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able to synthesize outputs to place the zeroes for an entire MIMO system, as well as determining thelimits on the number of new zeroes that can be placed.We treat this problem by studying the problem of assigning the generalized eigenvalues of a generalmatrix pencil. The zero placement problem will then be a special case. The methods in this paper areall based on the transformation of the original pencil to one which can be partitioned into the variouscomponents of the Kronecker canonical form. The transformations are carried out entirely using unitarytransformations, and hence enjoys some good numerical stability properties. The computations arebased on the so-called staircase algorithm of [12], which separates the left and right Kronecker parts andcomputes the values of the individual Kronecker indices. We propose a new extension to this algorithm,still based on unitary transformations, which can actually extract the individual Kronecker blocks. Oncethe individual Kronecker blocks have been extracted, the zeroes may be placed within each Kroneckerblock in a manner very similar in spirit to that of [1].This paper is organized as follows. First we describe the basic theory that relates the Kronecker theoryof matrix pencils to the problem of placing zeroes or more generally placing the generalized eigenvaluesfor a pencil. Next we describe our computational procedure for extracting the Kronecker blocks andplacing the zeroes. We leave in an Appendix a step by step description of the new process used to extractthe individual Kronecker blocks.2 Basic TheoryConsider a linear time-invariant generalized state-space system of dimension n :_Ex(t) = Ax(t) + Bu(t); y(t) = Cx(t) +Du(t); (1)which is irreducible, i.e. where (A� �E B ) and �A� �EC �both have full rank n for all �nite � (this also means reachable and observable at �nite points), and where(E B ) and �EC �both have full rank n (this also means reachable and observable at in�nity). It is well known that itstransmission zeroes are also the zeroes of the matrix pencil [4, 13, 6] :G� �F = �A� �E BC D� : (2)We would like to add outputs or inputs to (1) to place new zeroes in desired locations in the complexplane. This corresponds to appending rows or columns, respectively, to (2) to place the zeroes of theembedded system. We discuss the general question of how many zeroes can be placed by appending rowsand outline a procedure to compute the rows to append to place the zeroes at given locations.To �x ideas, we analyze how many zeroes we can place by a judicious choice of additional rowsappended to (2). We write the Generalized Schur Form for (2) [5]:P (G� �F )Q = 0@Gr � �Fr � �0 Greg � �Freg �0 0 Gl � �Fl1A ; (3){ 2 {



where P and Q are unitary (orthogonal in the real case) and Gr � �Fr contains the right (short fat)Kronecker blocks, Gl� �Fl contains the left (tall thin) Kronecker blocks, and Greg � �Freg is the regularpart. The blocks are characterized by the properties that Gr � �Fr has full row rank and Gl � �Fl hasfull column rank for all values of � in the complex plane (including in�nity), and Greg � �Freg is squareand nonsingular except at a �nite number of isolated values of � which are called the eigenvalues of thepencil. The �nite eigenvalues are the �nite zeroes of the pencil. The in�nite eigenvalues correspond tothe in�nite zeroes of the pencil, except that each k � k Jordan block Ik � �J at in�nity has only k � 1zeroes at in�nity (but k in�nite eigenvalues) [13]. Notice that this de�nition implies also that the totalnumber of zeroes equals rank(Freg) [13]. In the Kronecker Canonical Form P;Q are nonsingular matrices,the entries � are zero, and Gr � �Fr has the block \diagonal" formGr � �Fr = 0B@R1(�) 0. . .0 Rk(�)1CA ; (4)where each Ri(�) is si � (si + 1), has full row rank for all �, and represents a single Kronecker block.The fsig's are the right Kronecker indices of the pencil, and we assume without loss of generality thatthese indices are in nondecreasing order. In the sequel, we will show how to obtain an upper triangularversion of the overall form (4), but with nonzero entries above the diagonal blocks, using only unitarytransformations. In any case, Gl � �Fl will have a similar upper triangular form but with rectangulardiagonal blocks with one more row than column and full column rank.We append some number p of new rows to (2) to obtain�P 00 I � ��GZ �� ��F0 ��Q = 0BB@Gr � �Fr � �0 Greg � �Freg �0 0 Gl � �FlZr Zreg Zl 1CCA : (5)The object is to choose these p new rows so as to place as many zeroes as possible. The rightmost blockcolumn (�; �; GTl � �FTl ; ZTl )T has full column rank regardless of the choice of Zl. The middle blockcolumn (�; GTreg��FTreg ; 0; ZTreg)T can lose rank only at values of � where Greg��Freg already loses rank(i.e. only at existing generalized eigenvalues) and only for certain choices of Zreg. The entry Zreg cansometimes be chosen so that the middle block column does not lose rank (or loses less rank than doesGreg��Freg alone) at any particular existing eigenvalue. In the presence of an Gl��Fl block, the resultmay be that the existing eigenvalue disappears from the augmented pencil (5) (or the eigenvalue remainswith a smaller multiplicity). But in any case, neither Zreg nor Zl can be used to place any new zeroes orto increase the multiplicity of any existing zeroes. Some of these e�ects are explained in more detail inthe next subsections.Hence, only Zr can be used to place new zeroes. The choice of Zr is independent of Zreg; Zl, so wemay set the latter to zero. Actually, if we don't set those to zero, there will be coupling between theparts. The e�ect of this coupling is discussed in the next subsections, but in general it will not a�ectnewly placed zeroes, unless they happen to coincide with zeroes already present in Greg � �Freg. Weneed only consider the sub-pencil of (5)�Gr � �FrZr � = 0BBB@R1(�) �. . .0 Rk(�)Z1 � � � Zk 1CCCA ; (6){ 3 {



