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Abstract. This paper deals with the problem of clustering a data set. In particular, the bisecting divisive partitioning approach is
here considered. We focus on two algorithms: the celebrated K-means algorithm, and the recently proposed Principal Direction
Divisive Partitioning (PDDP) algorithm. A comparison of the two algorithms is given, under the assumption that the data set is
uniformly distributed within an ellipsoid. In particular, the dynamic behavior of the K-means iterative procedure is studied and
discussed; for the 2-dimensional case a closed-form model is given.
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1. Introduction and problem statement

The problem this paper focuses on is the unsupervised clustering of a data set. The data set is given
by the matrixM = [x1, x2, . . . , xn] ∈ �p×N , where each column ofM,xi ∈ �p is a single data point.
This is one of the more basic and common problems in fields like pattern analysis and recognition, data
mining, document retrieval, image segmentation, decision making, etc. [10,12].

The specific problem we want to solve herein is the partition ofM into two sub-matrices (or sub-
clusters)ML ∈ �p×NL andMR ∈ �p×NR, NL + NR = N . This problem is known asbisecting divisive
clustering.

Note that by recursively using a divisive bisecting clustering procedure, the data set can be partitioned
into any given number of clusters. Interestingly enough, the clusters so-obtained are structured as a
hierarchical binary tree(or abinary taxonomy). This is the reason why the bisecting divisive approach
is very attractive in many applications (e.g. in content-retrieval/indexing problems – see e.g. [4,18]).

Among the divisive clustering algorithms which have been proposed in the literature in the last two
decades (see e.g. [12]), in this paper we will focus on two techniques:

– thebisecting K-meansalgorithm;

1088-467X/03/$8.00 2002 – IOS Press. All rights reserved



Galley Proof 2/07/2004; 13:41 File: ida174.tex; BOKCTP/ljl p. 2

2 S.M. Savaresi and D.L. Boley / A comparative analysis

– thePrincipal Direction Divisive Partitioning(PDDP) algorithm.
K-means is probably the most celebrated and widely used clustering technique. It is the best
representative of the class of iterative centroid-based divisive algorithms. PDDP is a recently
proposed technique [3,17]) representative of the non-iterative techniques based upon the Singular
Value Decomposition (SVD) of a matrix built from the data set.
The objective of this paper is twofold:

– compare the clustering performance of bisecting K-means and PDDP;
– analyze the dynamic behavior of the K-means iterative algorithm..

In the existing literature, both these issues have been considered only empirically. The performance
of PDDP and K-means have been recently studied, and have been reported to be somehow similar, on
the basis of a few application examples. The main theoretical results known so far on K-means are [5,
16], where it is shown that the K-means iterative procedure is guaranteed to converge; however, little is
said about “where” and “how” it converges.

The main contribution of this work is to provide a simple mathematical explanation of some features of
K-means and PDDP. This is done under the restrictive assumption that the data are uniformly distributed
within ap-dimensional ellipsoid.

As frequently happens in this type of problems, the theoretical analysis is developed in a very simple
and (from the practitioner point of view) ideal setting. This kind of analysis however are of great interest
also in real applications, since they provides a deep insight in the behavior of the algorithms, and can
give very useful hints and guidelines for the algorithm selection and for the optimal usage of the selected
algorithm.

The paper is organized as follows: in Section 2 K-means and PDDP are concisely recalled and
discussed; in Section 3 they are analyzed when the number of data points tends to infinity, whereas in
Section 4 an empirical analysis in the case of finite data sets is proposed.

2. Bisecting K-means and PDDP

As already stated in the Introduction, this paper focuses on two bisecting divisive partitioning algo-
rithms, which belong to different classes of methods: K-means is the most popular iterative centroid-based
divisive algorithm; PDDP is the latest development of SVD-based partitioning techniques. The specific
algorithms considered herein are now recalled and briefly commented. In such algorithms the definition
of centroidwill be used extensively; specifically, the centroid ofM , sayw, is given by

w =
1
N

N∑
j=1

Mj , (1)

whereMj is thej-th column ofM . Similarly, the centroids of the sub-clustersML andMR, saywL and
wR, are given by:



wL =
1

NL

NL∑
j=1

ML,j

wR =
1

NR

NR∑
j=1

MR,j

(2)
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whereML,j andMR,j are thej-th column ofML andMR, respectively.

