended ABLEC code in Figure 1. Lan-
guage extensions in ABLEC specify their translation to plain
C, via forwarding. The datatype declaration is translated to
a collection of C struct and union types for representing
Expr values in the expected, but less convenient, manner.
The pattern matching construct introduced by the exten-
sion translates into the expected, but again less convenient,
nested if-else statements.

A potential problem arises in the pointer declarations and
their dereferences in the generated C code translation of
the extension; the translation of the match construct has
a local pointer named _current_scrutinee_ptr that adds
an additional level of pointer indirection to types in the
datatype declaration. To match a pattern against the value
(in this case *e) being scrutinized this pointer tracks the
elements being inspected and is frequently dereferenced. But
the (generated) type of this pointer is not qualified by the
nonnull extension and thus dereferences to it are erroneous.

Typically, extensions check for errors so that error mes-
sages are in terms of the programmer-written code, not the
generated C code. But this is not required and for some forms
of extensions the errors found on the generated code lead
to reasonable error messages. Thus, it would be possible for
nonnull dereference errors to be reported on extension gen-
erated code that the programmer cannot change. Even if the
extension does check for errors and disregards any errors on
the generated code, this leads to a violation of an unenforced
invariant that if no errors are found in error checking the
programmer-written code, then there should be no errors
on the generated C code. Although this may not affect the
programmer, it is still undesirable.

Qualifiers may also not want to generate error messages
on code from standard (. h) or extended (. xh) header files.
Locations in CoPPER and SILVER, and thus ABLEC, include
the original filename and this is maintained by the C prepro-
cessor, using # tags.

To solve this problem, type qualifier analysis can exam-
ine the context in which the analysis in being applied by
inspecting the location of the code. Locations in ABLEC are
structured data created by a loc or a generatedLoc pro-
duction. The second indicates that the code, in this case the
dereferences generated by the extension, are generated and
thus have a location matching the pattern generatedLoc(_).
The function suppressError in Figure 7 determines, based
on the location, if errors should be suppressed or not.

We can rewrite the aspect production for dereference
from Figure 4 so that error messages are only added to
lerrors if the type is not appropriately qualified and er-
rors are not to be suppressed. This can be seen in Figure 7.

As we will see in Section 6, the nonnull qualifier extension
can also introduce a dynamic check for the pointer to ensure
that it is not null during pattern matching.

GPCE’17, October 23-24, 2017, Vancouver, Canada

function suppressError Boolean ::= loc::Location
{ return endsWith(".h", loc.filename)
|| endsWith(".xh", loc.filename)

|| case loc of generatedLoc(_) -> true | _ -> false ;
}
aspect production dereference
e::Expr ::= d::Expr
{ attr msg::Msg = "dereference without 'nonnull'";

lerrors <- if isNonNullQualified(d.type) ||
supressError(e.location)
then []
else [err(e.location, msg) 1;

Figure 7. Context-aware analysis of the nonnull qualifier,
a revision on Figure 4.

4.2 Working with Libraries

First, library source files present no problems since they are
compiled with a standard C compiler and not ABLEC. So no
new type qualifier analysis need occur there.

Problems may arise when header files are included by the
#include directive. This code is processed by an extended
ABLEC compiler and must act accordingly. In some cases, the
lack of extension-defined type qualifiers in library functions
simply creates a lost opportunity to prevent improper use
of such functions. For example, passing a null file pointer to
the standard I/O functions—e.g. fgets()—results in unde-
fined behavior at runtime, but could be prevented at compile
time if the parameters were annotated to be of type FILE
* nonnull. More seriously, in other cases the annotation
of library functions with extension-defined type qualifiers
may be critical to the usefulness of the qualifiers in prac-
tice. Consider the tainted qualifier. Failing to annotate as
tainted strings that are read from a file—again, e.g. with
fgets()—would create a gap in the analysis.

CouaL addresses this by allowing user-annotated proto-
types to take precedence over those in standard header files,
but provides no mechanism for composing multiple anno-
tated prototypes for the same function for different qualifiers.
Thus, to support independent development of type qualifiers,
we allow functions to be redeclared with differing extension-
defined qualifiers as long as the prototypes are otherwise
compatible, and accumulate the type qualifiers as they are
seen. The type of the function is then formed from the union
of all such added type qualifiers.

