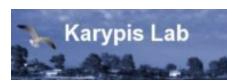
Local Item-Item Models for Top-N Recommendation

Evangelia Christakopoulou and George Karypis

Computer Science & Engineering University of Minnesota, Twin Cities



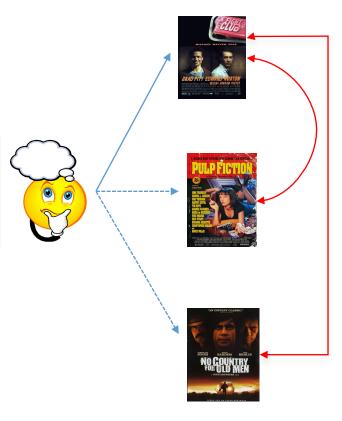
Overview

- Motivation
- Our Method
- Experimental Evaluation
- Experimental Results
- Conclusion

Motivation

Item-based Methods for Top-N Recommendation

- The neighborhood methods identify similar users or items.
- The *item-based* are well-suited for the top-N recommendation task.
- Examples of item-based methods: k-NN and SLIM.

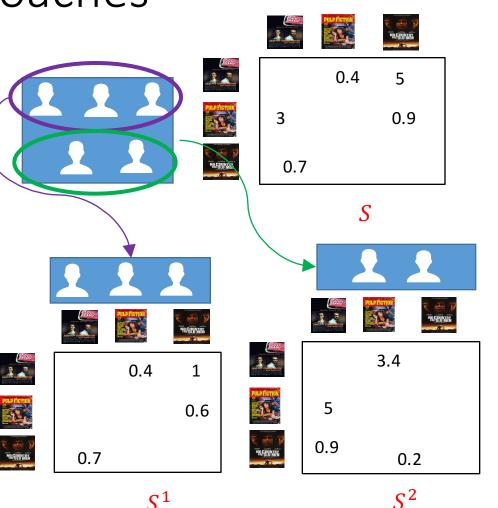


Limitation of the existing item-based approaches

Item-based methods have the drawback of estimating only a single model for all users.

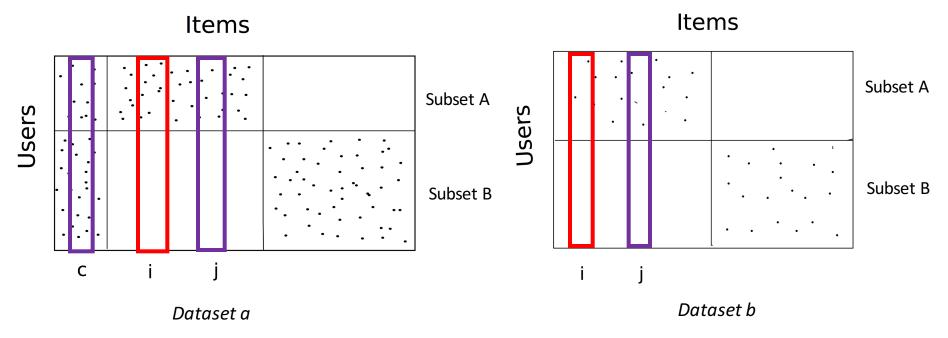
However, there could be differences in users' behaviors, which cannot be captured by a single model.

Instead, we need *multiple* itemitem models, each for every user subset!



 S^1

Example of when local item-item models are beneficial



Local item-item models **improve** upon global item-item model.

Global item-item model and local itemitem models yield the same results.

i: item for which we will compute predictions

Sneak Preview

Our method is an item-item method that computes top-N recommendations by learning a global item-item model and user-subset specific item-item models and it automatically identifies the user subsets .

Our Method GLSLIM

A few words on SLIM (Sparse LInear Method)

- Computes the item-item relations, by estimating an items × items sparse aggregation coefficient matrix S.
- The recommendation score of an unrated item *i* for user *u* is:

$$\hat{r}_{ui} = \mathbf{r}_u^T \mathbf{s}_i. \qquad \mathbf{s}_i$$

$$\begin{array}{ll} \underset{S}{\text{minimize}} & \frac{1}{2} \sum_{u,i} (r_{ui} - \hat{r}_{ui})^2 + \frac{\beta}{2} ||S||_F^2 + \lambda ||S||_1,\\ \text{subject to} & S \ge 0, \text{and}\\ & \text{diag}(S) = 0. \end{array}$$