Bisecting K-means: the algorithm.
Step 1. (Initialization). Randomly select a point, saycL ∈ �p; then compute the centroidw of M

(see Eq. (1)), and computecR ∈ �p ascR = w − (cL − w).
Step 2. DivideM = [x1, x2, . . . , xn] into two sub-clustersML andMR, according to the following

rule:

{
xi ∈ ML if ||xi − cL|| � |xi − cR||
xi ∈ MR if ||xi − cL|| > |xi − cR||

Step 3. Compute the centroids ofML andMR, wL andwR, as in Eq. (2).
Step 4. IfwL = cL andwR = cR, stop. Otherwise, letcL := wL, cR := wR, and go back to Step 2.

Bisecting K-means: remarks.
The algorithm above presented is the bisecting version of the general K-means algorithm. This

bisecting algorithm has been recently discussed and emphasized in [18,20]. In these works it is claimed
to be very effective in document-processing and content-retrieving problems. It is worth noting that
the algorithm above recalled is the very classical and basic version of K-means, also known (see [6,
8,10,13,21]) asForgy’s algorithm. Many variations of this basic version of the algorithm have been
proposed, aiming to reduce the computational demand, at the price of (hopefully little) sub-optimality.
Since the goal of this paper is to analyze convergence properties and clustering performance, thanks to
its simplicity this original version of the K-means algorithm is the most interesting and meaningful.

PDDP: the algorithm.
Step 1. Compute the centroidw of M as in Eq. (1).
Step 2. Compute the auxiliary matrix̃M asM̃ = M −we, wheree is aN -dimensional row vector of

ones, namelye = [1, 1, 1, 1, 1, . . . 1].
Step 3. Compute the Singular Value Decompositions (SVD) ofM̃, M̃ = UΣV T , whereΣ is a diagonal

p × N matrix, andU andV are orthonormal unitary square matrices having dimensionp × p
andN × N , respectively (see [GV96]).

Step 4. Take the first column vector ofU , sayu = U1, and divideM = [x1, x2, . . . , xn] into two
sub-clustersML andMR, according to the following rule:{

xi ∈ ML if uT (x1 − w) � 0
xi ∈ MR if uT (xi − w) > 0

PDDP: remarks.
The PDDP algorithm, recently proposed in [3], belongs to the class of SVD-based data-processing

algorithms ([2]); among them, the most popular and widely known are theLatent Semantic Indexing
algorithm (LSI – see [1,7]), and the LSI-relatedLinear Least Square Fit(LLSF) algorithm ([CY95]).
PDDP and LSI mainly differ in the fact that the PDDP splits the matrix with a hyperplane passing through
its centroid; LSI through the origin. Another major feature of PDDP is that the SVD ofM̃ (Step 3.)
can be stopped at the first singular value/vector. This makes PDDP significantly less computationally
demanding than LSI, especially if the data-matrix is sparse and the principal singular vector is calculated
by resorting to the Lanczos technique ([9,14]).

The main difference between K-means and PDDP is that K-means is based upon an iterative procedure,
which, in general, provides different results for different initializations, whereas PDDP is a “one-shot”
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Fig. 1. (a) Partitioning line (bold) of bisecting K-means algorithm. The bullets are the centroids of the data set and of the two
sub-clusters; (b) Partitioning line (bold) of PDDP. The bullet is the centroid of the data set. The two arrows show the principal
direction ofM̃

algorithm, which provides a unique solution. In order to understand better how K-means and PDDP
work, in Fig. 1(a) and Fig. 1(b) the partition of a matrix of dimension provided by K-means and PDDP,
respectively, is displayed. From Fig. 1, it is easy to see how K-means and PDDP work:

– the bisecting K-means algorithm splitsM with a hyperplane which passes through the centroidw
of M , and is perpendicular to the line passing through the centroidswL andwR of the sub-clusters
ML andMR. This is due to the fact that the stopping condition for K-means iterations is that each
element of a cluster must be closer to the centroid of that cluster than the centroid of any other
cluster.

