Contributions

Ø

LinkedIn Decision Maker Score LDMS)

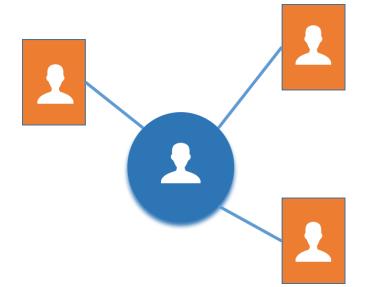
for each of the 400M + M illion Members

- We present LDMS score, the LinkedIn Decision Maker score, to capture the ability to make/influence a sales decision for each of the 400M + LinkedIn member.
- We propose two learning approaches, which can be applied to other social network settings.
- The approaches are able to:
- Ieverage graph and contextual information
- deal with small amounts of labels on the graph
- handle heterogeneous graphs

Learning Approaches

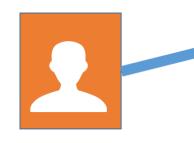
Graph Summarization

Using only LDMS.



Every sales professional has equal weight.

Bipartite Learning



- Every sales professional is weighted based on competency.
- Using LDMS & LSCS (LinkedIn Sales) Competency Score).

Results for Graph Summarization & Bipartite Graph Learning

NDCG Results

NDCG@K	10	20	50	100	500	1,000	5,000	10,000	50,000
Summarization	1	0.963	0.9084	0.8593	0.9039	0.8684	0.8682	0.7987	0.8339
Bipartite	1	0.9664	0.9665	0.9063	0.9183	0.878	0.871	0.8043	0.8412

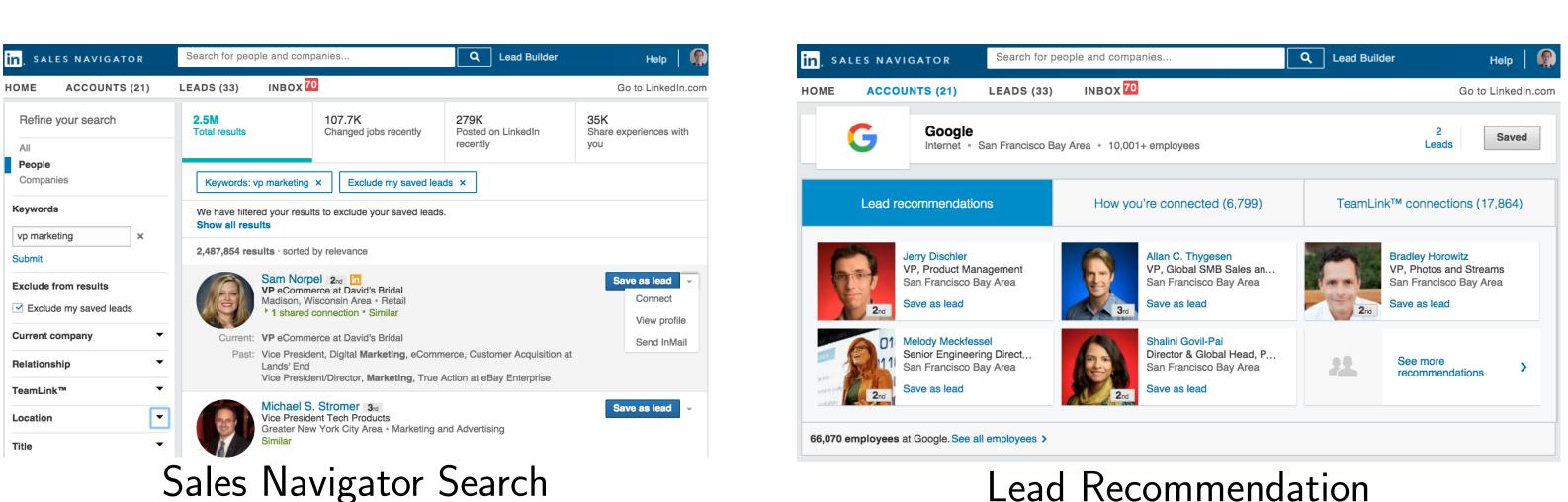
Kendall's au Results

Kendall's $\tau@K$	10	20	50	100	500	1,000	5,0
Summarization	0.5394	0.5769	0.5185	0.6365	0.5681	0.4829	0.47
Bipartite	0.4045	0.4476	0.5135	0.6253	0.5605	0.4855	0.47