For example, the tainted qualifier extension may provide
a header file containing the prototype

tainted char xfgets(tainted char xs, int size,
FILE xstream);

and the nonnull extension may provide a header containing

char xfgets(char xs, int size,
FILE * nonnull stream);

98

Travis Carlson and Eric Van Wyk

grammar edu:umn:cs:melt:ext:ableC:pfp ;
imports edu:umn:cs:melt:ableC;

abstract production pure
q::Qualifier ::=
{ gq.isPositive = false;
g.isNegative = true;
g.errors := case q.typeToQualify of
| functionType(_,) -> []
| _ -> ... generate appropriate error ...

Figure 8. Checking that pure qualifies only function types.

In a program that includes (#include) both of these, ABLEC
will compute the type of fgets to be
tainted char xfgets(tainted char *s, int size,
FILE * nonnull stream);

This prototype will now ensure that potential incorrect uses
of fgets described above are caught statically. Importantly,
the programmer did not need to write this combined proto-
type, as in CQUAL. It was composed automatically from the
extension-written prototypes in their header files.

5 Type-Specific Qualifiers and
Type-Independent Qualifiers

This section discusses how type qualifier extensions can
check for errors in their application to a type, e.g. some
qualifiers such as pure and associative are specified to
only be allowed to qualify function types. In contrast, some
qualifiers, such as units, can be applied to any type; this
allows for additional applications of these qualifiers. We
show how the dimensional analysis qualifier can be applied
to a separately-developed numeric interval type.

5.1 Checking Errors on Type Expressions

Type qualifiers can limit their application to specific types,
e.g. the pure and associative qualifiers in the parallel
functional programming extension can only be applied to
functional types. This extension raises an error on declara-
tions such as pure int x; since this declaration violates
this extension-specified policy. To accomplish this, qualifiers
can define an errors attribute of type [Msg] that decorates
many host language nonterminals to be something other
than the empty list. For pure in Figure 8 the inherited at-
tribute typeToQualify is passed down to g::Qualifier
from the enclosing type so that pure can inspect this type.
Here it checks if it is a function type matching the pattern
functionType(_,_). If not, an error message is generated.

nonnull performs a similar check. Qualifiers can perform
other type expression checks by writing more sophisticated
attribute equations. For example, a dimensional analysis
qualifier units checks that only one units qualifier dec-
orates a type by filtering the list of qualifiers on the type

Type Qualifiers as Composable Language Extensions

abstract productions addOverload
e::Expr ::= 1::Expr r::Expr
{ attr lerrors :: [Msg] with ++ ;
forwards to if null(lerrors)
then case getAddOverload(l.type, r.type) of
| just(p) -> p(1, r)
| nothing() -> add(l, r)
else errorExpr(lerrors);

lerrors := [1;

Figure 9. Overloading addition in ABLEC.

(g.typeToQualify) and checking if there are two or more
that match the pattern units(_). It does not however check
the type that it qualifies and can thus qualify any type, a
feature used in combination with operator overloading to
qualify numeric types introduced by other extensions.

5.2 Type Qualifiers and Operator Overloading

In ABLEC, host language operators such as addition (+), mul-
tiplication (*), and many others can be overloaded by new
types introduced by language extensions [17, Section 7.1].
For example, an extension-defined interval type can overload
addition so that expressions such as

interval[1.2, 3.1] + interval[2.0, 4.4]
evaluate to the interval value interval[3.2, 7.5].

The new interval type can also be qualified by the dimen-
sional analysis units qualifier since units does not restrict
itself to any specific types in the way that pure and nonnull
do. Thus, a sum function over meter-qualified intervals could
be written as

units(m) interval sum (units(m) interval x,
units(m) interval y)
{ return x +y; }

The concrete syntax of ABLEC creates the AST for addi-
tion using the addOverload production, partially shown in
Figure 9. It collects local errors (lerrors) and if there are
any translates to an erroneous Expr production that we have
seen before. Otherwise it follows a process we elide here
to determine whether it should translate (via forwarding)
to an extension-defined overloading production (called p in
Figure 9) or the default addition production (add).

