
Local Latent Space Models 
for Top-N Recommendation

Evangelia Christakopoulou and George Karypis



Motivation



Latent space approaches - user model
Users’ behaviors are driven by their 
preferences across various aspects. 
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Latent space approaches - user model
Users’ behaviors are driven by their 
preferences across various aspects. 

Style

Price
Life 
warranty

Designer

Latent space approaches model these 
aspects as factors shared by all. 
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Limitations of existing user model
Some aspects are shared by all 
(global aspects)  
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Limitations of existing user model
Some aspects are shared by all 
(global aspects)  

Some interest only some groups of 
like-minded people (local aspects) 
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Proposed user model 

We explicitly encode such structure by estimating both a global low-rank model and 
multiple user-subset specific low-rank models.
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Proposed user model 

We explicitly encode such structure by estimating both a global low-rank model and 
multiple user-subset specific low-rank models.
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Why not increase the rank?



Methods



Global & Local SVD with 
varying Ranks (rGLSVD)
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Global & Local SVD with 
varying Ranks (rGLSVD)
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varying Subsets (sGLSVD)
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Recommendation

• Estimate the values of the missing entries 

• Sort them and recommend the N highest.



Experimental evaluation



Datasets
Name #Users #Items #Transactions Density

Groceries 63,034 15,846 2,060,719 0.21%

ML10M 69,878 10,677 10,000,054 1.34%

Flixster 29,828 10,085 7,356,146 2.45%

Netflix 274,036 17,770 31,756,784 0.65%



Evaluation Methodology

• Leave-one-out cross validation


• Hit Rate (HR), Average Reciprocal Hit Rank (ARHR)


• Search over parameter space



Experimental results



Performance against 
competing global approach
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Performance against competing 
latent space approaches
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Global & local against 
global approaches
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Global & local against 
global approaches

Method Mins

sGLSVD 9.3

GLSLIM 199.2

GLSLIM - warm 53.7



Conclusion



Key messages

• Merits of the proposed user model.


• Estimation of better latent representations that lead to 
significant improvements of 13% on average and up to 
37%.



Thank you!


