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Abstract. We use a model LASSO problem to analyze the convergence behavior of the ISTA
and FISTA iterations, showing that both iterations satisfy local linear convergence rate bound when
close enough to the solution. Using the observation that FISTA is an accelerated ISTA process,
and a spectral analysis of the associated matrix operators, we show that FISTA’s convergence rate
can slow down as it proceeds, eventually becoming slower than ISTA. This observation leads to a
proposed heuristic algorithm to take an ISTA step if it shows more progress compared to FISTA, as
measured by the decrease in the objective function. We illustrate the results with some synthetic
numerical examples.

1. Introduction. The l1-norm regularized least squares model has received
much attention recently due to its wide applications in the real problems includ-
ing compressive sensing [6], statistics [8], sparse coding [11], geophysics [21] and so
on. The model problem in question is:

(1.1) min
x∈Rn

F (x) = 1/2‖Ax− b‖22 + λ‖x‖1

where A ∈ R
m×n is a given matrix, b is a given vector and λ is a positive scalar.

Though the idea of least squares with l1 regularization is decades old [21], it was
not until more recently that this idea was introduced to the computational mathemat-
ics community under the name of Least Absolute Selection and Shrinkage Operator
(LASSO) [22] and Basis Pursuit Denoising (or Compressive Sensing) [6]. For example,
in compressive sensing, we seek to recover a solution x to an underdetermined m× n
system of linear equations Ax = b with n ≫ m. This linear system either has no
solution (if A is rank-deficient) or has many solutions. A common approach is to find
the solution with minimum l2-norm. However, it is often desired to find a solution
x with as few non-zero entries as possible, as a way to find the fewest columns of
A needed to obtain a good approximation of the target vector b. It is by now well
known that an efficient way to obtain a sparse solution x is to use l1 regularization
as in (1.1). Since LASSO has become one of the most popular names for this model,
we will use term LASSO to denote the above model for the remainder of the paper.

Although the LASSO problem can be cast as a second order cone programming
problem and solved by standard general algorithms like an interior point method [2],
the computational complexity of such traditional methods is too high to handle large-
scale data encountered in many real applications. Recently, several algorithms that
take advantage of the special structure of the LASSO problem have been proposed
including alternating direction method of multipliers (ADMM), coordinate descent
method, iterative shrinkage thresholding algorithm (ISTA) and its accelerated version
fast iterative shrinkage thresholding algorithm (FISTA). In [20], we compared the
local convergence of these four methods on the LASSO problem, showing that they
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all exhibit local linear convergence but at different rates. The present paper is devoted
exclusively to a theoretical and experimental comparison of ISTA vs FISTA, with a
simplified proof of linear convergence and a proposed heuristic algorithm as a natural
consequence of the analysis.

ISTA is an example of a proximal gradient method, since it involves a gradient
descent step with a penalty to limit the length of each step. Its computation involves
only matrix-vector multiplications, which has great advantage over many other con-
vex algorithms by avoiding a matrix factorization [19]. Recently, Beck and Teboulle
[1] proposed an accelerated ISTA, named as FISTA, in which a specific relaxation
parameter is chosen. The idea of acceleration was first developed by Nesterov in [14].
Both algorithms are designed for solving more general problems containing convex dif-
ferentiable objectives combined with an l1 regularization term in the following general
form:

min
x∈Rn

f(x) + g(x),

where f is a smooth convex function and g is a continuous convex function but possibly
nonsmooth. Clearly, the LASSO problem is a special case of the above formulation
with f(x) = 1/2‖Ax−b‖2, g(x) = ‖x‖1. The gradient ∇f = ATAx−ATb is Lipschitz
continuous with constant L(f) = ρ(ATA) = ‖ATA‖2, i.e., ‖∇f(x1) − ∇f(x2)‖ ≤
L(f)‖x1−x2‖, ∀x1,x2 ∈ R

n. It has been shown [1] that FISTA provides a convergence
rate of O(1/k2) compared to the rate ofO(1/k) by ISTA, while maintaining practically
the same per-iteration cost, where k is the iteration number.