The dimensional analysis extension can contribute new er-
rors to the lerrors errors attribute in Figure 9 by writing an
aspect production similar to the one in Figure 7 for nonnull
dereferences. This aspect is shown in Figure 10. It calls an
elided function unitsCompatible to determine if an error
should be added to lerrors, again using the <- contribution
operator. It also specifies what type qualifiers should be col-
lected on the resulting type of this addition. In this case it is
just the units on one of the arguments, but for multiplication
it would be the product of the unit expressions in the units
qualifiers on the types of 1 and r.

99

GPCE’17, October 23-24, 2017, Vancouver, Canada

grammar edu:umn:cs:melt:exts:ableC:dimensionAnalysis;

aspect productions addOverload
e::Expr ::= l::Expr r::Expr
{ attr compat::Boolean = unitsCompatible(l.type, r.type);
lerrors <- if compat then []
else [err(e.location,
"incompatible units on addition") 1;
e.collectedTypeQualifiers <- if !compat then []
else [getUnits(l.type)];

Figure 10. Type-independent dimensional analysis error
checking.

({ int * _tmp = d;
int done = 0;
if (_tmp ==0) {
printf("%s\n", "null dereference");
if (... _tmp ...) {
printf("%s\n", L),
if (done) exit(1);
* _tmp; })

done =

15 3

done =

15 3

Figure 11. Generated dynamic checks on dereferences.

Error checking for the dimensional analysis extension
happens before operator overloading is resolved because the
aspect production shown in Figure 10 is on the addOverload
production. Alternatively, an extension may choose to write a
similar aspect on the default addition production add instead.
Thus, error checking for type qualifiers can work on any
type (possibly developed by other extensions) that overloads
operators. Qualifier extension designers can decide if their
qualifier is specific to a type, or not.

6 Dynamic Type Qualifier Checking

There are occasions when statically detecting qualifier-based
errors is not feasible or appropriate. Recall from Section 4.1
where the nonnull qualifier checks its context so as to not
generate error messages on code generated by other exten-
sions, in that case the match construct from the algebraic data
type extension. Instead of doing nothing, the nonnull exten-
sion could insert code to do a run-time check of the pointer to
be dereferenced. Another example is a check_bounds quali-
fier, described below, that adds simple bounds checking to
arrays with its qualifier.

Dynamic non-null checks: Before discussing the details,
consider the sample code in Figure 11 generated from a deref-
erence to an integer expression d. This code uses the GCC
statement-expression, bracketed by ({ and }) to contain the
if-statements that perform the dynamic checks. A temporary
variable _tmp is used to avoid evaluating d more than once
and a done flag is set to false. Following are two dynamic

GPCE’17, October 23-24, 2017, Vancouver, Canada

grammar edu:umn:melt:cs:ext:ableC:dimensionanalysis;

aspect production dereference
e::Expr ::= d::Expr
{ e.errors <- ... as before ...
dynamicChecks <- if isNonNullQualified(d.type) ||
! supressError(e.location)

then []

else [(checkNull, "null deference") 7;
}
function checkNull Expr ::= tmp::Expr
{ return equalityOp(tmp, intConst(@)); }

Figure 12. Adding a dynamic non-null check to pointer
dereference. A revision on Figure 7.

checks that examine the contents of _tmp and potentially
print an error message and set the flag to true. If any set
the flag, the code exits, otherwise the value returned for the
statement expression is the dereference of _tmp. The first is a
check if the pointer is null, added by the nonnull extension,
the second is elided but added by some other extension.

Host language productions, like dereference, have a sec-
ond collection attribute (to go along with lerrors) named
dynamicChecks that extensions can contribute to in order
to add dynamic checks like those in Figure 11. This attribute
has the type [(Expr::=Expr, String)]. The first element
is a function for constructing the checking expressions in
the if condition whose argument is the temporary _tmp.
The second is the message to print if the check detects an
error. Extensions can contribute elements to this list that
inject dynamic checks into the generated C code. In Fig-
ure 12 the dimensional analysis extension adds a null check
to the dynamicChecks collection attribute if the type is not
qualified by nonnull and errors are to be suppressed.

The host dereference production in Figure 6 is extended
to initialize dynamicChecks to the empty list, like lerrors.
Instead of forwarding directly to dereferenceFinal if there
are no errors, it first wraps all the dynamic checks specified
in dynamicChecks by other extension contributions to con-
struct code like that in Figure 11. It uses dereferenceFinal
for the last dereference so that these checks are only inserted
one time since that production does not inject these checks.

