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Abstract. This paper deals with the problem of clustering a data set. In particular, the bisecting divisive partitioning ap
here considered. We focus on two algorithms: the celebrated K-means algorithm, and the recently proposed Princip
Divisive Partitioning (PDDP) algorithm. A comparison of the two algorithms is given, under the assumption that the d
uniformly distributed within an ellipsoid. In particular, the dynamic behavior of the K-means iterative procedure is stu
discussed; for the 2-dimensional case a closed-form model is given.
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1. Introduction and problem statement

The problem this paper focuses on is the unsupervised clustering of a data set. The data se
by the matrixM = [z1, xo,...,z,] € RP*N, where each column a¥/, z; € R? is a single data poir
This is one of the more basic and common problems in fields like pattern analysis and recognit
mining, document retrieval, image segmentation, decision making, etc. [10,12].

The specific problem we want to solve herein is the partitiodointo two sub-matrices (or su
clusters)M/;, € RP*Ne andMp € RP*Nr, N; + Ng = N. This problem is known asisecting divisiv
clustering.

Note that by recursively using a divisive bisecting clustering procedure, the data set can be p4
into any given number of clusters. Interestingly enough, the clusters so-obtained are structu
hierarchical binary treglor abinary taxonomy This is the reason why the bisecting divisive appr
is very attractive in many applications (e.g. in content-retrieval/indexing problems — see e.g. [4,

Among the divisive clustering algorithms which have been proposed in the literature in the |
decades (see e.g. [12]), in this paper we will focus on two techniques:
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— thePrincipal Direction Divisive Partitioning PDDP) algorithm.
K-means is probably the most celebrated and widely used clustering technique. It is
representative of the class of iterative centroid-based divisive algorithms. PDDP is a 1
proposed technique [3,17]) representative of the non-iterative techniques based upon the
Value Decomposition (SVD) of a matrix built from the data set.
The objective of this paper is twofold:

— compare the clustering performance of bisecting K-means and PDDP;

— analyze the dynamic behavior of the K-means iterative algorithm..

In the existing literature, both these issues have been considered only empirically. The perf
of PDDP and K-means have been recently studied, and have been reported to be somehow g
the basis of a few application examples. The main theoretical results known so far on K-mean
16], where it is shown that the K-means iterative procedure is guaranteed to converge; howeve
said about “where” and “how” it converges.

The main contribution of this work is to provide a simple mathematical explanation of some fea
K-means and PDDP. This is done under the restrictive assumption that the data are uniformly di
within ap-dimensional ellipsoid.

As frequently happens in this type of problems, the theoretical analysis is developed in a very
and (from the practitioner point of view) ideal setting. This kind of analysis however are of great i
also in real applications, since they provides a deep insight in the behavior of the algorithms,
give very useful hints and guidelines for the algorithm selection and for the optimal usage of the
algorithm.

The paper is organized as follows: in Section 2 K-means and PDDP are concisely reca
discussed; in Section 3 they are analyzed when the number of data points tends to infinity, wh
Section 4 an empirical analysis in the case of finite data sets is proposed.

2. Bisecting K-means and PDDP

As already stated in the Introduction, this paper focuses on two bisecting divisive partitionin
rithms, which belong to different classes of methods: K-means is the most popular iterative centrg
divisive algorithm; PDDP is the latest development of SVD-based partitioning techniques. The
algorithms considered herein are now recalled and briefly commented. In such algorithms the d
of centroidwill be used extensively; specifically, the centroididf sayw, is given by

1 N
7j=1

where)M; is thej-th column of M. Similarly, the centroids of the sub-clustéis, andMg, saywy, ang
wg, are given by:

1

L
wr =) Mg
J= (2
1 I
WR = —ZMRJ
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wherelM, ; andMpg, ; are thej-th column of M, and Mg, respectively.

Bisecting K-means: the algorithm.

Step 1. (Initialization). Randomly select a point, sgy < R?; then compute the centroid of M
(see Eg. (1)), and computg, € R? ascg = w — (¢ — w).