where each Ri is si� (si+1) and represents a single Kronecker block. It will be seen that the zeroes canbe placed by choosing the p rows to be appended, Zr = (Z1; � � � ; Zk), to have the formZr = 0BBBBBBB@ 0 � � � 0 zTk�p+1 0 � � � � � � 0... ... 0 zTk�p+2 . . . ...... ... ... . . . . . . . . . ...... ... ... . . . . . . 00 � � � 0 0 � � � � � � 0 zTk 1CCCCCCCA ; (7)where each row vector zTi is computed so that the individual (si + 1) � (si + 1) pencil �Ri(�)zTi � has asubset of the desired zeroes, for i = k � p+ 1; � � � ; k.The rest of this section and the next section are devoted to �lling in many of the theoretical andcomputational details behind the zero-placement algorithm, respectively.2.1 How Many Zeroes Can Be Placed?We discuss the speci�c question: how many zeroes can be placed by appending one row or multiple rows.For this we �rst need to recall some basic results on pencils and their polynomial null spaces.Let r be the normal rank of the m� n pencil G� �F , then it has nr def= n� r right null vectors vi(�)and mr def= m� r left null vectors uj(�), which can be chosen to be polynomial. Collecting these vectorsin a n� nr polynomial matrix V (�) and in a m�mr polynomial matrix U(�) we thus have :(G� �F )V (�) = 0; UT (�)(G� �F ) = 0: (8)Now the columns of V (�) and U(�) are said to be a minimal basis for the respective null spaces if theircolumn degrees are minimal. This is the case if and only if [6, p458]:� V (�), respectively U(�), has full column rank or all �nite �� the highest column degree coe�cient matrix of V (�), respectively U(�), has full column rank.One proves [5] that if V (�), respectively U(�), is minimal then its column degrees are (up to a permu-tation)) equal to the right Kronecker indices fsig, respectively left Kronecker indices ftig, of G � �F .Moreover, the minimality of the bases refers to the fact that any other polynomials basis for these nullspaces must have higher column degrees. A consequence of all this is also that the number k of rightKronecker indices is equal to nr, and the number of left Kronecker indices is equal to mr. One de�nesthen the orders or and ol of the right and left null spaces to be the sum of the column degrees of theirminimal bases, i.e. or =Pnri=1 si and ol =Pmri=1 ti. A simple consequence of this is (see [12]) :� Gr � �Fr has dimension or � (or + nr)� Gl � �Fl has dimension (ol +mr)� olIn order to use this for bounding the number of assignable zeros when appending rows or columns weneed the following result, proved in [13] :Lemma 1. Let G � �F be a pencil with null space orders ol and or and number of �nite and in�nitezeros of and o1 (multiplicities counted), then rank(F ) = ol + or + of + o1.{ 4 {



Notice that in the above result we count zeroes at in�nity, not eigenvalues, to be compatible with theirsystem theoretic interpretation (see text above (4) or [13]).Since now appending constant rows or columns does not change rank(F ) we can only increase thenumber of zeroes by minimizing the null space orders. We now give certain inequalities which will leadto the main result.Theorem 1.Let G� �F be a m� n pencil with normal rank r and with Kronecker indices and null space ordersor = Pnri=1 si and ol = Pmrj=1 tj . Then appending p constant rows and denoting this pencil by G0 � �F 0yields new normal rank and null space orders r0, o0r and o0l satisfying :r � r0 � r + p;ol � o0l; with equality only if r0 = r + p;iXj=1 sj � iXj=1 s0j for 1 � i � n� r0:Proof: The �rst result is trivial since the normal rank of a pencil is its rank for almost any value of �and appending p rows in a constant matrix then immediately gives the bounds r � r0 � r + p.For the second bound we start from (5) and perform a generalized Schur decomposition on the subpencilconsisting of the upper left part to get :� P̂ 00 I �2664 Zr Zreg ZlGr � �Fr � �0 Greg � �Freg �0 0 Gl � �Fl 3775� Q̂ 00 I � = 0BB@ Ĝr � �F̂r � � �0 Ĝreg � �F̂reg � �0 0 Ĝl � �F̂l �0 0 0 Gl � �Fl1CCASince the subpencil � Ĝl � �F̂l �0 Gl � �Fl �has full column rank for all values of � (including in�nity) its number of columns equals the new left nullspace order o0l and hence o0l � ol. Moreover, equality is only met when Ĝl � �F̂l is void. But then wealso have that the new dimension of the left null space equals the old one, i.e. m+ p� r0 = m� r, whichyields the required result.For the last inequality, let V 0(�) be a (m + p) � (m + p � r0) minimal basis for the right null space ofG0 � �F 0. Then obviously, we also have (G� �F )V 0(�) = 0which implies that the right null space V 0(�) of (G0 � �F 0) is a subspace of the right null space V (�) of(G� �F ). As a subspace, it then follows from the theory of minimal bases [6, x6.5.4] that there exists apolynomial matrix M(�) such that V 0(�) = V (�) �M(�):Let V 0h and Vh be the coe�cient matrices of the highest column degrees in V 0(�) and V (�) (these are thecolumn coe�cients of �s0i and �sj , respectively). Since V 0(�) and V (�) are minimal bases, we know thatV 0h and Vh both have full column rank. From this it follows that element mj;i(�) of the matrix M(�) cannot have degree larger than dj;i def= s0i � sj . Moreover, the coe�cient matrix Mh with the coe�cient of�s0i�sj as (j; i)-th entry, has also full column rank, since [6] :V 0h = Vh �Mh:{ 5 {



