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Motivation
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Item-based	Methods	for	Top-N	
Recommendation

• The	neighborhood	methods	identify	
similar	users	or	items.

• The	item-basedare	well-suited	for	the	
top-N	recommendation	task.

• Examples	of	item-based	methods:	k-
NN	and	SLIM.
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Limitation	of	the	existing	item-based	
approaches
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Item-based	methods	have	the	
drawback	of	estimating	only	a	
singlemodel	for	all	users.

However,	there	could	be	
differences	in	users’	behaviors,	
which	cannot	be	captured	by	a	
single	model.	
Instead,	we	need	multiple item-
item	models,	each	for	every	user	
subset!
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Example	of	when	local	item-item	models	
are	beneficial
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Local	item-item	models	improve	
upon	global	 item-item	model.

Global	item-item	model	and	local	item-
item	models	yield	the	same results.

i:		item	for	which	we	will	compute	predictions
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Sneak	Preview
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Our	method	is	an	item-item	method	that	computes	top-N	
recommendations	by	learning	a	global item-item	model	
and	user-subset	specific	item-item	models and		it	
automatically	identifies	the	user	subsets	.



Our	Method
GLSLIM
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A	few	words	on	SLIM	
(Sparse	LInear Method)	

• Computes	the	item-item	relations,	by	estimating	an
items	× items	sparse	aggregation	coefficient	matrix	𝑆.

• The	recommendation	score	of	an	unrated	item	𝑖 for	user	𝑢 is:
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GLSLIM	model
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If	user	𝑢	belongs	to	user	subset	𝑝+,	then	the	predicted	rating	is:

global local

global local



How	the	variables	are	estimated
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Models	
Estimation

Updating	user	
subsets

We	use	Alternating	Least	Squares.

The	models	are	jointlyoptimized	
with	the	user	assignments	and	the	
personalized	weight.



Experimental	Evaluation
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Datasets
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Evaluation	Methodology
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• Leave-one-out	cross-validation.

• Quality	measures:

• Comparison	algorithms:	PureSVD,	BPR-MF,		SLIM.

• Extensive	search	over	the	parameter	space.



Proposed	Methods
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• LSLIMr0:				Local	SLIM	without	refinement.

• LSLIM:								Local	SLIM	with	refinement.

• GLSLIMr0:		Global	and	Local	SLIM	without	refinement.

• GLSLIM:							Global	and	Local	SLIM	with	refinement.



Experimental	Results
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Performance	of	the	proposed	methods
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Sensitivity	on	the	number	of	User	Subsets
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Initializing	with	Random	User	Subsets
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Performance	against	Competing	
Approaches
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Conclusion
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Conclusion
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• GLSLIM	improves	upon	item-based	schemes,	by	capturing	the	
differences	in	the	user	preferences.

• Experiments	show	that	GLSLIM	outperforms	competing	top-N	
recommender	methods.	

• Using	multiple	item-item	models	is	valuable!



Thank	you!

23