Step 2. DivideM = [z, 9, ..., x,] iNnto two sub-clusterd/;, and Mg, according to the following
rule: {wz €My if o —cr|| < |zi — call

x; € Mp if |lx; —cpl] > |z — crl|
Step 3. Compute the centroids bf;, and Mg, wi, andwg, asin Eq. (2).
Step 4. Ifw;, = ¢;, andwgr = cg, stop. Otherwise, let;, := wy, cg := wg, and go back to Step 2.

Bisecting K-means: remarks.

bisecting algorithm has been recently discussed and emphasized in [18,20]. In these works it is
to be very effective in document-processing and content-retrieving problems. It is worth noti
the algorithm above recalled is the very classical and basic version of K-means, also known

proposed, aiming to reduce the computational demand, at the price of (hopefully little) sub-opt

Since the goal of this paper is to analyze convergence properties and clustering performance,

PDDP: the algorithm.
Step 1. Compute the centroidof M as in Eq. ().

ones, namely = [1,1,1,1,1,...1].

Step 3. Compute the Singular Value Decompositions (SVDYofi/ = ULV, whereX is a diagonal
p x N matrix, andl andV are orthonormal unitary square matrices having dimensierp
andN x N, respectively (see [GV96]).

Step 4. Take the first column vector bf, sayu = Uy, and divideM = [z1,z2,...,z,] into two
sub-clusterd/;, and Mg, according to the following rule:

r; € My if ul(z;—w)<0
v, € Mg if ul(z;—w)>0

PDDP: remarks.
The PDDP algorithm, recently proposed in [3], belongs to the class of SVD-based data-prg

PDDP and LSI mainly differ in the fact that the PDDP splits the matrix with a hyperplane passing t
its centroid; LS| through the origin. Another major feature of PDDP is that the SVD/ dfStep 3.
can be stopped at the first singular value/vector. This makes PDDP significantly less comput
demanding than LSI, especially if the data-matrix is sparse and the principal singular vector is ca
by resorting to the Lanczos technique ([9,14]).

The main difference between K-means and PDDP is that K-means is based upon an iterative p

Step 2. Compute the auxiliary matri¥ asM = M — we, wheree is a N-dimensional row vector of

algorithms ([2]); among them, the most popular and widely known ard_#tent Semantic Indexing
algorithm (LSI — see [1,7]), and the LSI-relatethear Least Square Fi(LLSF) algorithm ([CY95]).

The algorithm above presented is the bisecting version of the general K-means algorithm. This

claimed
ng that
(see [6,

8,10,13,21]) adorgy’s algorithm Many variations of this basic version of the algorithm have been

imality.
thanks to

its simplicity this original version of the K-means algorithm is the most interesting and meaningful.

cessing
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)
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which, in general, provides different results for different initializations, whereas PDDP is a “on¢
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Bisecting K-means partition PDDP partition
5

(€) (b)

sub-clusters; (b) Partitioning line (bold) of PDDP. The bullet is the centroid of the data set. The two arrows show the
direction of M

respectively, is displayed. From Fig. 1, it is easy to see how K-means and PDDP work:
— the bisecting K-means algorithm split¢ with a hyperplane which passes through the centug

cluster.

At first glance, the two clusters provided by K-means and PDDP look almost indistinguisha

unexpected, since the two algorithms differ substantially.

In the rest of the paper we will try to give a rational explanation to the fact that PDDP and bi
K-means may provide similar results. This will be done by analyzing the dynamic behavior of K-
iteration. Moreover, we will try to clearly outline th@osandconsof these two seemingly equivalg
algorithms.

of M, and is perpendicular to the line passing through the centtojdandwp of the sub-clusters
Mj, andMp. This is due to the fact that the stopping condition for K-means iterations is that each
element of a cluster must be closer to the centroid of that cluster than the centroid of any other

— PDDP splitsM with a hyperplane which passes through the centroaf 1/, and is perpendicular
to the principal direction of the “unbiased” matri¥ () is the translated version @f/, having the
origin as centroid). The principal direction 81 is its direction of maximum variance (see [GV96]).