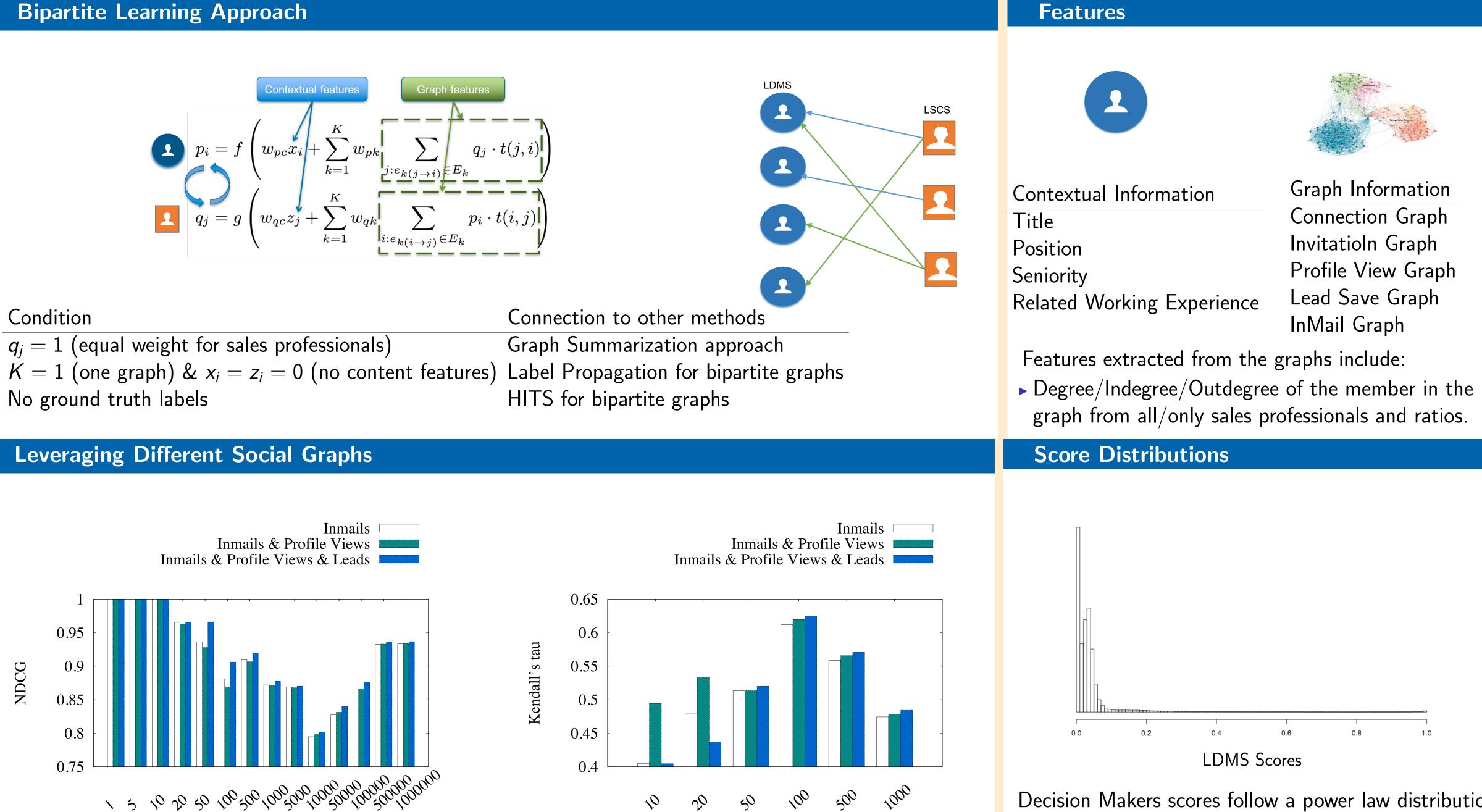
Identifying Decision Makers from Professional Social Networks

Shipeng Yu¹, Evangelia Christakopoulou², Abhishek Gupta¹

Applications



Bipartite Learning Approach

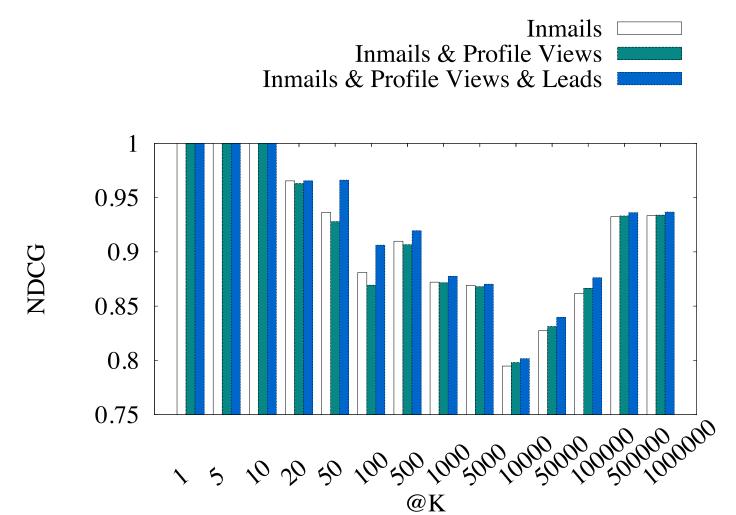


@K

Condition

 $q_i = 1$ (equal weight for sales professionals) No ground truth labels

Leveraging Different Social Graphs



)	100	,000	500,	000	1,000,000	-
)	0.8	8701	0.9	336	0.9344	
2	0.8	778	0.93	867	0.9373	
5,(000	10,	000			
4'	717	0.4	956			
17	'46	0.50	$\mathbf{)43}$			

