Improving the Quality of
Top-N Recommendation

Modern Approaches with a special focus on
Similar Users/ltems




“Average users spend 18 mins browsing before
selecting what program to watch. ”

Reelgood and Learndipity Data Insights. Wire 2016

“Users spend 51 mins a day looking for something
to entertain them. ”

Ericsson Consumer Lab Media Report 2017



The art of recommendation
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Latent Space Approaches
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Star Wars vs Star Trek
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Star Wars vs Star Trek




Star Wars vs Star Trek

People into
® romantic

w comedies

People into
science fiction

Would this be solved by just increasing the number of latent factors?



ltem-item Approaches




Are two items similar?
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Global & Local Approaches
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Global & Local SVD with
varying Ranks
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Global & Local SVD with
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Global & Local SVD with
varying Ranks
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Global & Local SVD with
varying Subsets




Global & Local SVD with
varying Subsets
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Global & Local SVD with
varying Subsets




Global & Local SVD with
varying Subsets




Global & Local Sparse Linear
Method




Global & Local Sparse Llnear %




Global & Local Sparse Linear
Method
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Comparison of PureSVD
with sGLSVD and rGLSVD
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Error in Top-N
Recommendation
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Error in Top-N
Recommendation
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Error in Top-N
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Exploring similar users
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User Similarity Matrices




User Similarity Matrices

In terms of their ratings In terms of their error
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Rating.Error Similarities vs
Top-N Performance
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Focus on similar users
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Focus on similar users
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More detalls

e [ocal Item-Item Models for Top-N Recommendation
Evangelia Christakopoulou and George Karypis, RecSys 2016

 Local Latent Space Models for Top-N Recommendation
Evangelia Christakopoulou and George Karypis, KDD 2018

e Investigating & Using the Error in Top-N Recommendation
Evangelia Christakopoulou and George Karypis, Under Review

e https://www-users.cs.umn.edu/~chri2951/code.html



Thank you!!