For every nonzero element mhj;i in Mh we know that s0i = sj+dj;i � sj since dj;i must be non-negative andno cancellation can occur between columns in this matrix product due to the linear independence of thecolumns in V 0h, Vh and Mh. Since Mh has full column rank, there must exist distinct indices j1; : : : ; jn�r0such that mhji;i 6= 0 and hence n�r0Xi=1 s0i � n�r0Xi=1 sji :Since the sequence fsjg is increasing, this implies thatn�r0Xi=1 s0i � n�r0Xi=1 si:Finally, the same reasoning can be applied for the �rst i columns of the matrices V 0h and Mh, yieldingthe desired third bound.This then automatically leads to the following main result.Theorem 2. Let G� �F be a pencil with right Kronecker indices s1 � � � � � snr . Suppose we appendp rows to obtain �GZ �� ��F0 � :The maximum number of new zeroes that can be placed issnr�p+1 + :::+ snr ;and a matrix Z can be found to place that many zeroes at any previously chosen locations in the complexplane. This can be achieved by embedding the p largest Kronecker blocks only. The other right Kroneckerindices s1; � � � ; snr�p of the augmented pencil will then be unchanged.Proof: From the inequalities in the previous theorem it is clear thato0l + o0r � ol + n�r0Xj=1 sj = ol + or � n�rXj=n�r0+1 sj :Since rank(F ) is not a�ected by the embedding, it follows from Lemma 1 that the maximum increase innumber of zeroes satis�es o0f + o01 � (of + o1) � n�rXj=n�r0+1 sj :The right hand side of this inequality is maximized by taking as many terms as possible, i.e. by takingr0 = r + p and hence : o0f + o01 � (of + o1) � n�rXj=n�r�p+1 sj :Moreover, by using the embedding suggested in (5,6,7) with Zl = 0 = Zr, this upper bound is actuallymet. Indeed, each block Pi(�) def= �Ri(�)zTi � with zTi 6= 0 is regular and has si zeroes. After a permutationof rows in (6) we have that each Pi(�) appears on diagonal and becomes part of the new regular partG0reg � �J 0reg of G0 � �F 0.The blocks for which zTi = 0 decouple, and the corresponding right Kronecker blocks remains intactin the augmented pencil. This can be seen by noting that the right annihilating vectors corresponding to{ 6 {



these blocks in the original pencil (4) (or its upper triangular equivalent) remain so for the augmentedpencil (6), with the same degrees in �. Similarly, the left Kronecker blocks remain una�ected for thesame reason.To place the zeroes for an individual Kronecker block, suppose that R(�) = (b; A)� �(0; U) (withA;U square) is a single right Kronecker block and hence has full row rank for all �. Suppose we addthe single row zT = (
;yT). Then observe that the �nite zeroes of P (�) def= �R(�)zT � are exactly theeigenvalues of the pencil A + b
�1yT � �U . We can choose 
 = 1 and choose yT by standard poleplacement techniques [7, 10]. The vector yT always exists and is generally unique. When we choose
 = 0, P (�) has at least one in�nite zero. In fact, as long as zT 6= 0 the number of trailing zeros in thatrow indicates the number of in�nite zeroes in P (�).In order to compute the proper rows Zr, it is necessary to extract the individual right Kroneckerblocks. The procedure to do this is described in detail in the next section, but a brief outline is asfollows. We �rst apply the staircase algorithm [12] to extract the right Kronecker part and compute thecorresponding indices. We then permute the rows and columns to extract the smallest right Kroneckerblock into the upper left corner and decouple this block from the rest of the pencil. On the remainingcollection of right Kronecker blocks we repeat this step to extract the next smallest right Kronecker block,until all the right Kronecker blocks have been extracted. At each step, to decouple the upper left fromthe lower right, we annihilate the entries in the lower left block { in a very particular order which ends upcompletely �lling in the upper right block. All the transformations applied are unitary transformations,and the result will be an upper triangular version of the pencil (4), where s1 � s2 � � � � � sl.2.2 The E�ect of CouplingIn this section, we illustrate some of the variations in the Kronecker structure that can occur when arow is appended. The scheme suggested above implies that the matrix Zr has a decoupled form as in(7), which is not strictly required. Since the method proposed below adds one block Pi(�) at a time tothe regular part, let us analyze what happens when we append a single row zT = (zT1 ; zT2 ) to a rightKronecker block R(�) and a regular block Greg � �Freg as in :P (�) = 0@R(�) 00 Greg � �FregzT1 zT2 1A : (9)If one of zT1 or zT2 is zero, then the two parts decouple, so let us assume that zT1 6= 0 and zT2 6= 0. Let�� be a zero of P (�) with corresponding left eigenvector uT = (uT1 ;uT2 ; �). Then (uT1 ; �) must be a lefteigenvector of �R(�)zT1 � corresponding to eigenvalue ��. Once this condition is satis�ed, one can always�nd a uT2 satisfying uT2 (Greg � ��Freg) + �zT2 = 0, to make uT the left eigenvector of P (��), assuming�� is not an eigenvalue of (Greg � �Freg). For then (Greg � ��Freg) has full column rank, and a solutionalways exists.If ��;uT2 is an eigenvalue and left eigenvector of (Greg � �Freg), then a left eigenvector of P (�)corresponding to �� is (0;uT2 ; 0) regardless of whether or not the pencil �R(�)zT1 � also has an eigenvalue��. We illustrate this case with the following 3� 3 example:P (�) = 0@R(�) 00 Greg � �FregzT1 �2 1A = 0@ (� 1 ) �zT1 �21A :{ 7 {