In a similar manner, cast operations that add a nonnull
qualifier to the type can also generate a dynamic check that
the pointer is not null.

Dynamic array bounds checking: Attempting to access
array elements outside of the actual bounds is a notorious
problem in C. A lightweight dynamic solution is provided by
a check_bound qualifier on pointer types and a custom mem-
ory allocation function malloc_bc that maintains a map of
allocated pointer addresses and the size allocated in a global
map. For example, the statement

int * check_bounds x = malloc_bc(5 * sizeof(int));

100

Travis Carlson and Eric Van Wyk

units(m) double length
units(mm) double width = 450.2;

/* scaling width from mm to m at runtime =*/
units(m) double perim = 2. * (length + width);

2.3;

Figure 13. Example use of type qualifier code insertion by
the dimensional analysis extension.

maps the allocated memory to the allocated size, here 20
bytes assuming 4 byte integers. On an array access, x[i], a
dynamic check is inserted on the host language array access
production in much the same fashion as on the dereference
production above. This compares the index value to the allo-
cated size in the global map to check if it is valid. An error is
raised if not. This extension injects the check for all arrays
qualified by check_bounds, even those inside of loops. A
more sophisticated version would attempt some static analy-
sis to determine if the dynamic checks could be avoided. But
even a simple qualifier like this could be useful in testing.

7 Type Qualifier Directed Code Insertion

Besides the dynamic checks that were described above, ex-
tensions can insert more general forms of code that encloses
another expression or statement. An example of this is the
simple watch qualifier in Figure 2. On assignment statements,
the expression on the right-hand side is “wrapped up” in a
GCC statement expression that stores the result in a tempo-
rary, prints it, and then returns that value.

The watch qualifier is not signed—it is neither positive nor
negative. Thus no subtype relation is induced and watched
values can be passed into functions not so qualified, but the
changes to the value are then not printed.

It makes sense for changes to watch qualified values to
be printed even if the updates are from extension gener-
ated code. Thus the watch qualifier does not make use of
the context-aware mechanism described in Section 4 and
inserts the same code on programmer-written and extension-
generated code so that all changes can be observed.

Another potential application of code insertion comes
from the dimensional analysis qualifier. Consider the exam-
ple in Figure 13 in which two distance variables, qualified
with different units, are added. The addOverload produc-
tion shown in Figure 9 has an additional collection attributes,
lInserts and rInserts, both of type [Expr: :=Expr], that
contain code-wrapping functions added by different exten-
sions for the left, and respectively, right children of the pro-
duction. The equations for the right child are shown in Fig-
ure 14. The local attribute rInserted is the result of folding
up elements of rInserts around r, similarly for the left
child. The forwards to clause is updated to use 1Inserted
and rInserted from the original 1 and r in Figure 9. To add
a multiplication of a scaling factor around the right child
of add to match the units on the left child, the dimensional
analysis extension can add the following equation to the
aspect production in Figure 10:

Type Qualifiers as Composable Language Extensions

abstract productions addOverload

e::Expr ::= 1::Expr r::Expr

{ attr rhslInserts :: [(Expr ::= Expr)] with ++;
rinserts := [];
attr riInserted :: Expr =

foldr(\f::(Expr::Expr) e::Expr -> f(e), r, rlnserts);

forwards to if null(lerrors)
then case getAddOverload(l.type, r.type) of
| just(p) -> p(lInserted, rlnserted)
| nothing() -> add(lInserted, rlInserted)
else errorExpr(lerrors);

3

Figure 14. Overloading addition in ABLEC with code inser-
tions, a revision on Figure 9.

e.rlnsertions <- if !compat then []
else [convertUnits(l.type, r.type)]
Note that scaling over interval values is possible since
the process queries if the multiply operation is overloaded by
the two types of the components. So if multiply is overloaded
by float and interval types, this will return a just value
with the production to use that implements this operation.
These examples illustrate that qualifiers in ABLEC can
extend host language constructs to wrap up expressions with
new code that animates changes going on in the program or

adds runtime scaling conversions to data.

8 Related Work
8.1 Type Qualifiers

CquaAL is a tool that analyzes C programs extended with user-
defined type qualifiers in the model of Foster et al. [12, 13].
It has been shown to be useful in detecting many kinds of
errors in real-world programs, including locking bugs in the
Linux Kernel [13] and format string vulnerabilities [26].