In contrast to the global convergence rate, there have been several previous stud-
ies of the local convergence of ISTA. Bredies and Lorenz in [4] provided the local
linear convergence of the iterative soft-thresholding algorithms in infinite dimensional
Hilbert spaces under certain conditions. Recently, Liang et al. [13] showed that a
general forward-backward proximal splitting algorithm converges linearly if the func-
tion satisfies the so-called partly smooth properties. The local linear convergence of
FISTA is not clear in the literature. A Lyapunov analysis on the local convergence
FISTA has been established in [18] contemporaneously with the present paper.

In this work, we establish local bounds on the convergence behavior of ISTA
and FISTA on the model LASSO problem. We compare the asymptotic convergence
behavior of ISTA with that of FISTA. The latter can be considered an accelerated
ISTA, but we show that as one approaches the solution FISTA can slow down and even
become slower than ISTA. Extending the same techniques as in [3, 20], we show that
linear convergence can be reached eventually, but not necessarily from the beginning.
The method is based on a representation of ISTA and FISTA as a matrix recurrence
and a spectrial analysis of that matrix recurrence. This yields a model that shows
that the iterations pass through several phases or “regimes”, each treated separately
in terms of the spectral model. After passing through several regimes, some of which
consist of taking constant steps, each iteration reaches a regime of linear convergence
with a convergence rate bounded by the eigenvalues of the corresponding matrix
operator. Unlike [4, 13], our analysis is conducted on the finite dimensional Euclidean
space so that we can take advantage of the well-established matrix properties. This
lets us study the local convergence of not only ISTA but also FISTA, which is not
considered in [4, 13]. Apart from the local convergence results, our analysis in terms of
regimes can model the behavior of entire iteration process and give a way to compare
ISTA and FISTA with each other.

Throughout this paper, the matrix p-norm is the norm induced by the corre-

2



sponding vector norm: ‖M‖p = max‖v‖p=1 ‖Mv‖p, with p = 1, 2 or ∞. We use
ρ(M) to denote the spectral radius (largest absolute value of any eigenvalue of a ma-
trix M). For any real symmetric matrix M , the matrix 2-norm is the same as the
spectral radius: ‖M‖2 = ρ(M), hence we use those interchangeably for symmetric
matrices. We also use a so-called G-norm where G is a non-singular matrix, defined
to be ‖v‖G = ‖Gv‖∞ for any vector v, and ‖M‖G = ‖GAG−1‖∞ for any matrix M .

The paper is organized as follows. Section 2 gives some preliminaries of the paper.
We show how to represent ISTA as a matrix recurrence in Section 3.1 and give some
of its spectral properties in Section 3.2, and do the same for FISTA in Sections 3.3
& 3.4. Section 4 gives details about four types of regimes that ISTA and FISTA
will encounter in the iterations process based on our spectral analysis. Our first
main result is given in Section 5, which shows the local linear convergence of ISTA
and FISTA on the LASSO problem. In Section 6 we compare the behavior in each
regime, showing that FISTA can be faster that ISTA through most of the regimes,
but asymptotically can be slower as one approaches the optimal solution. A heuristic
algorithm is provided based on this observation. Section 7 includes two numerical
examples run by the standard ISTA and FISTA, to illustrate many of the predicted
behaviors.

2. Preliminaries.

2.1. Optimality Condition of the LASSO Problem. The first order KKT
optimality conditions for the LASSO problem (1.1) are

(2.1) AT(b−Ax) = λν

where at optimality each component of ν satisfies

(2.2)

{
νi = Sign (xi) if xi 6= 0
−1 ≤ νi ≤ +1 if xi = 0

}
for i = 1, 2, · · · .

Here the “Sign” function is defined as

Sign (x) =




+1 if x > 0
0 if x = 0
−1 if x < 0.

2.2. Uniqueness and Strict Complementarity. There are various sufficient
and necessary conditions for the uniqueness of the LASSO problem or its variants. For
example, [17, 5, 9] show different sufficient conditions and [23] studies the necessary
conditions for the LASSO problem. In fact, the problem (1.1) needs to have a unique
solution in many situations. For example, in compressive sensing and signal recovery,
having non-unique solutions results in unreliable recovery given the data. We refer
readers to [23, 24] and references therein for a discussion of the uniqueness of the
LASSO problem. Here we will occasionally assume uniqueness of the LASSO solution.