Fig. 1. (a) Partitioning line (bold) of bisecting K-means algorithm. The bullets are the centroids of the data set and of the two

principal

algorithm, which provides a unique solution. In order to understand better how K-means and PDDP
work, in Fig. 1(a) and Fig. 1(b) the partition of a matrix of dimension provided by K-means and PDDP,

id

ble. A

more careful analysis reveals that the two partitions differ by a few points. Note that this is somewhat

secting
means
2Nt

e data set

The analysis presented herein is based upon the restrictive assumption that the points of th
are uniformly distributed within an ellipsoid. This assumption deserves a few words of commen

— It is important to point out that an answer to the questioéredoes K-meansonverg@” can
be found only if an assumption of the data distribution is made. Note that this is hot mand
one only wants an answer to the questidinésthe K-means iterationonverg®”. Therefore, th
sensible choice of the data distribution becomes the main issue.

t:
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Number of data points = 2000 Uniformly distributed infinite data points
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Fig. 2. (a) 2000 data points uniformly distributed within an ellipsoid; (b) Infinite data points uniformly distributed within an
ellipsoid.

— Ellipsoid-shaped uniform distribution is the simplest distribution with compact support that, from the
clustering point of view, is equivalent to multi-dimensional Gaussian distribution (which is the most
typical distribution of experimental data). Henceforth it can be considered the “default” distribution
when no a-priori information on the data is available.

— An obvious criticism on the ellipsoid distribution assumption is that the best data clustering is
obtained when the data are not distributed like an ellipsoid, but when they are characterized by clearly-
separated agglomerations. This is true (even though, in practice, unfortunately this rarely happens),
and the analysis presented herein can be extended, in principle, to any given data distribution.
However, ellipsoid distribution seems the best compromise between the ambition of considering a
realistic data distribution and the need of an easy interpretation of the analysis results.

3. Theoretical results for infinite data sets

Inthis section the “asymptotic” behavior of bisecting K-means and PDDP will be analyzed. Asymptotic
here means that the data set has an infinite number of points, namelyoo. In Fig. 2 the difference
between a finite and an infinite set of points is naively depicted.

In the first part of this Section, we will focus on theditnensional casespecifically, it is assumed that
each pointr = [z, x5]” of the data set belongs to an ellipsoid centered in the origin and referred to the
axes:

2
x = [z1,22]7 belongs to the data set |fz—; +23 < 1. 3
a
The semi-axes lengths of the ellipsoid in Eq. (3) @@ < a < 1) and 1, respectively.

Given these assumptions, the problem is to find a mathematical description of the dynamic behavior
of the bisecting K-means algorithm. This can be done as follows.
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(a) Parameterization of the splitting lind=irst note that the splitting line (the splitting hyperplane in
p-dimensional vector spaces) always passes through the origin. This property is preserved even at
the first step (see the initialization procedure used in Step.1 — Section 2). Henceforth, the splitting
line can be parameterized using one parameter only. The natural choice for this parameter is the
angle, sayy, between the splitting line and the positivesemi-axis. We shall use the subscrigt *
to indicate the iteration number. With no loss of generality it is also assumed that, < 7 /2.

(b) Description of the basic ideaThe basic idea used to compute the mathematical model of the
dynamic behavior of bisecting K-means is the following. Given the next anglev;; can be
calculated by first computing the centroids, say(a;) andwg(ay), of the two semi-clusters
induced by the splitting line with angle;. The anglen;; of the next-iteration splitting line
then can be easily computed: it is known to be perpendicular to the line connectiag) and
wg(ay). In this way we obtain a recursive relationship,; = f(ay), which provides a complete
description of the dynamic behavior of bisecting K-means.