¹LinkedIn, ²University of Minnesota

Lead Recommendation

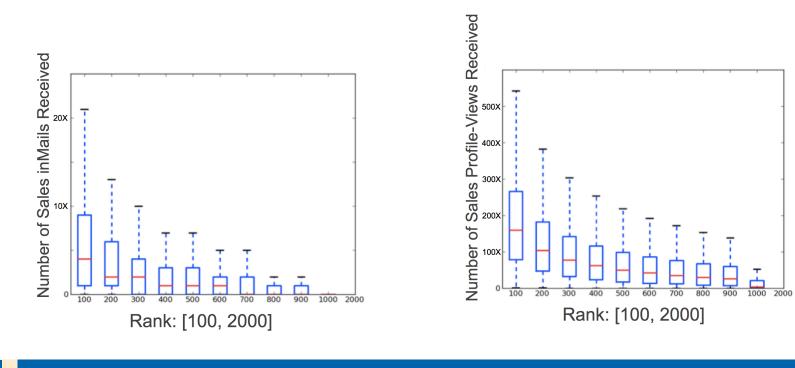
Groundtruth Challenge

Who are the Decision Makers?

- ► We do not have definite answer!
- ► No explicit labels from LinkedIn ecosystem.
- Our solution: Use surrogate signals! #incoming sales-inMails within time
- High outgoing inMails discount
- Peer comparison discount

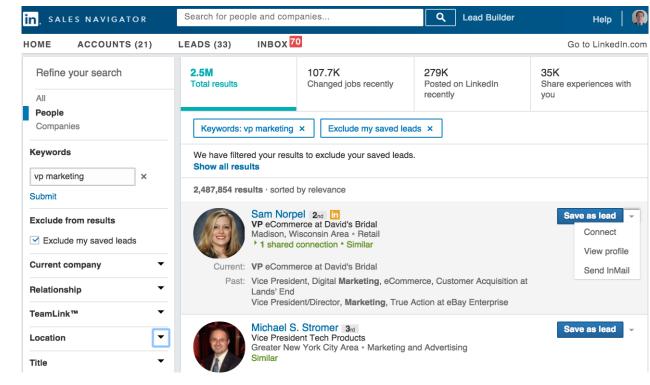
distribution.

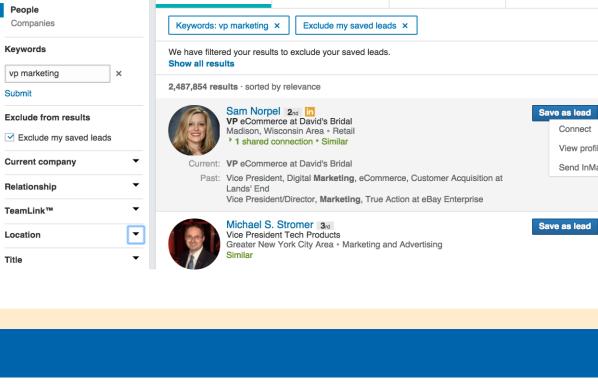
Do we still need to learn LDMS? Yes! Because of sparsity! #inmails << #profile views!

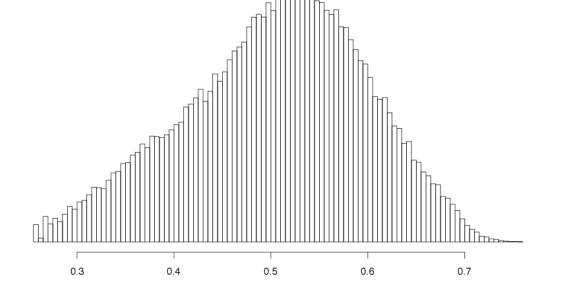


Online A/B test for search ranking

- \rightarrow A/B test for graph summarization has shown 4.5% improvement on lead saves from search.
- ► A/B test for bipartite graph learning has shown an additional 10.6% improvement.

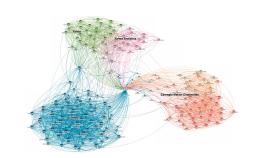






LSCS Scores

Decision Makers scores follow a power law distribution, while Sales Professionals scores have a gaussian



Graph Information Connection Graph InvitatioIn Graph Profile View Graph Lead Save Graph InMail Graph