0.4

S

3

IO COUNTRY

0.7

5

0.9

GLSLIM model

If user u belongs to user subset p_u , then the predicted rating is:

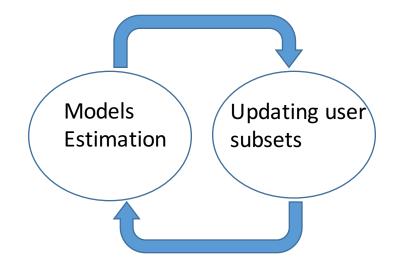
$$\hat{r}_{ui} = \mathbf{r}_{u}^{T} \left(\underline{g_{u}} \mathbf{s}_{i} + (1 - \underline{g_{u}}) \mathbf{s}_{i}^{p_{u}} \right).$$

$$\stackrel{\text{global}}{\underset{S,\{S^{1},\ldots,S^{k}\},\mathbf{p},\mathbf{g}}{\underset{S,\{S^{1},\ldots,S^{k}\},\mathbf{p},\mathbf{g}}{\underset{2}{\overset{1}{\sum}} \sum_{u,i} (r_{u,i} - \hat{r}_{u,i})^{2} + \frac{\frac{1}{2} \sum_{u,i} (r_{u,i} - \hat{r}_{u,i})^{2} + \frac{\frac{1}{2} \beta_{g} ||S||_{F}^{2} + \lambda_{g} ||S||_{1}}{\underset{2}{\overset{global}{\underset{p_{u} \in \{1,\ldots,k\}, \forall u}}} + \frac{\sum_{p_{u}=1}^{k} [\frac{1}{2} \beta_{l} ||S^{p_{u}}||_{F}^{2} + \lambda_{l} ||S^{p_{u}}||_{1}],$$
subject to
$$\begin{array}{c} 0 \leq g_{u} \leq 1, \forall u \\ p_{u} \in \{1,\ldots,k\}, \forall u \\ S \geq 0, S^{1} \geq 0, \ldots, S^{k} \geq 0 \\ \text{diag}(S) = 0, \text{ diag}(S^{1}) = 0, \ldots, \text{ diag}(S^{k}) = 0. \end{array}$$

How the variables are estimated

We use Alternating Least Squares.

The models are *jointly* optimized with the user assignments and the personalized weight.



Experimental Evaluation

Datasets

Name	#Users	#Items	#Transactions	Density
groceries	$63,\!034$	$15,\!846$	2,060,719	0.21%
\mathbf{ml}	$69,\!878$	$10,\!677$	$10,\!000,\!054$	1.34%
flixster	29,828	$10,\!085$	$7,\!356,\!146$	2.45%
netflix	$274,\!036$	$17,\!770$	31,756,784	0.65%

Evaluation Methodology

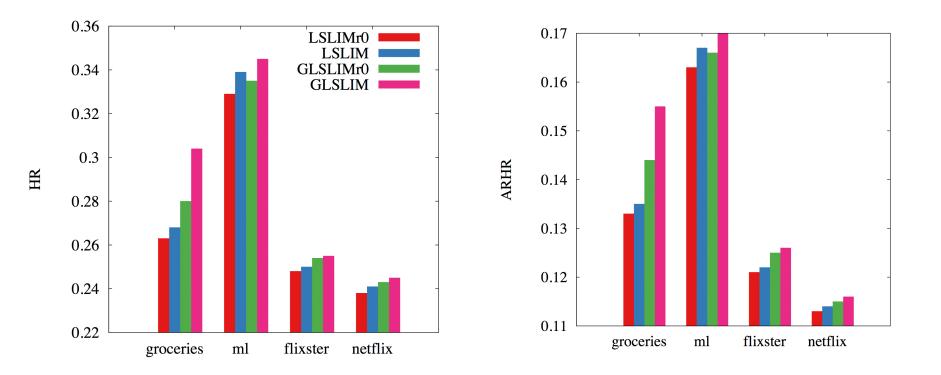
- Leave-one-out cross-validation.
- Quality measures: $HR = \frac{\#hits}{\#users}$ $ARHR = \frac{1}{\#users} \sum_{i=1}^{\#hits} \frac{1}{p_i}$
- Comparison algorithms: *PureSVD, BPR-MF, SLIM.*
- Extensive search over the parameter space.