(c) Computation of the centroiddDue to the infinite number of uniformly distributed points inthe
data set, the centroids of the two sub-clusters induced by the splitting line with apgteist
be computed using integral calculus. Using as integration variable, the computation of|the
position ofwy, (which is the centroid of the “Left” cluster, bordered with a dashed line in Fig. 3)
must be split into the computation of the centroids of two sub-pieces of the Left cluster (which are
separated by the dashed-dotted line in Fig. 3). The positian;afience is given by:

r1 cos(ay) cos(ay)
— —ar/1—x2)- /1 — 22
/2 (Sin(at)x2 “ w2> <sin(at) T2+ 73 ) s
cos(a) 2
A g1 -
/ (sin(at) T2+ a w2> dzo
1 s
/xg -2a4/1 — x%dacg /m : (:?j((zz))wg +ay/1— w%) dxo
S - _i_*S .
cos(«
/204 /1 — (L‘%d.%’g / <sinéa:; T2 +ay/1— x%) dzo

’(4

whereS is thexs-coordinate of the intersection between the splitting line and the ellipsoid|in the
first quadrant (see Fig. 3); its expression is given by:
B a - sin(ay)
- Veos(ay) + aZsin®(ay)
Both Eqgs (4) and (5) hold fod < a < 1 and0 < a; < /2. The integration of Eq. (4) |is

complicated, and calls for a symbolic manipulation tool. Fortunately, Eqg. (4) can be explicitly
computed and significantly simplified. The simplified expressiom pfis given by:

(5

4 a?sin(oy)
wr — || 3my/cos?(ay) + a2 — a2 cos?(ay) D<a<l, 0<ar<m/2
L e COS(Oét) ) X< b X G x .

57‘(\/0082(06,5) + a? — a? cos?(ay)
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Fig. 3. Parameterization of the splitting-line in K-means.

It is trivial to see thatvg is given bywg = —wry..

throughw;, andwg. Henceforthp, 11 can be obtained as:

4 a?sin(ay)
3 cos?(ay) + a? — a? cos?(«
a41 = atan {——wm] = | — 1 77\/ ( t) ( t)
wr cos(ay)

3 my/cos2(ay) + a2 — a? cos?(ay)
The following simple expression is finally obtained:

a1 = atan [a® atan (;)],0 <a <1, 0 < ap < 7/2. (6

— By solving the steady-state equation

@ = atan [a? tan (@)],

it is easy to see that the iterative K-means procedure can only have two stationary p@ints 0

(d) The dynamic model of bisecting K-mea@ncew (o) andwgr(«;) have been found, it is easy
to compute the recursive functien;; = f(«;) which models the transition froms, to the angle
ay11 Of the next-iteration splitting line. Indeed, this line must be perpendicular to the line passing

Equation (6) is one of the major results of this work, since it provides a rigorous closed-form explicit

expression of the dynamic behavior of bisecting K-means. Note that Eq. (6) represents a first order
autonomous (i.e. without forcing inputs) non-linear dynamic discrete-time system. As such, it can be
analyzed using non-linear systems theory (see e.g. [15,19]). The analysis of Eq. (6) reveals tha

—t
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anda@ = 7/2. In correspondence to these points the ellipsoid is divided by its shortercx9y,
and by its longer axisi = 7/2), respectively.

— By locally linearizing the dynamic system Eq. (6) about the admissible equilibrium points (namely
by computing the tangent modék, 1 = ((0f(at)/0c)|as=a)dcw, Wheredoy == oy — @), Wi
obtain the following two linear dynamic discrete-time systems:

Local dynamic behavior aboat=0: a1 = (a?)do, by := ay — O;

Local dynamic behavior aboat = 7/2:  dasi1 = (1/a®)dcy, doy := ay — /2.

From linear discrete-time dynamic system theory we know thdt,<f o < 1, the linear syste
abouta = 0 is asymptotically stableand the linear system abaut= 7 /2 is unstableg(indeed the
have poles iru? and in 142, respectively). This means that bisecting K-mealgys converges
towardsa = 0, unless the algorithm is exactly initialized withy = 7/2. In Fig. 4 the functio

Eq. (6) is displayed, whein = 0.6, and a simulated movement of system Eq. (6) is illustrated. |[Note
that, whatevery is (except in the case, = 7/2) the dynamic system,,; = f(a;) convergesin
a=0.