Let x∗ be an optimal solution to (1.1) with corresponding residuals ν∗ (2.1). We
say this solution has the property of strict complementarity if for every index i, the
i-th components of x∗,ν∗ satisfy either x∗

i > 0 and ν∗i = Sign (xi) = ±1 or else x∗
i = 0

and |ν∗i | < 1. The situation where x∗
i = 0 and |ν∗i | = 1 for the same index i would

violate the condition of strict complementarity. We remark that such violations occur
only for finitely many values of λ for a given A and b [8].
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2.3. ISTA and FISTA iteration. In this part, we review the basic iteration
of ISTA and FISTA for solving the LASSO problem. To make clear the difference
between ISTA and FISTA, we let x̂ and x̃ denote the iterates of ISTA and FISTA
respectively in the remainder of this paper. The basic step of ISTA for the LASSO
problem can be reduced to [7, 1]

x̂[k+1] = argmin
x̂

{g(x̂) + L/2‖x̂− (x̂[k] − 1/L∇f(x̂[k]))‖2}

= argmin
x̂

{λ‖x̂‖1 + L/2‖x̂− (x̂[k] − 1/L(A
TAx̂[k] −ATb)‖2}

= Shrλ/L
((I − 1/LA

TA)x̂[k] + 1/LA
Tb).

Here the shrinkage operator is defined in terms of a positive threshold ξ:

Shrξ(s) =





s− ξ if s ≥ ξ
0 if − ξ < s < ξ
s+ ξ if s ≤ −ξ,

where this is applied elementwise to vectors.
One advantage of ISTA is that the above step can be solved in closed form using

only matrix-vector multiplications, leading to the following updates repeated until
convergence. Here L is a constant such that L ≥ ‖ATA‖2, though for the ISTA
analysis it could be as low as 1/2‖ATA‖2 (cf. §5.4). We show one pass through the

algorithm, with x̂[k] denoting the vector from previous pass and x̂[k+1] denoting the
new iterate.

Algorithm 1: One pass of ISTA

start with x̂[k].

Set x̂[k+1] = Shrλ/L
((I − 1/LA

TA)x̂[k] + 1/LA
Tb).

Result is x̂[k+1] for next pass.
FISTA differs from ISTA in that the shrinkage operator is employed not on the

previous point x̃[k−1] but a different point y[k], which uses a very specific linear
combination of the previous two points {x̃[k−1], x̃[k−2]}. The algorithm of FISTA
for the LASSO problem is presented below, with the initial y[1] = x̃[0] ∈ R

n and
t[0] = t[1] = 1.

Algorithm 2: One pass of FISTA

start with t[k], t[k−1], x̃[k−1] and x̃[k−2].

1. Set y[k] = x̃[k−1] + t[k−1]−1
t[k] (x̃[k−1] − x̃[k−2]).

2. Set x̃[k] = Shrλ/L
((I − 1/LA

TA)y[k] + 1/LA
Tb).

3. Set t[k+1] = 1+
√

1+4t[k]2

2 .
Result is t[k+1], t[k], x̃[k], x̃[k−1] for next pass.

3. Auxiliary Variables with Local Monotonic Behavior.

3.1. ISTA as a Matrix Recurrence. Instead of using variables x̂[k], we use
two auxiliary variables to carry the iteration. One variable, namely, ŵ[k] exhibits
smooth behavior, with linear convergence locally around a fixed point, and the other
variable d̂[k] is simply a ternary vector based on the three cases of the shrinkage
operator. We let, for all k, the common iterate be

(3.1) ŵ[k] = (I − 1/LA
TA)x̂[k] + 1/LA

Tb
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and vector d̂[k] is defined elementwise as

d̂
[k]
i = Sign (Shrλ/L

ŵ
[k]
i )) =





1 if ŵ
[k]
i > λ/L

0 if − λ/L ≤ ŵ
[k]
i ≤ λ/L

−1 if ŵ
[k]
i < −λ/L.

