Identifying Decision Makers from Professional Social Networks

Shipeng Yu

Staff Machine Learning Scientist, LinkedIn Evangelia Christakopoulou PhD Student, University of Minnesota

Abhishek Gupta Engineering Manager,

LinkedIn

Outline

- Motivation
- Social Network Environment
- Applications
- Challenges
- Features
- Learning Approaches
- Experimental Methodology
- Offline & Online Results
- Conclusion

Motivation

We learn a *global* scoring function to assign a LinkedIn Decision Maker Score (LDMS) to each of the 400+ Million Members.

• *Decision Makers* are the people who can make or influence a sales decision.

Social Network Environment

in SALES NAVIGATOR

Welcome to the social selling era.

Unique Characteristics of Sales Navigator

≻Most users are *sales professionals*.

➢On top of LinkedIn.com actions, users can save potential prospects as *leads* for future follow-up.

➢Users have *sales-focused* member and company search functionalities.

Applications

66,070 employees at Google. See all employees >

Challenges

Unavailability of Ground Truth

We do not have a definite answer on who is and who is not a decision maker.

Signal for Ground Truth Definition

The number of inMails from distinct Sales Professionals within a specified time frame.

Why not choose the ground truth as LDMS score?

Rank: [100, 2000]

2000

1000

Contextual Information (Member Profile)

- Title
- Position
- Seniority
- Related Working Experience of the member

- Connection Graph
- Invitation Graph
- Profile View Graph
- Lead Save Graph
- InMail Graph

Graph Features Extracted

Undirected Graphs (e.g. Con	nection Graph)
All-Degree	Degree of the member in the graph
Sales-Degree	Degree of the member considering only neighbors who are sales professionals
Ratio-Sales-All	Sales-Degree / All-Degree
Directed Graphs (e.g. Profile	View graph, inMail graph)
All-In	Indegree from all members
All-Out	Outdegree to all members
Sales-In	Indegree from sales professionals
Ratio-Sales-In	Sales-In / All-In
Ratio-In-Out	All-In / All-Out

Learning Approaches

Graph Summarization

Every sales professional has equal weight!

Bipartite Graph Learning

Every sales professional is weighted based on their competency.

The Bipartite Graph Learning approach explicitly takes into account the LDMS for each member and the LSCS (LinkedIn Sales Competency Score) for each sales professional!

Bipartite Graph Learning - Algorithm

- First, all sales professionals are of equal weight.
- The direction SP -> DM is considered.
- The weights for decision makers are learned with elastic net.

Based on the LDMS score, some DMs are more important than others!

The direction DM->SP is considered. The elastic net is solved for the sales professionals.

As there is *no ground truth for sales professionals,* we take a <u>heuristic</u> approach and we label the top 20% as +1 and the bottom 20% as -1.

Based on the LSCS score learned, some sales professionals are more important than others! The approach is continued *iteratively*, solving the elastic net problems for the decision makers and the sales people until the weights converge!

The algorithm typically converges within *twenty* iterations.

$$p_{i} = f(w_{pc}x_{i} + \sum_{k=1}^{K} w_{pk} \sum_{j:e_{k(j->i)\in E_{k}}} q_{j}t(j,i))$$
$$q_{j} = g(w_{qc}z_{j} + \sum_{k=1}^{K} w_{qk} \sum_{i:e_{k(i->j)}\in E_{k}} p_{i}t(i,j))$$

Condition under which	The Bipartite Learning Method is:
qj=1 (equal weight of sales professionals)	Graph summarization approach
K=1 & no constant features (xi=zj=0)	Extension of Label propagation
Removing ground truth labels	Extension of HITS to bipartite

Experimental Methodology

Training Methodology

- ✤ We collected all LinkedIn network data over the calendar year of 2015.
- The LinkedIn member base is randomly split into training (70%) and testing (30%).
- Each member x is assigned a label, based on their ground truth GT(x) and two thresholds: Tpos and Tneg.

$$Label(x) = \begin{cases} +1, & \text{if } GT(x) \ge T_{pos} \\ -1, & \text{if } GT(x) < T_{neg} \\ 0, & \text{otherwise} \end{cases}$$

The members with label 0 are ignored to remove noisy data.