— The value of: strongly affects the number of iterations taken by the algorithm to converge. Thanksto
Eq. (6) this number can be given an estimate using dynamic systems theory. First note that the linear
system described by the recursive equation, ; = (a?)da; only asymptotically converges at|its
equilibrium point. A measure of the “speed” at which the system converges towards the equilibrium
is given by the so-calletime-constantr. 7 is defined as the number of steps that; takes to
decrease its distance from 0 by a factar, Bind it is related ta by the following relationship:

- (o)

Due to the discrete nature of the distribution, the bisecting K-means algorithm converges in a finite
number of steps, sdlf.T" is a function of the number of the data poidts(namely it depends on
how densely the data are distributed), which is expected frdygortional tor, namely:

The value ofy(NV) is difficult to predicted exactly. A rule of thumb often used by control systems
practitioner is that, whefia; has reached the 98% of the distance between the initial value and the
equilibrium, the system can be considered, in practice, at steady-state. It is easy to see| that this
corresponds te (V) ~ 4. In Section 4 a numerical validation of this formula will be provided,
Finally note thafl” may take very different values. For instancey(ifV) ~ 4), K-means is expected
to take only 10-15 iterations to convergeuif= 0.7, about 40 iterations are needecuif= 0.9,
whereas ifo = 0.95 the algorithm might need 80 iterations to converge.

The analysis above presented is the main contribution of this Section. It can be concisely summarized
with the following two propositions, generalizediaimensions.

Proposition 1. If the data points of a data set are uniformly distributed in a 2-dimensional ellipsoid, the
semi-axes of the ellipsoid have lengths equal to 1@&(0 < a; < 1), andN — oo,
then the dynamic discrete-time system which models the K-means iterative algorithm
is characterized by 2 equilibrium points; 1 point is locally unstable, and 1 is locally
stable. In particular, the dynamic model has the form: ; = atan ¢? tan (),
0<a<1,0< oy <7/2. The splitting hyperplane corresponding to the equilibrium
points pass through the origin and is orthogonal to the main axis of the ellipsoid. The
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alpha(t+1; /
2
line
15 A =0t /
1 //
05 function ||
aw=fay)
0
-0.5
0.5 0 0.5 1 0o 1.5 2
alpha(t)
Fig. 4. Function (6) (extended over the ranger|/4; 3w /4]) whena = 0.6. The bullets are the equilibria. The thin line is a
simulated movement of Eq. (6).
splitting hyperplane corresponding to the stable equilibrium point is orthogonal to the

largest axis of the ellipsoid.
Proof. The proof of this result is given in items (a)-(d) above.

Proposition 2. If the data points of a data set are uniformly distributed in a 2-dimensional ellips
semi-axes of the ellipsoid have lengths equal to 1@(@ < a; < 1), andN — oo,
then the PDDP algorithm splits the ellipsoid with a hyperplane passing throu
origin and orthogonal to the largest axis of the ellipsoid.

of the ellipsoid (see [GV9I6] for details).

the case when the initialization of K-means exactly corresponds to an unstable equilibrium
the K-means dynamic model. However, if the initialization is made randomly, this event occu
probability zero.

These results in principle can be extended to the p-dimensional case, even if the proof

some numerical results.

explain why, in many cases, K-means and PDDP show a very similar clustering behavior. Howev
the data set contains a finite number of data (namely when the number of points is comparativel

oid, the

gh the

Proof. This result is a direct implication of the properties of the SVD. Indeed the 2 singular vegtors of
a set of points uniformly distributed within an ellipsoid coincide with the direction of the principal axes

Propositions 1 and 2 show that bisecting K-means and PDDP provide the same solution, except in

point of
rs with

is quite

cumbersome and lengthy. Thedimensional case in this paper will be considered in Section 4 with

These asymptotic results are useful to gain a deep insight into the bisecting K-means algorithm, and to

er, when
y small),

bisecting K-means and PDDP might provide solutions, which, sometimes, are remarkably different. The
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finite data set case will be analyzed and discussed in the next section, on the basis of numerig
obtained by simulation.

4. Numerical results for finite data sets

In this section, the bisecting K-means and PDDP will be analyzed when the data set has a finite
of data points. The analysis will be done empirically, using simulated data.
The purpose of this section is twofold:

— validate the theoretical results obtained in the previous section, and see how they change
data set is finite;
— understand thprosandconsof K-means and PDDP.

