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Motivation
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Users' behaviors are driven by their
preferences across various aspects.
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Latent space approaches model these
aspects as factors shared by all.
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Some interest only some groups of
like-minded people (local aspects)
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multiple user-subset specific low-rank models.
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multiple user-subset specific low-rank models.

Why not increase the rank?



Methods
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Global & Local SVD with
varying Subsets (sGLSVD)
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Global & Local SVD with
varying Subsets (sGLSVD)
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Recommendation

e Estimate the values of the missing entries

Pui = Efng_l_p Efcqz

e Sort them and recommend the N highest.



Experimental evaluation



Datasets

Name @ #Users #ltems |#Transactions Density

Groceries | 63,034 15,846 2,060,719 0.21%
YIRIY, 69,878 10,677 10,000,054 1.34%
Flixster 29,828 10,085 7,356,146 2.45%
Netflix 274,036 17,770 31,756,784 0.65%




Evaluation Methodology

e | eave-one-out cross validation
e Hit Rate (HR), Average Reciprocal Hit Rank (ARHR)

e Search over parameter space



Experimental results




Performance against
competing global approach

0.4
B PureSVD
B (GLSVD
0.3 |  sGLSVD

0.1

0.0
Groceries ML10OM Flixster Netflix



Performance against competing
latent space approaches
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Global & local against
global approaches
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Global & local against
global approaches

Method Mins
sGLSV\D 9.3
GLSLM 199.2

GLSLIM - warm 53.7




Conclusion



Key messages

e Merits of the proposed user model.

e Estimation of better latent representations that lead to
significant improvements of on average and up to



Thank you!