Metrics

$$NDCG@k = \frac{DCG@k}{Ideal \ DCG@k}$$

where

$$DCG@k = \sum_{r=1}^{k} \frac{2^{rel(r)} - 1}{\log_2(r+1)}$$

and Ideal DCG@k is obtained had the list been sorted by the ground truth label.

$$\tau(k) = \frac{(\# concordant \ pairs) - (\# discordant \ pairs)}{\frac{1}{2}k(k-1)}$$

	NDCG	Kendall's tau
Range	[0,1]	[-1,1]
Weight of member pairs	Discount weighting scheme	same
Measures	Ranking Performance	Correlation

Offline Results

Results for Graph Summarization & Bipartite Graph Learning

NDCG@K	10	20	50	100	500	$1,\!000$	$5,\!000$	$10,\!000$	50,000	100,000	500,000	1,000,000
Summarization	1	0.963	0.9084	0.8593	0.9039	0.8684	0.8682	0.7987	0.8339	0.8701	0.9336	0.9344
Bipartite	1	0.9664	0.9665	0.9063	0.9183	0.878	0.871	0.8043	0.8412	0.8778	0.9367	0.9373

Kendall's τ @K	10	20	50	100	500	1,000	$5,\!000$	-10,000
Summarization	0.5394	0.5769	0.5185	0.6365	0.5681	0.4829	0.4717	0.4956
Bipartite	0.4045	0.4476	0.5135	0.6253	0.5605	0.4855	0.4746	0.5043

Leveraging Different Social Graphs

Inmails & Profile Views Inmails & Profile Views & Leads

Score Distributions

LDMS scores

LSCS scores

Power Law Distribution

Normal Distribution

Online Results

A/B tests were performed on *lead saves from search*, which is the key metric for Sales Navigator Search.

in. SALES NAVIGATOR	Search for people and com	panies	Lead Builder	Help 🌘			
HOME ACCOUNTS (21)	LEADS (33) INBOX 7	0		Go to LinkedIn.com			
Refine your search	2.5M Total results	107.7K Changed jobs recently	279K Posted on LinkedIn recently	35K Share experiences with you			
People Companies	Keywords: vp marketing	× Exclude my saved lead	ds ×				
Keywords	We have filtered your resul Show all results	Its to exclude your saved leads					
Submit	2,487,854 results · sorted	by relevance					
Exclude from results Exclude my saved leads	Sam Norp VP eComm Madison, W 1 shared	Sam Norpel 2nd in VP eCommerce at David's Bridal Madison, Wisconsin Area • Retail • 1 shared connection • Similar					
Current company Relationship	Current: VP eComm Past: Vice Preside Lands' End Vice Preside	Send InMail					
TeamLink™ Location Title ▼	Michael S Vice Preside Greater New Similar	ent Tech Products w York City Area • Marketing an	nd Advertising	Save as lead -			
Industry Postal code Past Company	Past: VP Digital C Airways Marketing, Analytics. D Director E-C Responsible including jet	Commerce, Loyalty & Analytics, Customer Relationship Market Direct report to Chief Commerce, Marketing at JetBlue of or all digital marketing and e tblue.com, mobile	Marketing at JetBlue ting (CRM), and Marketing ue Airways e-commerce platforms				

Results:

- A/B test for *graph summarization* approach has shown 4.5% improvement.
- A/B test for *bipartite graph learning* approach has shown an additional 10.6% improvement on lead saves from search.

Conclusion

Contributions

- ➢We presented LDMS score, the LinkedIn Decision Maker Score, to capture the ability to make/influence a sales decision for each of the 400M+ LinkedIn members.
- We proposed two learning approaches, which can be applied to other social network settings.
- ➤The approaches are able to leverage graph and contextual information, deal with small amounts of labels on the graph, and handle heterogeneous graphs.

Thank you! Questions? ③