Regardless of the choice of zT1 ; �2, the entire pencil has an eigenvalue 0 with left eigenvector (0; 1; 0). Ifwe set zT1 = (0; 1) so that the pencil �R(�)zT1 � also has an eigenvalue 0, and we set �2 = 1 to couple thetwo parts together, the resulting pencil isP (�) = 0@� 1 00 0 �0 1 11A :This is a regular pencil with characteristic polynomial detP (�) = ��2. It has a double, defective,eigenvalue at zero. If the two parts are decoupled by setting �2 = 0, the characteristic polynomial remainsunchanged, but the double eigenvalue at zero becomes nondefective. If instead we set zT1 = (1; 1), thecharacteristic polynomial becomes � � �2, yielding simple eigenvalues at 0 and 1, independent of thechoice of �2. So if both individual pencils �R(�)zT1 � and (Greg � �Freg) have a common eigenvalue, thateigenvalue may remain in the full pencil P (�) with a Jordan chain combined from the Jordan chains fromthe individual pencils, or else the common eigenvalue may have a new independent Jordan chain. Thisimplies that when placing new zeroes, it is best to avoid any existing zeroes if one wants to keep Jordanchains as short as possible.We can summarize some of this discussion with the followingTheorem 3. Consider the augmented pencil (5). As long as the newly placed zeroes do not coincidewith any zeroes already existing in Greg � �Freg, the block Zr may be computed to place those zeroesindependent of Zreg; Zl. If new zeroes are placed over existing ones, their Jordan chains might or mightnot coalesce.The same comment applies whenever common zeros are chosen between added blocks Pi(�) = �Ri(�)zTi �since coupling is likely to occur via the nonzero elements above diagonal in (6) as well. Since this paperfocuses only on the placement of zeroes and not their Jordan structure, we do not pursue this discussionhere.3 Computational ProcedureWe sketch an algorithm to place the zeroes. The algorithm consists of three stages. In the �rst stage, weessentially compute the generalized Schur form (3), separating the left Kronecker part from the regularpart and the right Kronecker part. This can be carried out using the staircase algorithm [12, 2] and wewill not discuss this process in detail. In the second stage, we extract the individual Kronecker blocks,via a new elimination procedure proposed in this paper. Finally, in the third stage we compute therows to be appended in order to place the zeroes. The entire extraction process (the �rst two stages) iscarried out using only unitary transformations, hence it enjoys a backward stability property. The zeroplacing part also enjoys a backward stability property, hence the numerical stability of the whole processis favorable.The broad steps of the process is as follows.Algorithm 1. Zero Placement.1. Use the staircase algorithm [12, 2] to extract the left and right Kronecker part from the pencil.Assume the left Kronecker part of the pencil is the m�n pencil Gl��Fl, with n = m+ k. Choosep � k as the number of rows to append. { 8 {



2. Extract the individual Kronecker blocks from the staircase form.3. To the largest Kronecker blocks compute the row(s) that must be appended in order to place thedesired zeroes.4. Append the computed rows and back-transform through all the accumulated basis transformationsback to the original basis for the given pencil G� �F .We �ll in some of the details for each step in turn.3.1 Staircase FormThe staircase form is a form that can be obtained from the original pencil that exposes the variousKronecker indices and orders of a pencil, as well as exposing any regular part. In fact, the presence ofa regular part can be determined by the staircase algorithm, except that it may not be as numericallyreliable as the approach in [3]. (This is still an open area of research.) The algorithm used to extractthe left and right Kronecker part is the variant described in [2] to which we refer the reader for all thedetails, particularly on how to handle the presence of a regular part or left Kronecker blocks.The result of this algorithm is of the following typical form :Gl � �Fl = 2666664 G1;1 G1;2 G1;3 � � � G1;k G1;k+10 G2;2 G2;3 � � � G2;k G2;k+10 0 G3;3 � � � G3;k G3;k+10 0 0 .. . ... ...0 0 0 0 Gk;k Gk;k+1 3777775� �2666664 0 F1;2 F1;3 F1;4 � � � F1;k+10 0 F2;3 F2;4 � � � F2;k+10 0 0 F3;4 � � � F3;k+10 0 0 0 .. . ...0 0 0 0 0 Fk;k+1 3777775 ; (10)Figure 1. Typical Staircase Formwhere the matrices Fi;i+1 are ni � ni nonsingular and the matrices Gi;i are ni � ni�1 and of full rowrank ni. Therefore, the sequence fni; i = 1; : : : ; kg is nonincreasing and its dual sequence are the rightKronecker indices fsi; i = 1; : : : ; nrg, i.e. :� there are ni+1 � ni indices equal to i for i = 0; : : : ; kwhere we have assumed nk+1 = 0. Notice that this implies that if the smallest Kronecker index is s1 = q,then the �rst q matrices Gi;i for i = 1; : : : ; q are square invertible as well.Finally, we need to use a variant of the above form where the square matrices Fi;i+1 are upper-triangular and the rectangular matrices Gi;i have leading zero columns and a trailing upper-triangularmatrix. This form can always be obtained as explained in [2] and will be exploited in the subsequentsteps.3.2 Extract Individual Kronecker BlocksThe next step is to extract the individual Kronecker blocks. We do this by permuting toward the upperleft the entries of the matrix corresponding to the Kronecker block of interest, and then annihilating thecoupling elements in the appropriate o�-diagonal block. Due to the nature of the Kronecker structure,it is necessary to extract �rst the smallest Kronecker block, then extract the next smallest from what isleft, and so on. { 9 {