The analysis is structured as follows: in Subsection 4.1 the dynamic model of K-means
numerically computed for finite data sets, and the problem of local minima will be discuss
Subsection 4.2 the formula Eq. (7) for the estimation of the number of iterations required by K-m

.10

al results

> number

when the

will be
sed; in
eansto

converge will be validated; in Subsection 4.3 the clustering performance of K-means and PDDP will be

compared. Finally, in Subsection 4.4 some conclusions oprteandconsof the two algorithms wil
be drawn.

4.1. The dynamic model of K-means and the problem of local minima

The first problem we consider is the analysis of the K-means dynamic behavior when the data set has
a finite number of data. As a first experiment, four sets of data have been considered, characterized by

15, 30, 100 and 2000 data points uniformly distributed within a 2-dimensional ellipsoid:with).6.

The recursive function,; = f(«y) has been numerically computed for these data sets. The results are

displayed in Fig. 5.

— The main difference between the asymptotic function Eqg. (6) and the recursive functions correspond-
ing to finite data sets is that the latter are step-wise functions. A major consequence of this function
being step-like is that every equilibrium point (namely every point where the function crosses the
line ax11 = oy — see Fig. 5(a)) is locally asymptotically stable, since the local slope of the function
about the equilibrium is smaller than This explains why, in the case of finite data sets, the K-means

algorithm is affected by bad “local minima” problems

— When the number of data points grows, the finite data set function converges towards the asymptotic

function (see Fig. 5(d)). This validates, for the two-dimensional case, the theoretical model de
in the previous section. Moreover, notice that when the number of data points gets large, the

of equilibrium points decreases, and each step gets narrower (see e.g. FigrBigcExplains why,

when the number of data is sufficiently large, it is the common experience that the problem
minima tends to vanish

As a second experiment, the recursive functign; = f(a;) has been computed for four sets of
30, 100 and 2000 data points uniformly distributed within a 2-dimensional ellipsoidawt0.9. The
results are displayed in Fig. 6. The main difference in the results between the €a%6 anda = 0.9
is that in the latter the problem of multiple equilibrium points is more severe.

From the inspection of Fig. 5, the following remarks can be done:

veloped
number

of local

15,

These experiments suggest that the problem of local minima for bisecting K-means is expected to:
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Number of data points = 15; a=0.6 Number of data points = 30; a=0.6
aphat+1 @ alpha(t+1 (b) |
/ r , / 'J
77 /!
1 I Equilibrium — |/ 1 _rr
points - / i B

-0.5 0 0.5 1 15 2 -0.5 0 0.5 1 15 2
alpha(t) alpha(t)
Number of data points = 100; a=0.6 Number of data points = 2000; a=0.6

alpha(t+1, (C) rf_,-" - alpha(t+1, (d) /

2 ‘j'—’! 2

1 s 4 1

| i ’ 1 /

0 Hf[ | O

0 _,"éFf_ 0

0. 0.

05 o 05 1 15 2 05 0 05 1 15 2
alpha(t) alpha(t)

Eq. (6) computed in Section 4. (aN = 15; (b): N = 30; (¢c): N = 100; (d): N = 2000.

— decreasavhen the number of data grows;
— increasewhen the size of the “short” semi-axes;(. . ., a,—1) approaches the largest axis.

In order to validate these conjectures, the bisecting K-means algorithm has been extensive
for different values of ad = 0.6, 0.7, 0.8, 0.9) and for different sizes of the data 3&tgnging fron
10 to 5000). The average dispersion of the centroids we have obtained (which is directly relate
problem of local minima) is displayed in Fig. 7. In particular, for each valu® p20 different data se
have been randomly generated; for each data set, 100 different runs of K-means have been don
from different initial conditions), so obtaining 100 “dispersed” centroids. The dispersion of the
centroids has been computed for each of the 20 data sets, and averaged. Note that the conject
outlined are fully confirmed by the data: the centroids dispersion increases with a, and decreg
N.

Fig. 5. Recursive functiom:+1 = f(a:) estimated from data, whem = 0.6. The dashed line is the asymptotic function

2ly tested
1
2d to the
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se 100
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Fig. 6. Recursive functiom:+1 = f(a:) estimated from data, whem = 0.9. The dashed line is the asymptotic func
Eq. (6) computed in Section 4. (aN = 15; (b): N = 30; (¢c): N = 100; (d): N = 2000.

