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Contributions

LinkedIn Decision Maker Score
(LDMS)

for each of the 400M+ Million Members
I We present LDMS score, the LinkedIn Decision Maker score, to capture the ability

to make/influence a sales decision for each of the 400M+ LinkedIn member.

I We propose two learning approaches, which can be applied to other social network
settings.

I The approaches are able to:
I leverage graph and contextual information
I deal with small amounts of labels on the graph
I handle heterogeneous graphs

Applications

Sales Navigator Search Lead Recommendation

Groundtruth Challenge

Who are the Decision Makers?

I We do not have definite answer!

I No explicit labels from LinkedIn ecosystem.

I Our solution: Use surrogate signals!
#incoming sales-inMails within time
T
I High outgoing inMails discount
I Peer comparison discount

Do we still need to learn LDMS?
Yes! Because of sparsity!
#inmails << #profile views!

Learning Approaches

Graph Summarization

I Every sales professional has equal weight.

I Using only LDMS.

Bipartite Learning

I Every sales professional is weighted based on
competency.

I Using LDMS & LSCS (LinkedIn Sales
Competency Score).

Bipartite Learning Approach

Condition Connection to other methods
qj = 1 (equal weight for sales professionals) Graph Summarization approach
K = 1 (one graph) & xi = zi = 0 (no content features) Label Propagation for bipartite graphs
No ground truth labels HITS for bipartite graphs

Features

Contextual Information
Title
Position
Seniority
Related Working Experience

Graph Information
Connection Graph
Invitatioln Graph
Profile View Graph
Lead Save Graph
InMail Graph

Features extracted from the graphs include:

I Degree/Indegree/Outdegree of the member in the
graph from all/only sales professionals and ratios.

Online A/B test for search ranking

I A/B test for graph summarization has shown 4.5%
improvement on lead saves from search.

I A/B test for bipartite graph learning has shown an
additional 10.6% improvement.

Results for Graph Summarization & Bipartite Graph Learning

NDCG Results
Table 1: NDCG results for graph summarization (Summarization) and bipartite graph learning (Bipartite)

NDCG@K 10 20 50 100 500 1,000 5,000 10,000 50,000 100,000 500,000 1,000,000
Summarization 1 0.963 0.9084 0.8593 0.9039 0.8684 0.8682 0.7987 0.8339 0.8701 0.9336 0.9344
Bipartite 1 0.9664 0.9665 0.9063 0.9183 0.878 0.871 0.8043 0.8412 0.8778 0.9367 0.9373

Table 2: Kendall’s ⌧ results for graph summarization (Summarization) and bipartite graph learning (Bipartite)

Kendall’s ⌧@K 10 20 50 100 500 1,000 5,000 10,000
Summarization 0.5394 0.5769 0.5185 0.6365 0.5681 0.4829 0.4717 0.4956
Bipartite 0.4045 0.4476 0.5135 0.6253 0.5605 0.4855 0.4746 0.5043

graph learning approach, we only used members with labels
(+1/ � 1) in each round of elastic net training for LDMS
(Step 7 in Algorithm 1), but let the labels propagate to the
other members throughout the iterations (in all propagation
steps).

5.1.1 Metrics
For o✏ine evaluation we need to compare the ranked list

of decision makers from the algorithm with that from the
ground truth definition. We are more interested in the rela-
tive ranking of members rather than the absolute predictive
scores. Therefore we chose NDCG (normalized discounted
cumulative gain) and Kendall’s ⌧ with our own adaptions.

NDCG is widely used in the Learning-To-Rank literature
[1, 3] to measure ranking performance. For a ranked list
and position k, NDCG@k is the ratio of DCG@k to the
ideal DCG@k, where the latter is obtained had the list been
sorted by the ground truth label. DCG@k is formally given
by:

DCG@k =

kX

r=1

2rel(r) � 1

log2(r + 1)
, (3)

which captures the importance of finding the correct order-
ing among the top ranked decision makers. Since the ranked
list is very long in our case, we chose various k position from
10 all the way to 1, 000, 000. Note that we have only one very
long ranked list to evaluate, unlike the typical search sce-
nario that multiple search sessions contribute to the NDCG
metric. The gain function rel(r) is defined by binning the
ground truth label into di↵erent buckets.

Kendall’s ⌧ is a standard way of measuring correlation,
which has also been extensively used in the literature of
identifying the most influential people [15, 16, 19] in order to
compare the ranking lists of di↵erent algorithms. Formally,
it is defined as:

⌧(k) =
(#concordant pairs) � (#discordant pairs)

1
2
k(k � 1)

at position k, where #pairs represents the number of pairs.
A pair of members are concordant if they are ranked the
same way in the predictive algorithm and the ground truth,
and are discordant if they are not. Note that unlike NDCG
which is between 0 and 1, ⌧(k) is between -1 (i.e., perfect
disagreement) and 1 (i.e., perfect agreement). One key dif-
ference of Kendall’s ⌧ from NDCG is that in Kendall’s ⌧
each member pair has the same weight as opposed to a dis-
counted weighting scheme in NDCG. In our experiments we
compute ⌧(k) for k between 10 and 10,000 to measure the
metrics at di↵erent scales.

5.2 Overall Results
The performance of the two approaches described in Sec-

tions 4.1 and 4.2 is shown in Table 1 and Table 2. First of all,
both approaches performed very well for the LDMS ranking
problem. Between these two methods, we can see that the
bipartite graph learning approach outperformed the graph
summarization approach in terms of NDCG for all list sizes.
For Kendall’s ⌧ , the results show that the graph summa-
rization approach had better Kendall’s ⌧ than the bipartite
graph learning method for small list sizes (10 � 500), but
was inferior to bipartite graph learning method for large list
sizes (1, 000 � 10, 000). As we are more interested in how
the model would perform with a reasonably large amount of
member base for the decision maker ranking, the bipartite
graph learning approach is superior overall. Also keep in
mind that even a small improvement in these two metrics
will typically lead to significant improvement in downstream
applications. We will cover one such case in Section 6.

One reason why the improvement tended to be small is
that the inMail graph features are more important from
both approaches due to the fact that the ground truth defi-
nition also leveraged the inMail information. The additional
improvements over the graph summarization approach from
the bipartite graph learning approach is significant in that it
shows a bootstrap from the basic graph summaries with the
help of the LSCS score for the sales professionals will lead to
a better ranking result overall. We also get the side-benefit
of having a ranking among the sales professionals, which by
itself has many downstream applications. The details of this
are beyond the scope of this paper.

5.3 Leveraging Different Social Graphs
In Tables 1 and 2, we used all the social graphs we have

introduced in Section 3.4. In this subsection we evaluate
how much each social graph contributes to the overall per-
formance on top of the inMail graph. In Figure 3, we com-
pare NDCG and Kendall’s ⌧ results for the following graph
configurations:

• using only the inMail graph

• using the inMail and Profile View graph

• using all social graphs

We can see that in the majority of the cases the addition
of more graphs helps improve the performance when K is
reasonably large. This agrees with our intuition that consid-
ering more social graphs leads to a better ranking of LDMS
among decision makers, and also stronger signal for the
strength of the relationship between a decision maker and
a sales professional. The additional social graphs not only
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Score Distributions

LDMS Scores
LSCS Scores

Decision Makers scores follow a power law distribution, while Sales Professionals scores have a gaussian
distribution.