It is easier to illustrate the process and then describe it formally. Let q be the number of leadingdiagonal G blocks that are square. That is, let q be the number such that G11; � � � ; Gqq in (10) are square,but Gq+1;q+1 is not. Then the smallest Kronecker index is s1 = q. In the example worked out below weassumed there are 3 such blocks, so the smallest Kronecker index is s1 = 3. In this particular example,we must thus form a 3� 4 block. We form this block from the 1,1 entries of those �rst 3 square G blockstogether with the 1,1 entries of the corresponding F blocks. That is, we permute the rows and columnsof G;F to collect together the upper left entries of all the leading square G blocks. This will form aleading 3�4 submatrix. Then we must decouple this leading 3�4 submatrix by eliminating the couplingentries.To show how this works in more detail, we partition all the blocks of Figure 1 to expose the 1,1scalar entries, showing the result as Figure 2. We denote scalar entries by g; f , column vectors by g; f ,row vectors by g0; f 0 (completely unrelated to the transpose of any corresponding column vector), andsubmatrices by G;F . Note that potentially the row, column and matrix blocks could be empty.266666666664 g11 g011 g12 g012 g13 g013 g14 g014 g015 � � �0 G11 g12 G12 g13 G13 g14 G14 G15 � � �0 0 g22 g022 g23 g023 g24 g024 g025 � � �0 0 0 G22 g23 G23 g24 G24 G25 � � �0 0 0 0 g33 g033 g34 g034 g035 � � �0 0 0 0 0 G33 g34 G34 G35 � � �0 0 0 0 0 0 0 G44 G45 � � �0 0 0 0 0 0 0 0 G56 � � � 377777777775266666666664 0 0 f12 f 012 f13 f 013 f14 f 014 f 015 � � �0 0 0 F12 f13 F13 f14 F14 F15 � � �0 0 0 0 f23 f 023 f24 f 024 f 025 � � �0 0 0 0 0 F23 f24 F24 F25 � � �0 0 0 0 0 0 f34 f 034 f 035 � � �0 0 0 0 0 0 0 F34 F35 � � �0 0 0 0 0 0 0 0 F45 � � �0 0 0 0 0 0 0 0 0 � � � 377777777775Figure 2 - Partitioned Staircase FormWe permute the leading 1,1 entries into the upper left position to obtain Figure 3 in which the 3 � 4block is exposed:266666666664 g11 g12 g13 g14 g011 g012 g013 g014 g015 � � �0 g22 g23 g24 0 g022 g023 g024 g025 � � �0 0 g33 g34 0 0 g033 g034 g035 � � �0 g12 g13 g14 G11 G12 G13 G14 G15 � � �0 0 g23 g24 0 G22 G23 G24 G25 � � �0 0 0 g34 0 0 G33 G34 G35 � � �0 0 0 0 0 0 0 G44 G45 � � �0 0 0 0 0 0 0 0 G55 � � � 377777777775266666666664 0 f12 f13 f14 0 f 012 f 013 f 014 f 015 � � �0 0 f23 f24 0 0 f 023 f 024 f 025 � � �0 0 0 f34 0 0 0 f 034 f 035 � � �0 0 f13 f14 0 F12 F13 F14 F15 � � �0 0 0 f24 0 0 F23 F24 F25 � � �0 0 0 0 0 0 0 F34 F35 � � �0 0 0 0 0 0 0 0 F45 � � �0 0 0 0 0 0 0 0 0 � � � 377777777775Figure 3 - Permuted FormWe then decouple the 3 � 4 Kronecker block from the rest by annihilating one by one the columnentries in the lower left part. This is done with (almost) alternating left and right unitary transformations.The entries in the lower left are annihilating in a very particular order, starting with the \outer" diagonalstrip.In this example, the �rst items eliminated are the entries in the outer diagonal (marked within Figure 3), eliminated in order: g34; f24; g23; f13; f12. Then the next diagonal entries are eliminatedin order: g24; f14; g13. Then �nally g14 is eliminated. The entries in G are eliminated using unitarytransformations from the right, and the entries in F using transformations from the left, as illustratedin the appendix. Each elimination results in a �ll in the corresponding position in the upper right block.This example is su�ciently general to show the pattern of �lls in the g; f part for the general case.{ 10 {



The result is shown in Figure 4. In Figure 4, ^ denotes entries that were modi�ed from Figure 3,0̂ denotes entries that were purposely eliminated, and �̂ denotes entries that were �lled in during thisprocess.2666666666664 g11 ĝ12 ĝ13 ĝ14 ĝ011 ĝ012 ĝ013 g014 g015 � � �0 ĝ22 ĝ23 ĝ24 �̂ ĝ022 ĝ023 ĝ024 ĝ025 � � �0 0 ĝ33 ĝ34 �̂ �̂ ĝ033 ĝ034 ĝ035 � � �0 0̂ 0̂ 0̂ Ĝ11 Ĝ12 Ĝ13 Ĝ14 Ĝ15 � � �0 0 0̂ 0̂ 0 Ĝ22 Ĝ23 Ĝ24 Ĝ25 � � �0 0 0 0̂ 0 0 Ĝ33 G34 G35 � � �0 0 0 0 0 0 0 G44 G45 � � �0 0 0 0 0 0 0 0 G55 � � � 37777777777752666666666664 0 f̂12 f̂13 f̂14 �̂ f̂ 012 f̂ 013 f 014 f 015 � � �0 0 f̂23 f̂24 �̂ �̂ f̂ 023 f̂ 024 f̂ 025 � � �0 0 0 f̂34 �̂ �̂ �̂ f̂ 034 f̂ 035 � � �0 0 0̂ 0̂ 0 F̂12 F̂13 F̂14 F̂15 � � �0 0 0 0̂ 0 0 F̂23 F̂24 F̂25 � � �0 0 0 0 0 0 0 F34 F35 � � �0 0 0 0 0 0 0 0 F45 � � �0 0 0 0 0 0 0 0 0 � � � 3777777777775Figure 4 - Result from Extraction of Smallest Kronecker BlockWe summarize the process as follows.Algorithm 2. Kronecker Block Extraction.0. Start with an m � n pencil G� �F in staircase form, with k = n�m. Let q = s1 (0 � q � k) bethe number of leading diagonal G blocks that are square in the staircase form (Figure 2).1. Permute rows and columns of the pencil so that the \1,1" entries of the blocks Gij ; Fij, i = 1; � � � ; q,j = 1; � � � ; q + 1, are in the upper left, as in Figure 3. Denote the partitioned m� n pencil by�G(1;1) G(1;2)G(2;1) G(2;2)�� ��F (1;1) F (1;2)F (2;1) F (2;2)� ;where each block is partitioned as in Figure 3. The leading block G(1;1)� �F (1;1) is q � (q+ 1). Inthe partitioning of Figure 3 for 1 � i � q, Gii are k � k, so that G(1;1)ii , G(1;2)ii , G(2;1)ii , G(2;2)ii are,respectively, 1� 1, 1� (k � 1), (k � 1)� 1, (k � 1)� (k � 1).2. Eliminate the entries G(2;1)ij ; F (2;1)ij , in the permuted matrices. This modi�es parts of all four blocks(1,1), (1,2), (2,1), (2,2).2.1 For i = q; � � � ; 2; 1:2.2 For j = i; � � � ; 2; 1:2.3 Push G(2;1)j;j+1+k�i right into G(2;2)j;j .2.4 If j > 1, Push F (2;1)j�1;j+1+k�i up into F (1;1)j+k�i;j+1+k�i .The resulting modi�ed \(1,1)" block is not further modi�ed by this algorithm, so we denote it byG[2]11 ��F [2]11 . The modi�ed \(2,2)" block is still is staircase form. The modi�ed \(1,2)" block is fulland the modi�ed \(2,1)" block is all zero.3. If k � 1, apply this algorithm recursively to the (m�k)� (m�k�1) pencil G(2;2)��F (2;2). Applyall the resulting unitary transformations from the right also to the block G(1;2) � �F (1;2).In the above algorithm description, we use the short hand \push right" and \push up" to mean thefollowing. { 11 {