– PDDP splitsM with a hyperplane which passes through the centroidw of M , and is perpendicular
to the principal direction of the “unbiased” matrix̃M (M̃ is the translated version ofM , having the
origin as centroid). The principal direction of̃M is its direction of maximum variance (see [GV96]).

At first glance, the two clusters provided by K-means and PDDP look almost indistinguishable. A
more careful analysis reveals that the two partitions differ by a few points. Note that this is somewhat
unexpected, since the two algorithms differ substantially.

In the rest of the paper we will try to give a rational explanation to the fact that PDDP and bisecting
K-means may provide similar results. This will be done by analyzing the dynamic behavior of K-means
iteration. Moreover, we will try to clearly outline theprosandconsof these two seemingly equivalent
algorithms.

The analysis presented herein is based upon the restrictive assumption that the points of the data set
are uniformly distributed within an ellipsoid. This assumption deserves a few words of comment:

– It is important to point out that an answer to the question “wheredoes K-meansconverge?” can
be found only if an assumption of the data distribution is made. Note that this is not mandatory if
one only wants an answer to the question “doesthe K-means iterationconverge?”. Therefore, the
sensible choice of the data distribution becomes the main issue.
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Fig. 2. (a) 2000 data points uniformly distributed within an ellipsoid; (b) Infinite data points uniformly distributed within an
ellipsoid.

– Ellipsoid-shaped uniform distribution is the simplest distribution with compact support that, from the
clustering point of view, is equivalent to multi-dimensional Gaussian distribution (which is the most
typical distribution of experimental data). Henceforth it can be considered the “default” distribution
when no a-priori information on the data is available.

– An obvious criticism on the ellipsoid distribution assumption is that the best data clustering is
obtained when the data are not distributed like an ellipsoid,but when they are characterized by clearly-
separated agglomerations. This is true (even though, in practice, unfortunately this rarely happens),
and the analysis presented herein can be extended, in principle, to any given data distribution.
However, ellipsoid distribution seems the best compromise between the ambition of considering a
realistic data distribution and the need of an easy interpretation of the analysis results.

3. Theoretical results for infinite data sets

In this section the “asymptotic” behavior of bisecting K-means and PDDP will be analyzed. Asymptotic
here means that the data set has an infinite number of points, namelyN → ∞. In Fig. 2 the difference
between a finite and an infinite set of points is naively depicted.

In the first part of this Section, we will focus on the 2-dimensional case; specifically, it is assumed that
each pointx = [x1, x2]T of the data set belongs to an ellipsoid centered in the origin and referred to the
axes:

x = [x1, x2]T belongs to the data set if:
x2

1

a2
+ x2

2 � 1. (3)

The semi-axes lengths of the ellipsoid in Eq. (3) area(0 < a � 1) and 1, respectively.
Given these assumptions, the problem is to find a mathematical description of the dynamic behavior

of the bisecting K-means algorithm. This can be done as follows.
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(a) Parameterization of the splitting line. First note that the splitting line (the splitting hyperplane in
p-dimensional vector spaces) always passes through the origin. This property is preserved even at
the first step (see the initialization procedure used in Step.1 – Section 2). Henceforth, the splitting
line can be parameterized using one parameter only. The natural choice for this parameter is the
angle, sayα, between the splitting line and the positivex1 semi-axis. We shall use the subscript “t”
to indicate the iteration number. With no loss of generality it is also assumed that0 � αt � π/2.

(b) Description of the basic idea. The basic idea used to compute the mathematical model of the
dynamic behavior of bisecting K-means is the following. Givenαt, the next angleαt+1 can be
calculated by first computing the centroids, saywL(αt) andwR(αt), of the two semi-clusters
induced by the splitting line with angleαt. The angleαt+1 of the next-iteration splitting line
then can be easily computed: it is known to be perpendicular to the line connectingwL(αt) and
wR(αt). In this way we obtain a recursive relationshipαt+1 = f(αt), which provides a complete
description of the dynamic behavior of bisecting K-means.