(3.2)

We also define the matrix D̂[k] = diag(d̂[k]). Since D̂[k] indicates the sign of the
iterates, we call it flag matrix in the rest of the paper. By the updating rule in Alg.
1 and the above two equations, one can obtain the x̂[k]-update in terms of ŵ[k] and
d̂[k]

(3.3) x̂[k+1] = Shrλ/L
(ŵ[k]) = (D̂[k])2ŵ[k] − λ/Ld̂

[k].

Using (3.1), (3.2) and (3.3), the update formula for ŵ now can be expressed explicitly
as follows:

ŵ[k+1] = R[k]ŵ[k] + h[k]

= [(I − 1/LA
TA)(D̂[k])2]ŵ[k] − (I − 1/LA

TA)λ/Ld̂
[k] + 1/LA

Tb

where we denote

(3.4)
R[k] = [(I − 1/LA

TA)(D̂[k])2]

h[k] = −(I − 1/LA
TA)λ/Ld̂

[k] + 1/LA
Tb

throughout this paper. Therefore, the ISTA in Alg. 1 with variable x̂ can be modified
to the following procedure using the new variables ŵ and D̂.

Algorithm 3: One pass of modified ISTA

start with ŵ[k],D̂[k].

1. ŵ[k+1] = R[k]ŵ[k] + h[k] (with R[k],h[k] defined by (3.4)).

2. D̂[k+1] = Diag (Sign (Shrλ/L
(ŵ[k+1]))).

Result is ŵ[k+1], D̂[k+1] for next pass.
Alg. 3 is mathematically equivalent to Alg. 1 and is designed only for the purpose of
analysis, not intended for computation. We note that step 1 of Alg. 3 can be written
as a homogeneous matrix recurrence in (3.5), which we will use to characterize ISTA’s
convergence.

(3.5)

(
ŵ[k+1]

1

)
= R[k]

aug

(
ŵ[k]

1

)
=

(
R[k] h[k]

0 1

)(
ŵ[k]

1

)

=

(
(I − 1/LA

TA)(D̂[k])2 h[k]

0 1

)(
ŵ[k]

1

)

where we denote R
[k]
aug as

(
R[k] h[k]

0 1

)
, the augmented matrix of R[k], in this paper.

It is known that the fixed point condition in Alg. 1 is equivalent to the KKT
conditions (2.1) and (2.2). The following lemma shows the equivalence between the
fixed point of the constructed matrix recurrence (3.5) and the KKT point of the
LASSO problem.

Lemma 3.1. Suppose

(
ŵ
1

)
is an eigenvector corresponding to eigenvalue 1 of

Raug(omitting [k]) in (3.5) and D̂[k+1] = D̂[k] = D̂ = Diag (d̂) with entries d̂i = 1 if
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ŵi > λ/L, d̂i = −1 if ŵi < −λ/L and d̂i = 0 if −λ/L ≤ ŵi ≤ λ/L. Then the variable
defined by x̂ = Shrλ/L

(ŵ) satisfies the 1st order KKT conditions. Conversely, if x̂ and

ν̂ = 1/λA
T(b−Ax̂) satisfy the KKT conditions, then

(
ŵ
1

)
, with ŵ = x̂+ λ/Lν̂, is an

eigenvector of Raug corresponding to eigenvalue 1, where Raug is defined in (3.5) and

D̂[k+1] = D̂[k] = D̂ = Diag (d̂) with entries d̂i = 1 if ŵi > λ/L, d̂i = −1 if ŵi < −λ/L
and d̂i = 0 if −λ/L ≤ ŵi ≤ λ/L.

Proof. Define ν̂
[k] = 1/λA

T(b − Ax̂[k]) for all k. Then from Algorithm 1, x̂[k+1] =

Shrλ/L
(ŵ[k]) = Shrλ/L

(x̂[k] + λ/Lν̂
[k]). ŵ[k] is a fixed point if and only if

(
ŵ[k]

1

)

is a eigenvector corresponding to eigenvalue 1. But it is a fixed point if and only if

x̂[k] = Shrλ/L
(x̂[k]+λ/Lν̂

[k]), which holds if and only if x̂[k], ν̂[k] satisfy conditions (2.1)

(2.2). This last statement follows directly from the fact that x = Shrξ(x+y) if and only
if y = Thrξ(x + y), where Thrξ is the threshold function satisfying Shrξ +Thrξ = Id
(the identity function). �

3.2. Spectral Properties of R
[k]
aug. We give here some spectral properties of

R
[k]
aug that will play key roles in our convergence analysis. We first recall some theory

relating the spectral radius to the matrix norm.