� Push G(2;1)�� right into G(2;2)�
 means: Find a unitary transformation Q7 such that (G(2;1)�� ; G(2;2)�
 )Q7 =(0; eG(2;2)�
 ), where eG(2;2)�
 is upper triangular. Then apply transformation to entire pencil: i.e., forall �, compute ( eG(2;1)�� ; eG(2;2)�
 ) = (G(2;1)�� ; G(2;2)�
 )Q7, and replace G(2;1)�� , G(2;2)�
 with eG(2;1)�� , eG(2;2)�
 . Dolikewise with F (2;1)�� , F (2;2)�
 .� Push F (2;1)�� up into F (1;1)
� means: Find a unitary transformation Q8 such thatQ8 F (1;1)
�F (2;1)�� ! = � eF (1;1)
�0 � :Then apply transformation to entire pencil: i.e., for all � compute eF (1;1)
�eF (2;1)�� ! = Q8 F (1;1)
�F (2;1)�� ! ;and replace F (1;1)
� , F (2;1)�� with eF (1;1)
� , eF (2;1)�� , respectively. Do likewise on the F (1;1)
� , F (2;1)�� .The �nal form of this process isQ[2]L (G[1]� �F [1])Q[2]R = (G[2] � �F [2]) = 0B@G[2]11 � � � G[2]1k. . . ...0 G[2]kk1CA � �0B@F [2]11 � � � F [2]1k. . . ...0 F [2]kk 1CA ; (11)where for each i = 1; � � � ; k, G[2]ii is si�(si+1), upper trapezoidal, and F [2]ii = (0; Ui) with Ui si�si, uppertriangular, where si � sk+1�i are the right Kronecker indices de�ned as in Theorem 2, in nondecreasingorder. The si � (si + 1) pencil G[2]ii � �F [2]ii has full row rank si for all values �. Of course, this is notthe Kronecker Canonical Form, but it is an analogous form achievable via unitary transformations. Eachdiagonal block is equivalent to a single Kronecker block. For most any purpose for which the Kroneckerform would be required one can make use of this form just as well.We remark that in this extraction process, all the entries that are annihilated are never �lled in duringsubsequent steps. Assume we use Givens rotations to annihilate the entries. Applying each rotation costsO(n) operations, including the cost of accumulating the Givens rotations. At most O(n2) such rotationsare generated, since there are no more than O(n2) entries to annihilate (we can't annihilate more entriesthan there are in the whole matrix!). Hence the entire extraction process takes O(n3) operations. Ofcourse, a more precise analysis is possible, but it is di�cult because the exact cost will range from freeto O(n3) depending on the exact distribution of the Kronecker indices.3.3 Place ZeroesTo the form (11) we can compute the p rows needed to place s def= snr + � � �+snr�p+1 zeroes. Let �1; � � � ; �sbe the given set of new zeroes to be placed. Then the rows to append have the following formZ[2] = 0BBBBBBB@ 0 � � � 0 zTnr�p+1 0 � � � � � � 0... ... 0 zTnr�p+2 . . . ...... ... ... . . . . . . . . . ...... ... ... . . . . . . 00 � � � 0 0 � � � � � � 0 zTnr 1CCCCCCCA ; (12){ 12 {



where we have n� s = s1 + � � �+ snr�p leading columns of zeroes, and the nonzero entries are computedas described below. For each i = nr; nr � 1; � � � ; nr � p + 1, each zTi is an si-vector chosen so that thesquare (si + 1)� (si + 1) pencil G[2]nr+1�i;nr+1�izTi !� ��F [2]nr+1�i;nr+1�i0 � (13)has zeroes f�ŝi+jgsij=1. Recall from (11) that the pencil (13) has the general form (bi; Ai) � �(0; Ui)where Ui is square, upper triangular, and nonsingular. Let zTi = (
;yTi ). Then observe that the zeroes of�bi Ai � �Ui
i yTi � are exactly the eigenvalues of the pencil Ai+bi
�1i yTi ��Ui. We can choose 
i = 1 andchoose yTi by standard pole placement techniques [7, 10]. In this case, the new row is generally unique.To see that the fzTi g chosen in this way places the zeroes for the entire pencil, we can permute therows to put the new regular part of the pencil in the lower right and the remaining right Kroneckerstructure in the upper left: � eG11 eG120 eG22�� �� eF11 eF120 eF22� ;whereeG22 � � eF22 = 0BBBBB@ G[2]nr�p+1;nr�p+1zTnr�p+1 ! � � � � �0�. . .� 00� �G[2]nr ;nrzTnr �1CCCCCA � �0BBBBB@�F [2]nr�p+1;nr�p+10 � � � � � �0�. . .� 00� �F [2]nr ;nr0 �1CCCCCAis regular with the desired zeroes. andG11 � �F11 = 0BB@G[2]11 � � � G[2]1;nr�p. . . ...0 G[2]nr�p;nr�p1CCA� �0BB@F [2]11 � � � F [2]1;nr�p. . . ...0 F [2]nr�p;nr�p1CCA ;has the right Kronecker structure left over.Returning to the original pencil G � �F , our original problem was to compute a p �m matrix Z toplace s zeroes. We collect together all the transformations to obtain the formula for Z:�Q[2]L Q[1]L I ���GZ �� ��F0 ��Q[1]R Q[2]R = �G[2]Z[2] �� ��F [2]0 �so that Z def= Z [2](Q[2]R )H(Q[1]R )H ;where 2H denotes the conjugate transpose of 2.4 ConclusionWe have examined the general problem of placing the generalized eigenvalues to an arbitrary matrixpencil by the addition of new rows of constant coe�cients. We found that the number of zeroes that canbe placed is limited to the order of the right Kronecker part (the sum of all the right Kronecker indices).{ 13 {