(c) Computation of the centroids. Due to the infinite number of uniformly distributed points in the
data set, the centroids of the two sub-clusters induced by the splitting line with angleα t must
be computed using integral calculus. Usingx2 as integration variable, the computation of the
position ofwL (which is the centroid of the “Left” cluster, bordered with a dashed line in Fig. 3)
must be split into the computation of the centroids of two sub-pieces of the Left cluster (which are
separated by the dashed-dotted line in Fig. 3). The position ofwL hence is given by:

wL =
[
wL1

wL2

]
=




s∫
−s

1
2

(
cos(αt)
sin(αt)

x2 − a
√

1 − x2
2

)
·
(

cos(αt)
sin(αt)

x2 +
√

1 − x2
2

)
dx2

s∫
−s

(
cos(αt)
sin(αt)

x2 + a
√

1 − x2
2

)
dx2

1∫
s

x2 · 2a
√

1 − x2
2dx2

1∫
s

2a
√

1 − x2
2dx2

+

s∫
−s

x2 ·
(

cos(αt)
sin(αt)

x2 + a
√

1 − x2
2

)
dx2

s∫
−s

(
cos(αt)
sin(αt)

x2 + a
√

1 − x2
2

)
dx2




, (4)

whereS is thex2-coordinate of the intersection between the splitting line and the ellipsoid in the
first quadrant (see Fig. 3); its expression is given by:

S =
a · sin(αt)√

cos2(αt) + a2 sin2(αt)
. (5)

Both Eqs (4) and (5) hold for0 < a � 1 and0 � αt � π/2. The integration of Eq. (4) is
complicated, and calls for a symbolic manipulation tool. Fortunately, Eq. (4) can be explicitly
computed and significantly simplified. The simplified expression ofwL is given by:

wL =
[
wL1

wL2

]
=



−4

3
a2 sin(αt)

π
√

cos2(αt) + a2 − a2 cos2(αt)
4
3

cos(αt)
π
√

cos2(αt) + a2 − a2 cos2(αt)


 , 0 < a � 1, 0 � αt � π/2.



Galley Proof 2/07/2004; 13:41 File: ida174.tex; BOKCTP/ljl p. 7

S.M. Savaresi and D.L. Boley / A comparative analysis 7

-1 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

X1

X2

 α

wR

S

 wL

Fig. 3. Parameterization of the splitting-line in K-means.

It is trivial to see thatwR is given bywR = −wL.
(d) The dynamic model of bisecting K-means. OncewL(αt) andwR(αt) have been found, it is easy

to compute the recursive functionαt+1 = f(αt) which models the transition fromαt to the angle
αt+1 of the next-iteration splitting line. Indeed, this line must be perpendicular to the line passing
throughwL andwR. Henceforth,αt+1 can be obtained as:

αt+1 = atan
[
−wL1

wL2

]
=


−

−4
3

a2 sin(αt)
π
√

cos2(αt) + a2 − a2 cos2(αt)
4
3

cos(αt)
π
√

cos2(αt) + a2 − a2 cos2(αt)


 .

The following simple expression is finally obtained:

αt+1 = atan [a2 atan (αt)], 0 < a � 1, 0 � αt � π/2. (6)

Equation (6) is one of the major results of this work, since it provides a rigorous closed-form explicit
expression of the dynamic behavior of bisecting K-means. Note that Eq. (6) represents a first order
autonomous (i.e. without forcing inputs) non-linear dynamic discrete-time system. As such, it can be
analyzed using non-linear systems theory (see e.g. [15,19]). The analysis of Eq. (6) reveals that:

– By solving the steady-state equation

α = atan [a2 tan (α)],

it is easy to see that the iterative K-means procedure can only have two stationary points, atα = 0
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andα = π/2. In correspondence to these points the ellipsoid is divided by its shorter axis (α = 0),
and by its longer axis (α = π/2), respectively.