Theorem 3.2. Let ρ(M) denote the spectral radius of an arbitrary square real
matrix M . Then we have the following:

(a). ρ(M) ≤ ‖M‖2.
(b). If ‖M‖2 = ρ(M) then for any eigenvalue λ such that |λ| = ρ(M), the

algebraic and geometric multiplicities of λ are the same (all Jordan blocks for λ is
1× 1). Such a matrix is said to be a member of Class M [12, 16].

(c). If a λ such that |λ| = ρ(M) has a Jordan block of dimension larger than 1 (the
geometric multiplicity is strictly less than the algebraic multiplicity), then for any ǫ > 0
there exists a matrix norm ‖·‖G such that ρ(M) < ‖M‖G ≡ ‖GMG−1‖∞ ≤ ρ(M)+ǫ.

We refer readers to [3, 16, 12, 10] for the proof of the above theorem. We remark
that (a) and (b) are true for any operator norm but here we need it only for the
matrix 2-norm.

Lemma 3.3. Regarding ISTA, there are three properties of R[k]:

(a). ‖R[k]‖2 = ‖(I − 1/LA
TA)(D̂[k])2‖2 ≤ 1.

(b). All eigenvalues must lie in the interval [0, 1].

(c). If there exists one or more eigenvalues equal to 1, then eigenvalue 1 must
have a complete set of eigenvectors.

Proof. We here omit the pass number [k] for simplicity.

(a). ‖R‖2 = ‖(I − 1/LA
TA)D̂2‖2 ≤ ‖(I − 1/LA

TA)‖2‖D̂2‖2 ≤ 1.

(b). All eigenvalues of R are the same as those of R′ = D̂(I−1/LA
TA)D̂. Noticing

L ≥ ‖ATA‖2, we obtain ‖R′‖2 ≤ ‖D̂2‖2‖(I − 1/LA
TA)‖2 ≤ 1. In addition, R′ is

symmetric and a positive semidefinite matrix. Hence all eigenvalues of R′ must lie in
the interval [0, 1]. Hence so should those of R.

(c). Because ρ(R) = ‖R‖2 = 1, this statement follows directly from Theorem 3.2.
�

3.3. FISTA as a Matrix Recurrence. Similar to ISTA, we use auxiliary vari-
ables w̃[k], D̃[k] to replace variable x̃[k] for carrying the FISTA iterations. We set

6



(3.6) w̃[k] = (I − 1/LA
TA)y[k] + 1/LA

Tb.

Hence,

(3.7) x̃[k+1] = Shrλ/L
(w̃[k]) = (D̃[k])2w̃[k] − λ/Ld̃

[k]

where for all k, the flag matrix D̃[k] = diag(d̃[k]), and the vector d̃[k] is defined
elementwise as

d̃
[k]
i = Sign (Shrλ/L

w̃
[k]
i )) =





1 if w̃
[k]
i > λ/L

0 if − λ/L ≤ w̃
[k]
i ≤ λ/L

−1 if w̃
[k]
i < −λ/L.

(3.8)

Using (3.6), (3.7) and the updating formula in Alg. 2, we arrive at
(3.9)

w̃[k+1] = (I − 1/LA
TA)

[
x̃[k] + t[k]−1

t[k+1] (x̃
[k] − x̃[k−1])

]
+ 1/LA

Tb

= (I − 1/LA
TA)

[
( t

[k]−1
t[k+1] + 1)((D̃[k])2w̃[k] − λ/Ld̃

[k])
]

−(I − 1/LA
TA)

[
t[k]−1
t[k+1] ((D̃

[k−1])2w̃[k−1] − λ/Ld̃
[k−1])

]
+ 1/LA

Tb

= (1 + t[k]−1
t[k+1] )

[
(I − 1/LA

TA)(D̃[k])2
]
w̃[k]