4.2. The time of convergence of K-means iterations

An interesting result proposed in Section 3, which must be validated, is the prediction of the
of iterations which bisecting K-means needs to converge. Recall that expression Eq. (7) is exf
hold approximately if the data set is large. For small data sets the convergence is expected to b

To this end, the number of iterations required by K-means to converge has been experir
measured for different values @fn the range [0.7, 0.95], using data sets of gize- 20000. The result
are in Fig. 8. Notice the very good fit between the predicted and the estimated results (used in
predict the number of iterations of K-meang/(SV) = 4, which is the “rule-of-thumb value” sugges

.12

tion

number

Dected to
e faster.
mentally
5
Fig. 8 to
ted

in Section 3).
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Fig. 7. Average dispersion of the centroilly, and Mr computed via K-means, as a function of the number of data
The four lines correspond to different valuesaof

4.3. Comparing the clustering performance of bisecting K-means and PDDP

The last crucial issue we consider is the analysis of the clustering performance of K-means an
This issue is immaterial when the data set is very large, since both methods provide the same re
is very important when the size of the data set is comparatively small.

To make a comparison between the performance of different clustering algorithms, a perfg
index must be used. Given two sub-matrides, ¢ RVe and Mp € RV of the data set\/ =

[x1,29,...,25] € RP*N, a widely-accepted way of measuring the internal quality of the partiti
given by the following penalty index (see e.g. [11,12,16-18]):
J(Mp, Mp) Y lwi —wi|P+ Y |z — wsll, (8
xr,EMy, r,€EMR

wherew;, andwg are the centroids af/;, and Mg, given by Eq. (2). Note that Eq. (8) is a measur
cohesiveness of each cluster to its centroid: the sma(lgf;, Mz) is, the better is the partition.

Itis worth pointing out that clusterindy/ by direct minimization of/ (M, M) would be, conceptual
the best clustering method. Unfortunately, the minimization of Eq. (8) is known to require exh
search which is exponential in time with respect to the number of data points. Note that the cl

asalternate ways of tackling the problem of minimizigg. (8). All of them provide a solution with

oints.

d PDDP.
sults, but

)rmance

on is

e of

Y,
austive
ustering

algorithms which have been proposed in the literature (including K-means and PDDP) can be interpreted

a

reasonable computational effort, at the price of some sub-optimality.
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80 Number of steps taken by K-means to converge - Number of data-points = 20000

50

0.7 0.75 0.8 0.85 0.9 0.95
Size of the shorter semi-axis a

Fig. 8. Estimated number of iterations required by K-means to converge, as a functioifloé dashed line is the numbe
iterations predicted by Eq. (7), with( N) = 4.

In order to compare the performance of K-means and PDDP, we have considered two sets

of the remaining 99 semi-axes is in the range [0.05, 0.95]. The first data set has 1000 points. Th

space.
For each data set, the following clustering techniques have been used:

(a) Bisecting K-means, initialized randomly. Specifically, 1000 different initializations have
tested for each data set.

(b) PDDP.

(c) Bisecting K-means, initialized with the result provided by PDDP.

Atthe end of each clustering experiment, the so-obtained partition has been evaluated using Eq
results are displayed in Fig. 9(= 1000) and in Fig. 10 {V = 5000). The measure of quality in Figs.
10 is a normalized version of Eqg. (8). Specifically, O corresponds to the best clustering perform
have found; 1 corresponds to the “worst-case” situation of non-partitioned cluster (n&fpety M anc
Mg = @). The 1000 dots show the clustering performance of K-means randomly initialized; t
horizontal lines show the performance of PDDP, and the performance of K-means initialized via

From the inspection of Figs. 9-10, the following remarks can be done:

— The results obtained by random initialization of K-means suffer a remarkably large variatic
corresponding performance index is spread within the [0, 0.2] range. Moreover, notice

r of

of data,

uniformly distributed in a 100-dimensional ellipsoid. The main semi-axis of the ellipsoid is 1. The size

e second

data set 5000. Note that this number of data points is comparatively small for a 100-dimensional vector

been

.(8). The
9_

ance we
)
he two
PDDP.