– By locally linearizing the dynamic system Eq. (6) about the admissible equilibrium points (namely
by computing the tangent modelδαt+1 = ((∂f(αt)/∂αt)|αt=α)δαt, whereδαt := αt − α), we
obtain the following two linear dynamic discrete-time systems:
Local dynamic behavior aboutα = 0 : δαt+1 = (a2)δαt, δαt := αt − 0;
Local dynamic behavior aboutα = π/2 : δαt+1 = (1/a2)δαt, δαt := αt − π/2.
From linear discrete-time dynamic system theory we know that, if0 < α < 1, the linear system
aboutα = 0 is asymptotically stable, and the linear system aboutα = π/2 is unstable(indeed they
have poles ina2 and in 1/a2, respectively). This means that bisecting K-meansalways converges
towardsα = 0, unless the algorithm is exactly initialized withα0 = π/2. In Fig. 4 the function
Eq. (6) is displayed, whena = 0.6, and a simulated movement of system Eq. (6) is illustrated. Note
that, whateverα0 is (except in the caseα0 = π/2) the dynamic systemαt+1 = f(αt) converges in
α = 0.

– The value ofa strongly affects the number of iterations taken by the algorithm to converge. Thanks to
Eq. (6) this number can be given an estimate using dynamic systems theory. First note that the linear
system described by the recursive equationδαt+1 = (a2)δαt only asymptotically converges at its
equilibrium point. A measure of the “speed” at which the system converges towards the equilibrium
is given by the so-calledtime-constantτ . τ is defined as the number of steps thatδα t takes to
decrease its distance from 0 by a factor 1/e, and it is related toa by the following relationship:

τ =
(
− 1

log(a2)

)
.

Due to the discrete nature of the distribution, the bisecting K-means algorithm converges in a finite
number of steps, sayT.T is a function of the number of the data pointsN (namely it depends on
how densely the data are distributed), which is expected to beproportional toτ , namely:

T = γ(N) ·
(
− 1

log(a2)

)
. (7)

The value ofγ(N) is difficult to predicted exactly. A rule of thumb often used by control systems
practitioner is that, whenδαt has reached the 98% of the distance between the initial value and the
equilibrium, the system can be considered, in practice, at steady-state. It is easy to see that this
corresponds toγ(N) ≈ 4. In Section 4 a numerical validation of this formula will be provided.
Finally note thatT may take very different values. For instance (ifγ(N) ≈ 4), K-means is expected
to take only 10–15 iterations to converge ifa = 0.7, about 40 iterations are needed ifa = 0.9,
whereas ifa = 0.95 the algorithm might need 80 iterations to converge.

The analysis above presented is the main contribution of this Section. It can be concisely summarized
with the following two propositions, generalized top dimensions.

Proposition 1. If the data points of a data set are uniformly distributed in a 2-dimensional ellipsoid, the
semi-axes of the ellipsoid have lengths equal to 1 anda1(0 < a1 < 1), andN → ∞,
then the dynamic discrete-time system which models the K-means iterative algorithm
is characterized by 2 equilibrium points; 1 point is locally unstable, and 1 is locally
stable. In particular, the dynamic model has the form:αt+1 = atan (a2 tan (αt)),
0 < a < 1, 0 � αt � π/2. The splitting hyperplane corresponding to the equilibrium
points pass through the origin and is orthogonal to the main axis of the ellipsoid. The
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Fig. 4. Function (6) (extended over the range [−π/4; 3π/4]) whena = 0.6. The bullets are the equilibria. The thin line is a
simulated movement of Eq. (6).

splitting hyperplane corresponding to the stable equilibrium point is orthogonal to the
largest axis of the ellipsoid.

Proof. The proof of this result is given in items (a)-(d) above.

Proposition 2. If the data points of a data set are uniformly distributed in a 2-dimensional ellipsoid, the
semi-axes of the ellipsoid have lengths equal to 1 anda1(0 < a1 < 1), andN → ∞,
then the PDDP algorithm splits the ellipsoid with a hyperplane passing through the
origin and orthogonal to the largest axis of the ellipsoid.

Proof. This result is a direct implication of the properties of the SVD. Indeed the 2 singular vectors of
a set of points uniformly distributed within an ellipsoid coincide with the direction of the principal axes
of the ellipsoid (see [GV96] for details).