− t[k]−1
t[k+1]

[
(I − 1/LA

TA)(D̃[k−1])2
]
w̃[k−1]

+(I − 1/LA
TA)

[
−(1 + t[k]−1

t[k+1] )λ/Ld̃
[k] + t[k]−1

t[k+1]
λ/Ld̃

[k−1]
]
+ 1/LA

Tb

= (1 + τ [k])R̃[k]w̃[k] − τ [k]R̃[k−1]w̃[k−1] + h̃

= P [k]w̃[k] +Q[k−1]w̃[k−1] + h̃[k]

where we denote

(3.10)





τ [k] = t[k]−1
t[k+1]

P [k] = (1 + τ [k])R̃[k]

Q[k] = −τ [k+1]R̃[k]

R̃[k] = (I − 1/LA
TA)(D̃[k])2

h̃[k] = (I − 1/LA
TA)

[
−(1 + τ [k])λ/Ld̃

[k] + τ [k]λ/Ld̃
[k−1]

]
+ 1/LA

Tb

in the rest of this paper. Note that R[k] in (3.4) refers to the mapping at the k-

th iteration of ISTA while R̃[k] in (3.10) refers to the mapping that would occur if
one took one step of ISTA starting at the k-th iterate of FISTA. Note also that if

d̃[k] = d̃[k−1], then h̃[k] = (I − 1/LA
TA)

[
λ/Ld̃

[k]
]
+ 1/LA

Tb does not vary with τ .

For the purposes of analysis, the modified FISTA iteration then can be equivalently
expressed as in Alg. 4.
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Algorithm 4: One pass of modified FISTA

start with w̃[k−1], w̃[k], t[k], D̃[k−1] and D̃[k].

1. w̃[k+1] = P [k]w̃[k] +Q[k−1]w̃[k−1] + h̃[k] (with P [k], Q[k−1], h̃[k] defined by (3.10)).

2. t[k+1] = 1+
√

1+4t[k]2

2 so that τ [k] = t[k]−1
t[k+1] .

3. D̃[k+1] = Diag (Sign (Shrλ/L
(w̃[k+1]))).

Result is w̃[k], w̃[k+1], t[k+1], D̃[k] and D̃[k+1] for next pass.

Step 1 of above procedure can also be formulated as a homogeneous matrix recurrence
analogous to (3.5) for ISTA, but with a larger (approximately double) dimension:

(3.11)



w̃[k+1]

w̃[k]

1


 =N[k]

aug




w̃[k]

w̃[k−1]

1


 =

(
N [k] h̃

[k]
aug

0 1

)


w̃[k]

w̃[k−1]

1




=



P [k] Q[k−1] h̃[k]

I 0 0
0 0 1







w̃[k]

w̃[k−1]

1


 .

We denoteN [k] =

(
P [k] Q[k−1]

I 0

)
and h̃

[k]
aug =

(
h̃[k]

0

)
such thatN

[k]
aug =

(
N [k] h̃

[k]
aug

0 1

)

in the remainder of this paper.

Analogous to Lemma 3.1 for ISTA, the following lemma shows the equivalence
between the fixed point of the constructed matrix recurrence (3.11) and the KKT
point of the LASSO problem.

Lemma 3.4. Suppose



w̃1

w̃2

1


 is an eigenvector corresponding to eigenvalue 1 of

Naug (omitting [k]) in (3.11), then w̃1 = w̃2 := w̃. Suppose further that D̃[k+1] =

D̃[k] = D̃ = Diag (d̃) with entries d̃i = 1 if w̃i > λ/L, d̃i = −1 if w̃i < −λ/L and

d̃i = 0 if −λ/L ≤ w̃i ≤ λ/L. Then the variables defined by x̃ = Shrλ/L
(w̃) satisfies the

1st order KKT conditions (2.1) and (2.2). Conversely, if x̃ and ν̃ = 1/λA
T(b − Ax̃)

satisfy the KKT conditions, then



w̃
w̃
1


, with w̃ = x̃+λ/Lν̃, is an eigenvector of Naug

corresponding to eigenvalue 1, where Naug is defined in (3.11) and D̃[k+1] = D̃[k] =

D̃ = Diag (d̃) with entries d̃i = 1 if w̃i > λ/L, d̃i = −1 if w̃i < −λ/L and d̃i = 0 if
−λ/L ≤ w̃i ≤ λ/L.
Proof. It is easy to show that a vector is a fixed point for FISTA if and only if it is a
fixed point for ISTA, so this follows from Lemma 3.1. �

To prepare for further discussion, we make three remarks.