The concrete syntax of C is modified such that user-defined
type qualifiers begin with a dollar sign. This makes it easy to
identify and remove user-defined type qualifiers after analy-
sis so the code can be passed to a standard compiler. Foster
concedes that the code is more readable without the dollar
signs and often omits them [11, Section 5.1]. ABLEC does not
place this restriction on qualifier names because the modular
determinism analysis and use of transparent prefixes ensures
that there are no lexical or syntactic ambiguities in the con-
crete syntax specification of an extended ABLEC instance,
except for the unlikely few that are are easily resolved by of
use transparent prefixes.

As seen previously, user-defined type qualifiers introduce
a subtyping relation, but semantics beyond subtyping is lim-
ited. It can be specified that the operands of certain operators
must be annotated with certain qualifiers—e.g. pointers be-
ing dereferenced must be qualified as nonnull—but more
sophisticated errors found by examining the AST directly
are not supported, nor can the content of error messages be

101

GPCE’17, October 23-24, 2017, Vancouver, Canada

specified as in ABLEC. No method is provided for the user to
specify the types that a qualifier is allowed to annotate.

Qualifier polymorphism is supported by naming quali-
fiers in function prototypes beginning with an underscore.
For example, $_1 int foo($_1 int); declares a function
that takes an argument with some set of qualifiers and re-
turns a value with the same set of qualifiers. ABLEC can
support something similar to this simple example using the
templating extension. CQUAL supports the specification of
more-complex constraints among polymorphic qualifiers.
For example, char $_1_2 #*strcat(char $_1_2 =*dest,
const char $_2 *src); specifies that the qualifiers other
than const on src make it a subtype of the qualified dest,
which is identical to the qualified return type.

The type qualifiers as language extensions in ABLEC differ
from those in CQUAL in two ways. First, in CQUAL there is no
consideration made for the composition of independently-
developed type qualifiers. While the chances of conflicting
qualifier names are small there is no mechanism in CQUAL to
address it that is similar to the transparent prefixes in ABLEC
(Section 2.4). Additionally, library functions are annotated
with qualifiers through the use of prelude files, which are
similar to but take precedence over regular . h files. For two
or more independent qualifiers to qualify the same library
function, the programmer using the qualifiers must manually
rewrite these function headers to use all relevant qualifiers.
In ABLEC this process is automated by accumulating quali-
fiers for each header file that is processed (Section 4.2). The
second difference is that qualifiers in ABLEC can inject code to
dynamically check for errors or perform other computations
such as runtime data conversions (e.g. dimensional analysis)
or print changes to a variable (e.g. the watch qualifier).

8.2 Extensible Type Systems

Extensible types allow multiple type systems, including user-
defined type systems, to be used in a single language [6].
Like type qualifiers, pluggable types provide a means for
finding additional compile-time type errors, and have no
effect on the run-time semantics of the program.

The Checker Framework is a framework for implement-
ing pluggable type systems in Java [23]. User-defined check-
ers are implemented as plug-ins to javac. It contains built-
in support for subtyping and flow-sensitivity. Examples of
checkers implemented in the Checker Framework include a
nullness, fake enumeration, and units i.e. dimensional analy-
sis checkers among many others [6]. The concrete syntax of
type qualifiers make use of Java’s annotation syntax. This
means that type qualifiers begin with an ‘at’ symbol, an in-
convenience similar to CQUAL’s requirement that they begin
with a dollar symbol. These also support parameters in a
manner less expressive than what was demonstrated with
our sub-language in unit qualifiers for derived units. Each
checker selects the annotations of interest and ignores the
others. There is no consideration made to handle conflicts

GPCE’17, October 23-24, 2017, Vancouver, Canada

arising from the composition of independently-developed
type qualifiers, other than to advise users to be careful to
avoid using two checkers that both use the same annotation.
The Checker Framework takes three approaches to anno-
tating libraries with qualifiers: 1) suppressing warnings from
unannotated libraries, 2) so-called stub files that annotate
method signatures but not bodies, similar to the prelude files
of Coual, and 3) annotation and recompilation of the library
source. As with the annotations of library functions when
using CouaL, this presents difficulty in composing annotated
libraries that have been independently developed.
JavaCOP [2, 20] is another Java system, implemented as
an extended version of the javac compiler, with an API for
describing semantic rules for user-defined types. The mod-
ified compiler calls into the API in a new pass that is run
prior to code generation. Users of the API have access to the
program’s AST, which includes information about program
structure including the user-defined annotations discussed
above. JavaCOP type checking extensions are specified in
a declarative domain-specific language as rules which spec-
ify the construct in the abstract syntax to check and the
constraints applied to it. This is more convenient than the
attribute grammar equations in ABLEC but also more limiting.