In addition, when p rows are added and there are multiple right Kronecker indices, the number of zeroesthat can be placed is limited to the sum of the p largest right Kronecker indices. When the number ofrows added is just right to make the system square, then the number of zeroes that can be placed is equalto the sum of all the right Kronecker indices.We have outlined a new method based entirely on unitary transformations to compute the rightKronecker indices and to extract the individual Kronecker blocks. By combining this procedure withpole placement algorithms in the literature, we arrive at a complete method for assigning the generalizedeigenvalues for a pencil, which enjoys good numerical stability properties due to the use of unitarytransformations. From a control point of view, this method places the transmission zeroes by the synthesisof new outputs. It could just as easily be used to synthesize inputs instead.The new decomposition in which the individual Kronecker blocks are extracted represents a unitaryanalog to the Kronecker canonical form in much the same spirit as the Schur decomposition is a unitaryanalog to the Jordan canonical form.AcknowledgementPart of this research was performed while the authors were visiting the Institute of Mathematics and Ap-plications of the University of Minnesota, Minneapolis, during the summer quarter of the Applied LinearAlgebra Year organized there. We greatly appreciated the hospitality and the productive atmosphere ofthat institute. P. Van Dooren was partially supported by the National Science Foundation (Grant CCR9209349).References[1] W. A. Berger, R. J. Perry, and H. H. Sun. An algorithm for the assignment of system zeroes.Automatica, 27(3):541{544, 1991.[2] Th. Beelen, P. Van Dooren, An improved algorithm for the computation of Kronecker's canonicalform of a singular pencil. Linear Algebra & Applications, 105:9{65, 1988.[3] D. L. Boley. Estimating the sensitivity of the algebraic structure of matrix pencils with simpleeigenvalue estimates. SIAM J. Matrix Anal., 11:632{643, 1990.[4] A. Emami-Naeini and P. Van Dooren. Computation of zeros of linear multivariable systems. Auto-matica, 18:415{430, 1982.[5] F. R. Gantmacher. Theory of Matrices, volume 2. Chelsea, New York, 1959.[6] T. K. Kailath. Linear Systems. Prentice Hall, 1980.[7] J. Kautsky, N. K. Nichols, and P. Van Dooren. Robust pole assignment in linear state feedback. Int.J. Control, 41:1129{1155, 1985.[8] B. Kouvaritakis and A. G. J. MacFarlane. Geometric approach to the analysis and synthesis ofsystem zeroes, part I. Int. J. Contr., 23:149{166, 1976.[9] B. Kouvaritakis and A. G. J. MacFarlane. Geometric approach to the analysis and synthesis ofsystem zeroes, part II: Non-square systems. Int. J. Contr., 23:167{181, 1976.{ 14 {



[10] G. Miminis and C. C. Paige. A direct method for pole assignment of time-invariant multi-inputlinear systems. Automatica, 24(3):343{356, 1988.[11] P. Misra. A computational algorithm for squaring up. part I: Zero input-output matrix. In Proc.Conf. Dec. Contr., pages 149{150, December 1992.[12] P. Van Dooren. The computation of Kronecker's canonical form of a singular pencil. Lin. Alg. &Appl., 27:103{141, 1979.[13] G. Verghese, P. Van Dooren, and T. Kailath. Properties of the system matrix of a generalizedstate-space system. Int. J. Contr., 30:235{243, 1979.AppendixWe show the process to decouple the 3�4 Kronecker block from the rest by annihilating one by one theentries in the lower left, starting with the state of Figure 3. This is done with almost alternating left andright unitary transformations. The entries in the lower left are annihilating in a very particular order,starting with the \outer" diagonal strip (marked with an overbar \ " in Figure 3). We show the stepby step annihilations for this particular example, where the rows and columns a�ected by the individualGivens rotation are marked with arrows, the entries used to construct the rotation are enclosed in boxes(e.g. e0 denotes the entry being annihilated), and all the other entries modi�ed in that step are markedwith a wide tilde \e". Fills (zeroes made nonzero) are denoted by \g��" when they occur and \�̂" insubsequent steps. Likewise, entries set to zero are denoted \ e0 " the �rst time and \0̂" in subsequentsteps. The hat \^" denotes entries changed from Figure 3.In this particular example, steps 1-5 zero out the outer diagonal strip of G;F blocks (marked \ "in Figure 3), steps 6-8 zero out the next strip of each, and step 9 zeroes out the last, resulting in thesituation of Figure 4. Note also that the G34; F34 blocks and all the entries below and to their rightremain unchanged through this whole process.Situation of Figure 3:26666666664 g11 g12 g13 g14 g011 g012 g013 g014 g015 � � �0 g22 g23 g24 0 g022 g023 g024 g025 � � �0 0 g33 g34 0 0 g033 g034 g035 � � �0 g12 g13 g14 G11 G12 G13 G14 G15 � � �0 0 g23 g24 0 G22 G23 G24 G25 � � �0 0 0 g34 0 0 G33 G34 G35 � � �0 0 0 0 0 0 0 G44 G45 � � �0 0 0 0 0 0 0 0 G55 � � � 3777777777526666666664 0 f12 f13 f14 0 f 012 f 013 f 014 f 015 � � �0 0 f23 f24 0 0 f 023 f 024 f 025 � � �0 0 0 f34 0 0 0 f 034 f 035 � � �0 0 f13 f14 0 F12 F13 F14 F15 � � �0 0 0 f24 0 0 F23 F24 F25 � � �0 0 0 0 0 0 0 F34 F35 � � �0 0 0 0 0 0 0 0 F45 � � �0 0 0 0 0 0 0 0 0 � � � 37777777775