(a). τ [k] −→ 1 from below as k −→ ∞.

(b). R[k] = R̃[k] if the flag matrix of ISTA and FISTA are the same, i.e. D̂[k] =

D̃[k] and h[k] = h̃[k] if D̂[k] = D̃[k] = D̃[k−1]. This observation relates the R
[k]
aug to

N
[k]
aug. It is the foundation upon which we establish the properties to compare ISTA

and FISTA in Section 6.
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(c). One main difference between operators of ISTA and FISTA (i.e. R
[k]
aug and

N
[k]
aug) is that R

[k]
aug is fixed when the flag matrix is fixed while N

[k]
aug changes at each

step k even if the flag matrix is fixed. In other words, for all k, R
[k]
aug = R

[k+1]
aug if

D̂[k] = D̂[k+1]. But N
[k]
aug 6= N

[k+1]
aug even if D̃[k] = D̃[k+1]. The reason is that N

[k]
aug

depends on the changing stepsize τ [k]. Nevertheless, one can still use the same similar

argument for N
[k]
aug as for R

[k]
aug by additional lemmas, as we will show in Section 5.

3.4. Spectral Properties of N
[k]
aug. We give the spectral properties of the

FISTA matrix operator that we will use in our convergence analysis. Lemma 3.5
give the eigenstructure of N [k] and its relation to that of the ISTA operator R̃[k].

Lemma 3.5. Suppose D̃[k] = D̃[k−1] and hence R̃[k] = R̃[k−1], then (omitting
index [k]) we have the following results:

(a). For any given eigenvalue γ of N , it must have a corresponding eigenvector

with the form of

(
γw̃
w̃

)
. And for that given γ, there exists an eigenvalue of R̃,

β = γ2

[(1+τ)γ−τ ] with corresponding eigenvector w̃. Conversely, let β be any eigenvalue

of R̃ with corresponding eigenvector w̃. Then for given β, there exists a pair of
eigenvalues of N , γ1 and γ2, which are the solutions of γ2 − γ(1 + τ)β + τβ = 0.

Furthermore,

(
γ1w̃
w̃

)
and

(
γ2w̃
w̃

)
are two corresponding eigenvectors of N .

(b). For 0 < τ ≤ 1, the eigenvalues of N defined in (3.11) lie in the closed disk in
the complex plane with center 1/2 and radius 1/2, denoted as D(1/2,

1/2). In particular,
if N has any eigenvalue with absolute value ρ(N) = 1, then that eigenvalue must be
exactly 1.

(c). N has an eigenvalue equal to 1 if and only if R̃ has an eigenvalue equal to 1.

(d). Assuming τ < 1, then if N has an eigenvalue equal to 1, this eigenvalue
must have a complete set of eigenvectors.

Proof. (a). Given any eigenvalue γ of N , by definition (just after (3.11))

N ·
(
w̃1

w̃2

)
=

(
P Q
I 0

)(
w̃1

w̃2

)
=

(
P w̃1 +Qw̃2

w̃1

)
= γ

(
w̃1

w̃2

)

and thus w̃1 = γw̃2 is observed from the second row. Then

N ·
(
γw̃2

w̃2

)
=

(
γP w̃2 +Qw̃2

γw̃2

)
=

(
(1 + τ)γR̃w̃2 − τR̃w̃2

γw̃2

)
= γ

(
γw̃2

w̃2

)
.

Therefore,

(3.12) R̃w̃2 =
γ2

[(1 + τ)γ − τ ]
w̃2 = βw̃2 ⇐⇒ γ2 − (1 + τ)γβ + τβ = 0.