Propositions 1 and 2 show that bisecting K-means and PDDP provide the same solution, except in
the case when the initialization of K-means exactly corresponds to an unstable equilibrium point of
the K-means dynamic model. However, if the initialization is made randomly, this event occurs with
probability zero.

These results in principle can be extended to the p-dimensional case, even if the proof is quite
cumbersome and lengthy. Thep-dimensional case in this paper will be considered in Section 4 with
some numerical results.

These asymptotic results are useful to gain a deep insight into the bisecting K-means algorithm, and to
explain why, in many cases, K-means and PDDP show a very similar clustering behavior. However, when
the data set contains a finite number of data (namely when the number of points is comparatively small),
bisecting K-means and PDDP might provide solutions, which, sometimes, are remarkably different. The



Galley Proof 2/07/2004; 13:41 File: ida174.tex; BOKCTP/ljl p. 10

10 S.M. Savaresi and D.L. Boley / A comparative analysis

finite data set case will be analyzed and discussed in the next section, on the basis of numerical results
obtained by simulation.

4. Numerical results for finite data sets

In this section, the bisecting K-means and PDDP will be analyzed when the data set has a finite number
of data points. The analysis will be done empirically, using simulated data.

The purpose of this section is twofold:

– validate the theoretical results obtained in the previous section, and see how they change when the
data set is finite;

– understand theprosandconsof K-means and PDDP.

The analysis is structured as follows: in Subsection 4.1 the dynamic model of K-means will be
numerically computed for finite data sets, and the problem of local minima will be discussed; in
Subsection 4.2 the formula Eq. (7) for the estimation of the number of iterations required by K-means to
converge will be validated; in Subsection 4.3 the clustering performance of K-means and PDDP will be
compared. Finally, in Subsection 4.4 some conclusions on theprosandconsof the two algorithms will
be drawn.

4.1. The dynamic model of K-means and the problem of local minima

The first problem we consider is the analysis of the K-means dynamic behavior when the data set has
a finite number of data. As a first experiment, four sets of data have been considered, characterized by
15, 30, 100 and 2000 data points uniformly distributed within a 2-dimensional ellipsoid witha = 0.6.
The recursive functionαt+1 = f(αt) has been numerically computed for these data sets. The results are
displayed in Fig. 5.

– The main difference between the asymptotic function Eq. (6) and the recursive functions correspond-
ing to finite data sets is that the latter are step-wise functions. A major consequence of this function
being step-like is that every equilibrium point (namely every point where the function crosses the
line αt+1 = αt – see Fig. 5(a)) is locally asymptotically stable, since the local slope of the function
about the equilibrium is smaller than 1.This explains why, in the case of finite data sets, the K-means
algorithm is affected by bad “local minima” problems.

– When the number of data points grows, the finite data set function converges towards the asymptotic
function (see Fig. 5(d)). This validates, for the two-dimensional case, the theoretical model developed
in the previous section. Moreover, notice that when the number of data points gets large, the number
of equilibrium points decreases, and each step gets narrower (see e.g. Fig. 5(c)).This explains why,
when the number of data is sufficiently large, it is the common experience that the problem of local
minima tends to vanish.

As a second experiment, the recursive functionαt+1 = f(αt) has been computed for four sets of 15,
30, 100 and 2000 data points uniformly distributed within a 2-dimensional ellipsoid witha = 0.9. The
results are displayed in Fig. 6. The main difference in the results between the casea = 0.6 anda = 0.9
is that in the latter the problem of multiple equilibrium points is more severe.

From the inspection of Fig. 5, the following remarks can be done:
These experiments suggest that the problem of local minima for bisecting K-means is expected to:
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Fig. 5. Recursive functionαt+1 = f(αt) estimated from data, whena = 0.6. The dashed line is the asymptotic function
Eq. (6) computed in Section 4. (a):N = 15; (b): N = 30; (c): N = 100; (d): N = 2000.

– decreasewhen the number of data grows;
– increasewhen the size of the “short” semi-axes (a1, . . . , ap−1) approaches the largest axis.