8.3 Extensible Languages and Language
Frameworks

There has been much work in the area of extensible lan-
guages and language frameworks. Various systems, such as
the Sugar] [9] and MetaBorg [4] frameworks for extending
Java, the JastAdd [8] extensible Java Compiler [7], and the
Xoc [5] and XTC [14] frameworks for extending C, support
the composition of independently-developed language exten-
sions but lack the guarantees of composability as provided
by the MDA and MDWA, though without the restrictions
imposed by these analyses more expressive language exten-
sions can be specified. Other systems provide guarantees of
composability but give up some expressibility. For example,
mbeddr [30], Wyvern [22], and VerseML [21] do not suffer
from challenges in parsing composed languages but they do
not provide the ability to add new semantics to host language
constructs, for example to provide a global analysis or trans-
lation to another language that have found useful in some
language extensions. DeLite [24] uses a type-based staging
approach but is limited syntactically since its extensions are
limited to the concrete syntax of Scala. This is actually rather
flexible, but is more limited that what is possible with ABLEC.

9 Discussion and Future Work

This paper presents a reformulation of and extension to pre-
vious work on type qualifiers in which new type qualifiers
can be packaged as composable language extensions. Pro-
grammers, who need no understanding of the underlying

102

Travis Carlson and Eric Van Wyk

implementation mechanisms, can easily import their cho-
sen set of language extensions with the assurance that their
composition will be successful.

Some non-extensible languages, such as F# and Osprey [16],
which adapts the parser of CquaL, provide dimensional anal-
ysis capabilities built into the language. These demonstrate
the desire for such features and the need for language exten-
sion capabilities more generally.

Our extensions to previous work provide for more syn-
tactically expressive type qualifiers, as seen in the units
qualifier for dimensional analysis (Section 2.4). We also pro-
vide more semantically expressive qualifiers as in the general
ability to read and define attributes and the code insertion
techniques in Sections 6 and 7.

There are some capabilities of systems like CQuAL that we
have not yet implemented and are left as current and future
work. For example, our current implementation has limited
support for flow-sensitive type qualifier inference. This has
been found to reduce the number of qualifiers that program-
mers need to type in their programs and thus increases the
utility of this general approach. We are currently designing a
more general form of control flow analysis in ABLEC that can
be used for multiple purposes. The first is for flow-sensitive
qualifier inference. But our control flow framework can be
used by the host language, and language extensions, to de-
tect optimization opportunities in the program. It is aimed
as a general purpose infrastructure, much like the symbol
table in ABLEC, that extensions can utilize in a number of
different ways. We also lack support for qualifier polymor-
phism. Our language extension for templates provides some
polymorphism at the type level, so a sum function such as

template<a> a sum (a x, ay) return x +y;
correctly requires that, when adding types qualified by the
units dimensional analysis qualifier, the qualifiers on the
inputs are the same and are also what is returned. But this is
not sufficient for multiplying units since there are no restric-
tions on the inputs but a new qualifier for the output type
must be computed. This is another point of future work.

With these additions we hope to explore more applica-
tions of type qualifiers as a syntactically lightweight way to
analyze programs and generate code. These type qualifier
extensions are a nice complement to the other kinds of ex-
tensions, such as the algebraic data type extension, that have
previously been the more common form of extension and
we continue to explore the opportunities possible with both.

Acknowledgments

This material is partially based upon work supported by the
National Science Foundation (NSF) under Grant No. 1628929.
Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the author and do not
necessarily reflect the views of the NSF.

Type Qualifiers as Composable Language Extensions

References

[1] AV. Aho, R. Sethi, and J.D. Ullman. 1986. Compilers — Principles,

Techniques, and Tools. Addison-Wesley, Reading, MA.

Chris Andreae, James Noble, Shane Markstrum, and Todd Millstein.