Proposed Methods

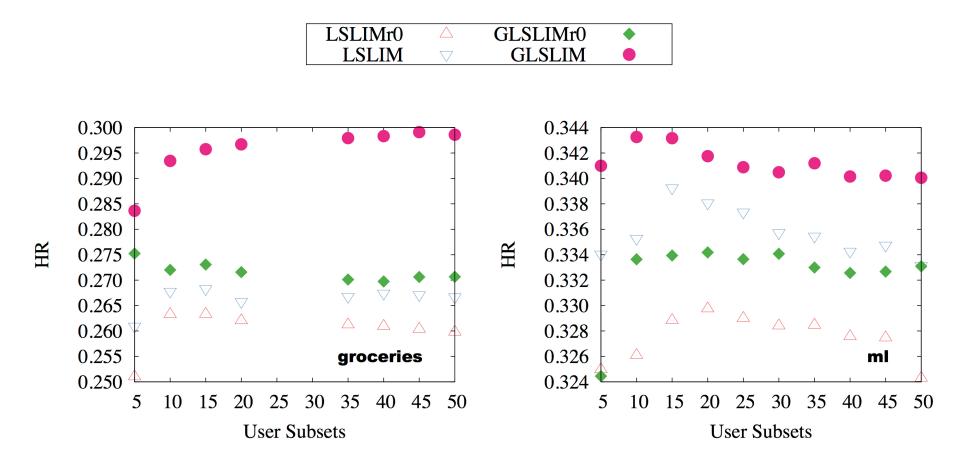
- LSLIMr0: Local SLIM without refinement.
- LSLIM: Local SLIM with refinement.
- GLSLIMr0: Global and Local SLIM without refinement.
- **GLSLIM**: Global and Local SLIM with refinement.

Experimental Results

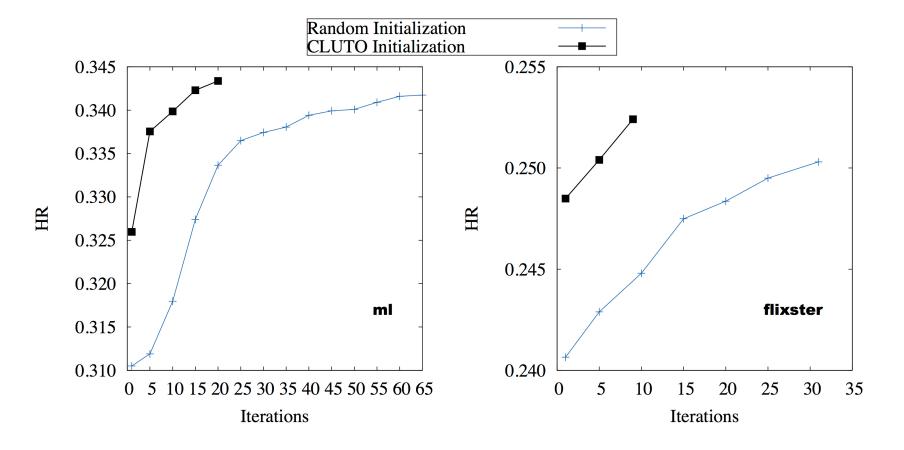
Performance of the proposed methods



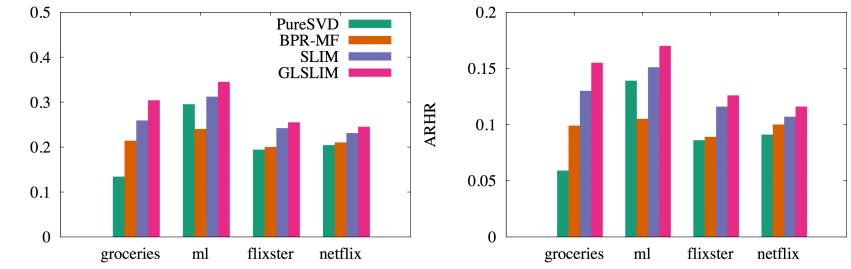
Sensitivity on the number of User Subsets



Initializing with Random User Subsets



Performance against Competing Approaches



Conclusion

Conclusion

- GLSLIM improves upon item-based schemes, by capturing the differences in the user preferences.
- Experiments show that GLSLIM outperforms competing top-N recommender methods.
- Using multiple item-item models is valuable!

Thank you!