In order to validate these conjectures, the bisecting K-means algorithm has been extensively tested
for different values of a (a = 0.6, 0.7, 0.8, 0.9) and for different sizes of the data set (N ranging from
10 to 5000). The average dispersion of the centroids we have obtained (which is directly related to the
problem of local minima) is displayed in Fig. 7. In particular, for each value ofN , 20 different data sets
have been randomly generated; for each data set, 100 different runs of K-means have been done (starting
from different initial conditions), so obtaining 100 “dispersed” centroids. The dispersion of these 100
centroids has been computed for each of the 20 data sets, and averaged. Note that the conjectures above
outlined are fully confirmed by the data: the centroids dispersion increases with a, and decreases with
N .
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Fig. 6. Recursive functionαt+1 = f(αt) estimated from data, whena = 0.9. The dashed line is the asymptotic function
Eq. (6) computed in Section 4. (a):N = 15; (b): N = 30; (c): N = 100; (d): N = 2000.

4.2. The time of convergence of K-means iterations

An interesting result proposed in Section 3, which must be validated, is the prediction of the number
of iterations which bisecting K-means needs to converge. Recall that expression Eq. (7) is expected to
hold approximately if the data set is large. For small data sets the convergence is expected to be faster.

To this end, the number of iterations required by K-means to converge has been experimentally
measured for different values ofa in the range [0.7, 0.95], using data sets of sizeN = 20000. The results
are in Fig. 8. Notice the very good fit between the predicted and the estimated results (used in Fig. 8 to
predict the number of iterations of K-means isγ(N) = 4, which is the “rule-of-thumb value” suggested
in Section 3).
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Fig. 7. Average dispersion of the centroidsML andMR computed via K-means, as a function of the number of data points.
The four lines correspond to different values ofa.

4.3. Comparing the clustering performance of bisecting K-means and PDDP

The last crucial issue we consider is the analysis of the clustering performance of K-means and PDDP.
This issue is immaterial when the data set is very large, since both methods provide the same results, but
is very important when the size of the data set is comparatively small.

To make a comparison between the performance of different clustering algorithms, a performance
index must be used. Given two sub-matricesML ∈ �NL and MR ∈ �NR of the data setM =
[x1, x2, . . . , xN ] ∈ �p×N , a widely-accepted way of measuring the internal quality of the partition is
given by the following penalty index (see e.g. [11,12,16–18]):

J(ML,MR)
∑

xi∈ML

||xi − wL||2 +
∑

xi∈MR

||xi − wR||2, (8)

wherewL andwR are the centroids ofML andMR, given by Eq. (2). Note that Eq. (8) is a measure of
cohesiveness of each cluster to its centroid: the smallerJ(ML,MR) is, the better is the partition.

It is worth pointing out that clusteringM by direct minimization ofJ(ML,MR)would be, conceptually,
the best clustering method. Unfortunately, the minimization of Eq. (8) is known to require exhaustive
search which is exponential in time with respect to the number of data points. Note that the clustering
algorithms which have been proposed in the literature (including K-means and PDDP) can be interpreted
asalternate ways of tackling the problem of minimizingEq. (8). All of them provide a solution with a
reasonable computational effort, at the price of some sub-optimality.
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Fig. 8. Estimated number of iterations required by K-means to converge, as a function ofa. The dashed line is the number of
iterations predicted by Eq. (7), withγ(N) = 4.

In order to compare the performance of K-means and PDDP, we have considered two sets of data,
uniformly distributed in a 100-dimensional ellipsoid. The main semi-axis of the ellipsoid is 1. The size
of the remaining 99 semi-axes is in the range [0.05, 0.95]. The first data set has 1000 points. The second
data set 5000. Note that this number of data points is comparatively small for a 100-dimensional vector
space.

For each data set, the following clustering techniques have been used:

(a) Bisecting K-means, initialized randomly. Specifically, 1000 different initializations have been
tested for each data set.

(b) PDDP.
(c) Bisecting K-means, initialized with the result provided by PDDP.

