Local Latent Space Models for Top-N Recommendation Evangelia Christakopoulou and George Karypis

Notivation

Latent space approaches - user model

Users' behaviors are driven by their preferences across various aspects.

Latent space approaches - user model

Users' behaviors are driven by their preferences across various aspects.

Latent space approaches model these aspects as factors shared by all.

Limitations of existing user model

Some aspects are shared by all (global aspects)

Limitations of existing user model

Some aspects are shared by all (global aspects)

Some interest only some groups of like-minded people (local aspects)

Proposed user model

multiple user-subset specific low-rank models.

We explicitly encode such structure by estimating both a global low-rank model and

Proposed user model

multiple user-subset specific low-rank models.

Why not increase the rank?

We explicitly encode such structure by estimating both a global low-rank model and

Methods

/eight ector

 $ilde{\mathbf{R}}^g = \mathbf{P} \mathbf{\Sigma}_{f^g} \mathbf{Q}^T$

0.5	1	1	1
0.5		1	
0.5	1	R	1
0.5	1	$\tilde{\mathbf{R}}^2$	
0.5		1	1

fc1

 $ilde{\mathbf{R}}^c = \mathbf{P}^c \mathbf{\Sigma}_{f^c} \mathbf{Q}^{cT}$

fc2

Global & Local SVD with varying Ranks (rGLSVD) Veight Vector

 f^c

 f^c

0.5	1	1	1
0.5		1	
0.5	1	$ ilde{\mathbf{R}}^1$	1
0.5	1	$\tilde{\mathbf{R}}^2$	
0.5		1	1

	0.7	1	1	1
Ĩ	0.5		1	
	0.5	1		1
	0.5	1		
	0.3		1	1

0.7	1	1	1
0.5		1	
0.5	1		1
0.5	1		
0.3		1	1

Recommendation

$$\tilde{r}_{ui} = \mathbf{p}_u^T \boldsymbol{\Sigma}_{f^g} \mathbf{q}_i + \mathbf{p}_u^{cT} \boldsymbol{\Sigma}_{f^c} \mathbf{q}_i^c$$

Sort them and recommend the N highest.

Estimate the values of the missing entries

Experimental evaluation

Datasets

Name	#Users	#Items	#Transactions	Density
Groceries	63,034	15,846	2,060,719	0.21%
ML10M	69,878	10,677	10,000,054	1.34%
Flixster	29,828	10,085	7,356,146	2.45%
Netflix	274,036	17,770	31,756,784	0.65%

- Leave-one-out cross validation
- Hit Rate (HR), Average Reciprocal Hit Rank (ARHR)
- Search over parameter space

Evaluation Methodology

Experimental results

Performance against competing global approach

Performance against competing latent space approaches PureSVD sGLSVD

Flixster

Netflix

Global & local against global approaches PureSVD GLSLIM sGLSVD SLIM

Global & local against global approaches

Method

sGLSVD

GLSLIM

GLSLIM - warm

Mins
9.3
199.2
53.7

Conclusion

- Merits of the proposed user model.
- 37%.

 Estimation of better latent representations that lead to significant improvements of 13% on average and up to