on: the
that K-

means may converge towards very “bad” (in terms of clustering performance) solutions (wh

nich are
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Measure of quality of the partition (O=best; 1=worst) — Size of the data-set N=1000

d
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provided by K-
meansinitialized
with PDDP result

Fig. 9. Measure of quality of bisecting partition of a data seio& 1000 points.

indicated with an arrow in Figs. 9-10). In Fig. 9 there are two “bad” solutions, characterized by a
70% and a 90% (!) performance loss, whereas in Fig.10 the worst solution is characterized by a
40% performance loss.
— In both cases, PDDP slightly under-performs (of about 5%) the best result obtained by Kimeans.
However, it outperforms the worst and the average results of K-means.
— The combination of PDDP and K-means provides very good results. In particular, in the case
N = 1000 the final performance loss with respect to the best K-means solution is about 1%; in the
caseN = 5000 there is no loss of performance.

To complete this analysis, a few words on the computational power required by the clustering exper-
iments (a)-(c) must be said. To this end, the number of floating point operafiops Epent to cluster
the 100x 1000 and the 10& 5000 data matrices are displayed in Fig. 11.

— The PDDP requires about the numbeflopsrequired inaverageby a run of K-means. This means
that PDDP must be compared with the result sfraglerun of K-means. In light of the performance
results displayed in Figs. 9-10, at equal computational power PDDP is expected to provide better
performance than K-means.
— As expected, the computational effort required by a run of K-means varies a lot: the minimum and
the maximum values dfopsmay differ by an order of magnitude.
— The refinement of the PDDP solution with a run of K-means requires little additional computational
power (which — as one intuitively expects — is approximately equal to the minimdiopsfequired
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Measure of quality of the partition (O=best; 1=worst) — Size of the data-set N=5000
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Fig. 10. Measure of quality of bisecting partition of a data seVof 5000 points.

by K-means randomly initialized). This is due to the fact that PDDP provides a solution w
close to an equilibrium point for K-means.

hich is

Obviously, the above quick comparison of K-means and PDDP computational demand is far
from being exhaustive: the computational power depends on many variables, and is significantly

implementation-dependeanddata-dependera complete analysis of this issue goes beyon

scope of the present work). For instance, it can be shown thdt i€nd to be “square” (namely

p =~ N), PDDP is significantly more demanding than a single run of K-means, whereas; iV,
PDDP outperforms K-means (this trend can be clearly observed by comparing the two g

J the

raphs in

Fig. 11). However, it is interesting to see that the above results are very consistent with the results

one intuitively expects.

K-means versus PDDP: concluding remarks

On the basis of the numerical analysis proposed in this Section, we can briefly summapizes el
consof bisecting K-means and PDDP, when the size of the data set is comparatively small:

K-means is very simple to implement, and tends to give slightly better results in terms of p
quality. However, it is not deterministic (its results strongly depend on the initialization),
might take a large number of iterations to converge. Hence, if the “best” result is searched
significantly more demanding than PDDP, in terms of computational power.

artition
and it
for, it is
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Floating points operations required to bisect a 100x1000 matrix Floating points operations required to bisect a 100x5000 matrix

6,0,E+07 3,5,E+08

3,0,E+08

50,E+07

25E+08
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2,0,E+08

3,0,E+07

1,5,E+08

2,0,E+07 ——
1,0E+08

1,0,E+07 5,0,E+07 T

0,0,E+00 0,0,E+00
Min. of K-means Mean of K-means Max. of K-means PDDP PDDP + K-means Min. of K-means Mean of K-means  Max. of K-means PDDP PDDP + K-means

Fig. 11. Comparison of the computational effort required by methods (a)—(c).

it tends to provide results which are slightly worse than the best K-means results.

“rule-of-thumb” for the practitioner:
— The best performance in terms of quality of clustering are obtained by running K-means
large computational effort.

— The quickest and safest way of obtaining a “reasonably good” solution is using PDDP.
— The best compromise between computational effort and cluster quality is to use K-means in

result.
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