At the end of each clustering experiment, the so-obtained partition has been evaluated using Eq. (8). The
results are displayed in Fig. 9 (N = 1000) and in Fig. 10 (N = 5000). The measure of quality in Figs. 9–
10 is a normalized version of Eq. (8). Specifically, 0 corresponds to the best clustering performance we
have found; 1 corresponds to the “worst-case” situation of non-partitioned cluster (namelyML = M and
MR = ∅). The 1000 dots show the clustering performance of K-means randomly initialized; the two
horizontal lines show the performance of PDDP, and the performance of K-means initialized via PDDP.

From the inspection of Figs. 9–10, the following remarks can be done:

– The results obtained by random initialization of K-means suffer a remarkably large variation: the
corresponding performance index is spread within the [0, 0.2] range. Moreover, notice that K-
means may converge towards very “bad” (in terms of clustering performance) solutions (which are
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Fig. 9. Measure of quality of bisecting partition of a data set ofN = 1000 points.

indicated with an arrow in Figs. 9–10). In Fig. 9 there are two “bad” solutions, characterized by a
70% and a 90% (!) performance loss, whereas in Fig.10 the worst solution is characterized by a
40% performance loss.

– In both cases, PDDP slightly under-performs (of about 5%) the best result obtained by K-means.
However, it outperforms the worst and the average results of K-means.

– The combination of PDDP and K-means provides very good results. In particular, in the case
N = 1000 the final performance loss with respect to the best K-means solution is about 1%; in the
caseN = 5000 there is no loss of performance.

To complete this analysis, a few words on the computational power required by the clustering exper-
iments (a)-(c) must be said. To this end, the number of floating point operations (flops) spent to cluster
the 100× 1000 and the 100× 5000 data matrices are displayed in Fig. 11.

– The PDDP requires about the number offlopsrequired inaverageby a run of K-means. This means
that PDDP must be compared with the result of asinglerun of K-means. In light of the performance
results displayed in Figs. 9–10, at equal computational power PDDP is expected to provide better
performance than K-means.

– As expected, the computational effort required by a run of K-means varies a lot: the minimum and
the maximum values offlopsmay differ by an order of magnitude.

– The refinement of the PDDP solution with a run of K-means requires little additional computational
power (which – as one intuitively expects – is approximately equal to the minimum offlopsrequired
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Fig. 10. Measure of quality of bisecting partition of a data set ofN = 5000 points.

by K-means randomly initialized). This is due to the fact that PDDP provides a solution which is
close to an equilibrium point for K-means.
Obviously, the above quick comparison of K-means and PDDP computational demand is far
from being exhaustive: the computational power depends on many variables, and is significantly
implementation-dependentanddata-dependent(a complete analysis of this issue goes beyond the
scope of the present work). For instance, it can be shown that ifM tend to be “square” (namely
p ≈ N ), PDDP is significantly more demanding than a single run of K-means, whereas, ifp 
 N ,
PDDP outperforms K-means (this trend can be clearly observed by comparing the two graphs in
Fig. 11). However, it is interesting to see that the above results are very consistent with the results
one intuitively expects.

4.4. K-means versus PDDP: concluding remarks

On the basis of the numerical analysis proposed in this Section, we can briefly summarize theprosand
consof bisecting K-means and PDDP, when the size of the data set is comparatively small:

– K-means is very simple to implement, and tends to give slightly better results in terms of partition
quality. However, it is not deterministic (its results strongly depend on the initialization), and it
might take a large number of iterations to converge. Hence, if the “best” result is searched for, it is
significantly more demanding than PDDP, in terms of computational power.
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Fig. 11. Comparison of the computational effort required by methods (a)–(c).

– PDDP gives a deterministic result, and it is not affected by the problem of local minima. However
it tends to provide results which are slightly worse than the best K-means results.

The peculiar features of K-means and PDDP above outlined can be summarized in the following
“rule-of-thumb” for the practitioner:

– The best performance in terms of quality of clustering are obtained by running K-means a large
number of times, with different initializations, and picking the best result. However this requires a
large computational effort.

– The quickest and safest way of obtaining a “reasonably good” solution is using PDDP.
– The best compromise between computational effort and cluster quality is to use K-means initialized

with the PDDP result. This procedure has the additional advantage of providing a deterministic
result.
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