2006. A Framework for Implementing Pluggable Type Systems. In

Proceedings of the ACM Conference on Object Oriented Programming,

Systems, Languages, and Applications (OOPSLA ’06). ACM, 57-74.

[3] John Tang Boyland. 2005. Remote attribute grammars. J. ACM 52, 4

(2005), 627-687.

Martin Bravenboer and Eelco Visser. 2004. Concrete syntax for ob-

jects: domain-specific language embedding and assimilation without

restrictions. In Proceedings of the ACM Conference on Object Oriented

Programming, Systems, Languages, and Systems (OOPSLA '04). ACM,

365-383.

Russel Cox, Tom Bergany, Austin Clements, Frans Kaashoek, and Eddie

Kohlery. 2008. Xoc, an Extension-Oriented Compiler for Systems

Programming. In Proceedings of Architectural Support for Programming

Languages and Operating Systems (ASPLOS).

Werner Dietl, Stephanie Dietzel, Michael D. Ernst, Kivan¢ Muslu, and

Todd W. Schiller. 2011. Building and Using Pluggable Type-checkers. In

Proceedings of the 33rd International Conference on Software Engineering

(ICSE ’11). ACM, New York, NY, USA, 681-690.

Torbjérn Ekman and Gorel Hedin. 2007. The JastAdd extensible Java

compiler. In Proceedings of the ACM Conference on Object Oriented

Programming, Systems, Languages, and Systems (OOPSLA ’07). ACM,

1-18.

Torbjorn Ekman and Gérel Hedin. 2007. The JastAdd system - modular

extensible compiler construction. Science of Computer Programming

69 (December 2007), 14-26. Issue 1-3.

Sebastian Erdweg, Tillmann Rendel, Christian Kastner, and Klaus Os-

termann. 2011. Sugar]: Library-based Syntactic Language Extensibility.

In Proceedings of the ACM Conference on Object Oriented Programming,

Systems, Languages, and Systems (OOPSLA ’11). ACM, 391-406.

David Evans. 1996. Static Detection of Dynamic Memory Errors. In

Proceedings of the ACM 1996 Conference on Programming Language

Design and Implementation (PLDI °96). ACM, 44-53.

[11] Jeffrey Scott Foster. 2002. Type Qualifiers: Lightweight Specifications to
Improve Software Quality. Ph.D. Dissertation. University of California,
Berkeley.

[12] Jeffrey S. Foster, Manuel Fahndrich, and Alexander Aiken. 1999. A
theory of type qualifiers. In Proceedings of the ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI *99).
ACM.

[13] Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. 2002. Flow-Sensitive

Type Qualifiers. In Proceedings of the ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI *02). Berlin,

Germany, 1-12.

Robert Grimm. 2006. Better extensibility through modular syntax. In

Proceedings of the Conference on Programming Language Design and

Implementation (PLDI 06). ACM Press, New York, NY, USA, 38-51.

G. Hedin. 2000. Reference Attribute Grammars. Informatica 24, 3

(2000), 301-317.

Lingxiao Jiang and Zhendong Su. 2006. Osprey: A Practical Type

System for Validating Dimensional Unit Correctness of C Programs. In

Proceedings of the 28th International Conference on Software Engineering

(ICSE °06). ACM, New York, NY, USA, 262-271.

(2]

(4]

(10]

(14]

(15]

(16]

103

GPCE’17, October 23-24, 2017, Vancouver, Canada

[17] Ted Kaminski, Lucas Kramer, Travis Carlson, and Eric Van Wyk. 2017.
Reliable and automatic composition of language extensions to C. Pro-
ceedings of the ACM, Programming Languages, OOPSLA 1, 98 (October
2017).

Ted Kaminski and Eric Van Wyk. 2012. Modular well-definedness
analysis for attribute grammars. In Proceedings of the International
Conference on Software Language Engineering (SLE) (LNCS), Vol. 7745.
Springer, 352-371.

D. E. Knuth. 1968. Semantics of Context-free Languages. Mathematical
Systems Theory 2, 2 (1968), 127-145. Corrections in 5(1971) pp. 95-96.
Shane Markstrum, Daniel Marino, Matthew Esquivel, Todd Millstein,
Chris Andreae, and James Noble. 2010. JavaCOP: Declarative Pluggable
Types for Java. ACM Transactions on Programming Languages and
Systems (TOPLAS) 32, 2, Article 4 (Feb. 2010), 37 pages.