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Step 1: Rotate from right:2666666666664 g11 g12 g13 w�fg14 g011 g012 w�fg013 g014 g015 � � �0 g22 g23 fg24 0 g022 fg023 g024 g025 � � �0 0 g33 fg34 0 0 fg033 g034 g035 � � �0 g12 g13 fg14 G11 G12 gG13 G14 G15 � � �0 0 g23 fg24 0 G22 gG23 G24 G25 � � �0 0 0 e0 0 0 gG33 G34 G35 � � �0 0 0 0 0 0 0 G44 G45 � � �0 0 0 0 0 0 0 0 G55 � � � 3777777777775266666666664 0 f12 f13 w�ff14 0 f 012 w�ff 013 f 014 f 015 � � �0 0 f23 ff24 0 0 ff 023 f 024 f 025 � � �0 0 0 ff34 0 0 f�� f 034 f 035 � � �0 0 f13 ff14 0 F12 fF13 F14 F15 � � �0 0 0 ff24 0 0 fF23 F24 F25 � � �0 0 0 0 0 0 0 F34 F35 � � �0 0 0 0 0 0 0 0 F45 � � �0 0 0 0 0 0 0 0 0 � � � 377777777775Step 2: Rotate from left:266666666664 g11 g12 g13 ĝ14 g011 g012 ĝ013 g014 g015 � � �0 g22 g23 ĝ24 0 g022 ĝ023 g024 g025 � � �0 0 fg33 fg34 0 f�� fg033 fg034 fg035 (=0 g12 g13 ĝ14 G11 G12 Ĝ13 G14 G15 � � �0 0 fg23 fg24 0 gG22 gG23 gG24 gG25 (=0 0 0 0̂ 0 0 Ĝ33 G34 G35 � � �0 0 0 0 0 0 0 G44 G45 � � �0 0 0 0 0 0 0 0 G55 � � � 3777777777752666666666664 0 f12 f13 f̂14 0 f 012 f̂ 013 f 014 f 015 � � �0 0 f23 f̂24 0 0 f̂ 023 f 024 f 025 � � �0 0 0 ff34 0 0 e� ff 034 ff 035 (=0 0 f13 f̂14 0 F12 F̂13 F14 F15 � � �0 0 0 e0 0 0 fF23 fF24 fF25 (=0 0 0 0 0 0 0 F34 F35 � � �0 0 0 0 0 0 0 0 F45 � � �0 0 0 0 0 0 0 0 0 � � � 3777777777775Step 3: Rotate from right:2666666666664 g11 g12 w�fg13 ĝ14 g011 w�fg012 ĝ013 g014 g015 � � �0 g22 fg23 ĝ24 0 fg022 ĝ023 g024 g025 � � �0 0 fg33 ĝ34 0 e� ĝ033 ĝ034 ĝ035 � � �0 g12 fg13 ĝ14 G11 gG12 Ĝ13 G14 G15 � � �0 0 e0 ĝ24 0 gG22 Ĝ23 Ĝ24 Ĝ25 � � �0 0 0 0̂ 0 0 Ĝ33 G34 G35 � � �0 0 0 0 0 0 0 G44 G45 � � �0 0 0 0 0 0 0 0 G55 � � � 3777777777775266666666664 0 f12 w�ff13 f̂14 0 w�ff 012 f̂ 013 f 014 f 015 � � �0 0 ff23 f̂24 0 f�� f̂ 023 f 024 f 025 � � �0 0 0 f̂34 0 0 �̂ f̂ 034 f̂ 035 � � �0 0 ff13 f̂14 0 fF12 F̂13 F14 F15 � � �0 0 0 0̂ 0 0 F̂23 F̂24 F̂25 � � �0 0 0 0 0 0 0 F34 F35 � � �0 0 0 0 0 0 0 0 F45 � � �0 0 0 0 0 0 0 0 0 � � � 377777777775Step 4: Rotate from left:266666666664 g11 g12 ĝ13 ĝ14 g011 ĝ012 ĝ013 g014 g015 � � �0 fg22 fg23 fg24 f�� fg022 fg023 fg024 fg025 (=0 0 ĝ33 ĝ34 0 �̂ ĝ033 ĝ034 ĝ035 � � �0 fg12 fg13 fg14 gG11 gG12 gG13 G14 gG15 (=0 0 0̂ ĝ24 0 Ĝ22 Ĝ23 Ĝ24 Ĝ25 � � �0 0 0 0̂ 0 0 Ĝ33 G34 G35 � � �0 0 0 0 0 0 0 G44 G45 � � �0 0 0 0 0 0 0 0 G55 � � � 3777777777752666666666664 0 f12 f̂13 f̂14 0 f̂ 012 f̂ 013 f 014 f 015 � � �0 0 ff23 ff24 0 e� ff 023 ff 024 ff 025 (=0 0 0 f̂34 0 0 �̂ f̂ 034 f̂ 035 � � �0 0 e0 ff14 0 fF12 fF13 fF14 fF15 (=0 0 0 0̂ 0 0 F̂23 F̂24 F̂25 � � �0 0 0 0 0 0 0 F34 F35 � � �0 0 0 0 0 0 0 0 F45 � � �0 0 0 0 0 0 0 0 0 � � � 3777777777775
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Step 5: Rotate from right:266666666664 g11 w�fg12 ĝ13 ĝ14 w�fg011 ĝ012 ĝ013 g014 g015 � � �0 fg22 ĝ23 ĝ24 e� ĝ022 ĝ023 ĝ024 ĝ025 � � �0 0 ĝ33 ĝ34 0 �̂ ĝ033 ĝ034 ĝ035 � � �0 e0 ĝ13 ĝ14 gG11 Ĝ12 Ĝ13 G14 Ĝ15 � � �0 0 0̂ ĝ24 0 Ĝ22 Ĝ23 Ĝ24 Ĝ25 � � �0 0 0 0̂ 0 0 Ĝ33 G34 G35 � � �0 0 0 0 0 0 0 G44 G45 � � �0 0 0 0 0 0 0 0 G55 � � � 377777777775266666666664 0 w�ff12 f̂13 f̂14 w�f�� f̂ 012 f̂ 013 f̂ 014 f̂ 015 � � �0 0 f̂23 f̂24 0 �̂ f̂ 023 f̂ 024 f̂ 025 � � �0 0 0 f̂34 0 0 �̂ f̂ 034 f̂ 035 � � �0 0 0̂ f̂14 0 F̂12 F̂13 F̂14 F̂15 � � �0 0 0 0̂ 0 0 F̂23 F̂24 F̂25 � � �0 0 0 0 0 0 0 F34 F35 � � �0 0 0 0 0 0 0 0 F45 � � �0 0 0 0 0 0 0 0 0 � � � 377777777775Step 6: Rotate from right:2666666666664 g11 ĝ12 ĝ13 w�fg14 ĝ011 w�fg012 ĝ013 g014 g015 � � �0 ĝ22 ĝ23 fg24 �̂ fg022 ĝ023 ĝ024 ĝ025 � � �0 0 ĝ33 fg34 0 e� ĝ033 ĝ034 ĝ035 � � �0 0̂ ĝ13 fg14 Ĝ11 gG12 Ĝ13 G14 Ĝ15 � � �0 0 0̂ e0 0 gG22 Ĝ23 Ĝ24 Ĝ25 � � �0 0 0 0̂ 0 0 Ĝ33 G34 G35 � � �0 0 0 0 0 0 0 G44 G45 � � �0 0 0 0 0 0 0 0 G55 � � � 3777777777775266666666664 0 f̂12 f̂13 w�ff14 �̂ w�ff 012 f̂ 013 f̂ 014 f̂ 015 � � �0 0 f̂23 ff24 0 e� f̂ 023 f̂ 024 f̂ 025 � � �0 0 0 ff34 0 f�� �̂ f̂ 034 f̂ 035 � � �0 0 0̂ ff14 0 fF12 F̂13 F̂14 F̂15 � � �0 0 0 0̂ 0 0 F̂23 F̂24 F̂25 � � �0 0 0 0 0 0 0 F34 F35 � � �0 0 0 0 0 0 0 0 F45 � � �0 0 0 0 0 0 0 0 0 � � � 377777777775Step 7: Rotate from left:266666666664 g11 ĝ12 ĝ13 ĝ14 ĝ011 ĝ012 ĝ013 g014 g015 � � �0 ĝ22 ĝ23 ĝ24 �̂ ĝ022 ĝ023 ĝ024 ĝ025 � � �0 0 fg33 fg34 f�� e� fg033 fg034 fg035 (=0 0̂ fg13 fg14 gG11 gG12 gG13 gG14 gG15 (=0 0 0̂ 0̂ 0 Ĝ22 Ĝ23 Ĝ24 Ĝ25 � � �0 0 0 0̂ 0 0 Ĝ33 G34 G35 � � �0 0 0 0 0 0 0 G44 G45 � � �0 0 0 0 0 0 0 0 G55 � � � 3777777777752666666666664 0 f̂12 f̂13 f̂14 �̂ f̂ 012 f̂ 013 f̂ 014 f̂ 015 � � �0 0 f̂23 f̂24 0 �̂ f̂ 023 f̂ 024 f̂ 025 � � �0 0 0 ff34 0 e� e� ff 034 ff 035 (=0 0 0̂ e0 0 fF12 fF13 fF14 fF15 (=0 0 0 0̂ 0 0 F̂23 F̂24 F̂25 � � �0 0 0 0 0 0 0 F34 F35 � � �0 0 0 0 0 0 0 0 F45 � � �0 0 0 0 0 0 0 0 0 � � � 3777777777775Step 8: Rotate from right:266666666664 g11 ĝ12 w�fg13 ĝ14 w�fg011 ĝ012 ĝ013 g014 g015 � � �0 ĝ22 fg23 ĝ24 e� ĝ022 ĝ023 ĝ024 ĝ025 � � �0 0 fg33 ĝ34 e� �̂ ĝ033 ĝ034 ĝ035 � � �0 0̂ e0 ĝ14 gG11 Ĝ12 Ĝ13 Ĝ14 Ĝ15 � � �0 0 0̂ 0̂ 0 Ĝ22 Ĝ23 Ĝ24 Ĝ25 � � �0 0 0 0̂ 0 0 Ĝ33 G34 G35 � � �0 0 0 0 0 0 0 G44 G45 � � �0 0 0 0 0 0 0 0 G55 � � � 377777777775266666666664 0 f̂12 w�ff13 f̂14 w�e� f̂ 012 f̂ 013 f̂ 014 f̂ 015 � � �0 0 ff23 f̂24 f�� �̂ f̂ 023 f̂ 024 f̂ 025 � � �0 0 0 f̂34 0 �̂ �̂ f̂ 034 f̂ 035 � � �0 0 0̂ 0̂ 0 F̂12 F̂13 F̂14 F̂15 � � �0 0 0 0̂ 0 0 F̂23 F̂24 F̂25 � � �0 0 0 0 0 0 0 F34 F35 � � �0 0 0 0 0 0 0 0 F45 � � �0 0 0 0 0 0 0 0 0 � � � 377777777775
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Step 9: Rotate from right, yielding situation of Figure 4:266666666664 e11 ê12 ê13 w�fe14 w�fg011 ĝ012 ĝ013 g014 g015 � � �0 ĝ22 ĝ23 fg24 e� ĝ022 ĝ023 ĝ024 ĝ025 � � �0 0 ĝ33 fg34 e� �̂ ĝ033 ĝ034 ĝ035 � � �0 0̂ 0̂ e0 gG11 Ĝ12 Ĝ13 Ĝ14 Ĝ15 � � �0 0 0̂ 0̂ 0 Ĝ22 Ĝ23 Ĝ24 Ĝ25 � � �0 0 0 0̂ 0 0 Ĝ33 G34 G35 � � �0 0 0 0 0 0 0 G44 G45 � � �0 0 0 0 0 0 0 0 G55 � � � 377777777775266666666664 0 f̂12 f̂13 w�ff14 w�e� f̂ 012 f̂ 013 f̂ 014 f̂ 015 � � �0 0 f̂23 ff24 e� �̂ f̂ 023 f̂ 024 f̂ 025 � � �0 0 0 ff34 f�� �̂ �̂ f̂ 034 f̂ 035 � � �0 0 0̂ 0̂ 0 F̂12 F̂13 F̂14 F̂15 � � �0 0 0 0̂ 0 0 F̂23 F̂24 F̂25 � � �0 0 0 0 0 0 0 F34 F35 � � �0 0 0 0 0 0 0 0 F45 � � �0 0 0 0 0 0 0 0 0 � � � 377777777775Figure A1 - Annihilating Steps
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