Cyrus Omar. 2017. Reasonably Programmable Syntax. Ph.D. Disserta-
tion. Carnegie Mellon University, Pittsburgh, USA.

Cyrus Omar, Darya Kurilova, Ligia Nistor, Benjamin Chung, Alex
Potanin, and Jonathan Aldrich. 2014. Safely Composable Type-Specific
Languages. In Proceedings of the European Conference on Object Ori-
ented Programming (ECOOP ’14), Richard Jones (Ed.). Lecture Notes in
Computer Science, Vol. 8586. Springer, 105-130.

Matthew M. Papi, Mahmood Ali, Telmo Luis Correa, Jr., Jeff H. Perkins,
and Michael D. Ernst. 2008. Practical Pluggable Types for Java. In
Proceedings of the 2008 International Symposium on Software Testing
and Analysis (ISSTA "08). ACM, 201-212.

Tiark Rompf and Martin Odersky. 2010. Lightweight Modular Staging:
A pragmatic approach to runtime code generation and compiled DSLs.
In Proceedings of the ACM SIGPLAN 2010 Conference on Generative
Programming and Component Engineering (GPCE ’10). ACM, New York,
NY, USA, 127-136.

August Schwerdfeger and Eric Van Wyk. 2009. Verifiable Composi-
tion of Deterministic Grammars. In Proceedings of the Conference on
Programming Language Design and Implementation (PLDI "09). ACM,
199-210.

Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David Wagner.
2001. Detecting Format String Vulnerabilities with Type Qualifiers. In
Proceedings of the 10th USENIX Security Symposium. Washington, D.C.,
201-218.

Eric Van Wyk, Derek Bodin, Jimin Gao, and Lijesh Krishnan. 2010.
Silver: an Extensible Attribute Grammar System. Science of Computer
Programming 75, 1-2 (January 2010), 39-54.

E. Van Wyk, O. de Moor, K. Backhouse, and P. Kwiatkowski. 2002.
Forwarding in Attribute Grammars for Modular Language Design.
In Proceedings of the 11th Conference on Compiler Construction (CC)
(LNCS), Vol. 2304. Springer-Verlag, 128-142.

Eric Van Wyk and August Schwerdfeger. 2007. Context-Aware Scan-
ning for Parsing Extensible Languages. In Proceedings of the Interna-
tional Conference on Generative Programming and Component Engi-
neering (GPCE °07). ACM, 63-72.

Markus Voelter, Daniel Ratiu, Bernhard Schaetz, and Bernd Kolb. 2012.
Mbeddr: An Extensible C-based Programming Language and IDE for
Embedded Systems. In Proceedings of the 3rd Annual Conference on Sys-
tems, Programming, and Applications: Software for Humanity (SPLASH
Wavefront '12). ACM, New York, NY, USA, 121-140.

H. Vogt, S. D. Swierstra, and M. F. Kuiper. 1989. Higher-order At-
tribute Grammars. In Proceedings of ACM Conference on Programming
Language Design and Implementation (PLDI). ACM, 131-145.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

	Abstract
	1 Introduction and Motivation
	2 Background
	2.1 Positive and Negative Type Qualifiers in C
	2.2 Additional Checking
	2.3 Flow-Sensitive Type Qualifiers
	2.4 ableC, Attribute Grammar–Based Language Extensions for C

	3 Type Qualifiers as Extensions in ableC
	3.1 Concrete Syntax for Qualifiers
	3.2 Abstract Syntax for Qualifiers

	4 Type Qualifier Analysis in the Presence of Other Language Extensions and Libraries
	4.1 Context-Aware Type Qualifier Analysis
	4.2 Working with Libraries

	5 Type-Specific Qualifiers and Type-Independent Qualifiers
	5.1 Checking Errors on Type Expressions
	5.2 Type Qualifiers and Operator Overloading

	6 Dynamic Type Qualifier Checking
	7 Type Qualifier Directed Code Insertion
	8 Related Work
	8.1 Type Qualifiers
	8.2 Extensible Type Systems
	8.3 Extensible Languages and Language Frameworks

	9 Discussion and Future Work
	Acknowledgments
	References