(b). We first study the spectrum of matrix N − 1/2I, then the spectrum of N
should be a shift by 1/2. Let α = γ − 1/2 be the eigenvalue of N − 1/2I associated with

eigenvector

(
w̃1

w̃2

)
, then according to (3.12), α and β satisfy

α2 + (1− β − τβ)α + 1/2τβ − 1/2β + 1/4 = 0.
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Note that τ ∈ (0, 1] and β ∈ [0, 1] by definition of R̃. We consider two situations for
the above quadratic equation. First, suppose α1 and α2 are two conjugate complex
roots. Then α1 = ᾱ2, α1 + α2 = τβ + β − 1 and α1α2 = 1/2τβ − 1/2β + 1/4 such that

(3.13) |α|2 = |α1ᾱ1| = |α1α2| =
∣∣1/2τβ − 1/2β + 1/4

∣∣ ≤ 1

4

which gives |α| ≤ 1/2. The second situation is that both roots are real numbers and
they are

α1 =
1 + τ

2
β+

√
β
√
(1 + τ)2β − 4τ

2
− 1/2 α2 =

1 + τ

2
β−

√
β
√
(1 + τ)2β − 4τ

2
− 1/2.

To get the largest possible value of α, we only look at α1 because α1 ≥ α2 for any
fixed β. Since α1 is an increasing function of β and β ∈ [0, 1], the largest real value of
α should be 1/2 when β = 1. On the other hand, to get the smallest negative real value

of α, we only need to look at α2. One can write α2 = 1+τ
2 (β−

√
β2 − 4τ

(1+τ)2 )− 1/2 to

see that α2 ≥ −1/2. So we conclude that if α is real, then −1/2 ≤ α ≤ 1/2.
Under both situations, one can conclude that α must satisfy |α| ≤ 1/2, lying in

a disk centered at 0 with radius 1/2, i.e. D(0, 1/2). So the eigenvalues of N must lie
in the disk D(1/2,

1/2) by the shift. Consequently, the only possible eigenvalue on the
unit circle is 1.

(c). γ1, γ2 are the two roots of the quadratic polynomial, i.e. γ2−(1+τ)γβ+τβ =
(γ − γ1)(γ − γ2) = 0. For given β, they must satisfy

γ1γ2 = τβ and γ1 + γ2 = (1 + τ)β = β + γ1γ2.

If N has an eigenvalue γ1 = 1, then γ2 = (1 + τ)β − 1 = β + γ1γ2 − γ1 = β + γ2 − 1,

hence β = 1 must be true and R̃ has an eigenvalue equal to 1. Conversely, if R̃ has an
eigenvalue β = 1, the quadratic polynomial (3.12) will reduce to γ2− (1+τ)γ+τ = 0,
which gives γ1 = 1 and γ2 = τ . Then N has an eigenvalue equal to 1.

(d). Notice in (3.12) that each eigenvalue β of R̃ maps to two eigenvalues of N , γ1

and γ2, and associated eigenvector w̃2 of R̃ maps to two eigenvectors of N ,

(
γ1w̃2

w̃2

)

and

(
γ2w̃2

w̃2

)
. As shown in (c), N has an eigenvalue equal to 1 if and only if R̃ has

an eigenvalue equal to 1. Since R and R̃ have the similar eigenstructure, eigenvalue
1 of R̃ must have a complete set of eigenvectors. So the only possible situation that
eigenvalue 1 of N does not have a complete set of eigenvectors is that both γ1 and
γ2 equal to 1. However, this is impossible because we have shown in (c) that β = 1
gives γ1 = 1 and γ2 = τ which is close to 1 but not equal. As a result, if N has an
eigenvalue 1, and then its algebraic and geometric multiplicities coincide. �

4. Regimes. Since the ISTA and FISTA updating steps have been converted
into a variation of an eigenproblem in previous sections, we can study the conver-

gence in terms of the spectral properties of the operator R
[k]
aug in (3.5) and N

[k]
aug in

(3.11). Hence in this section, we show how these properties reflected in the possible
convergence “regimes” that ISTA and FISTA can encounter.

4.1. Spectral Properties. The eigenvalues of the augmented matrices R
[k]
aug

and N
[k]
aug consist of those of R[k], N [k], respectively, plus an extra eigenvalue equal to
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1. If R[k] (or N [k]) already has an eigenvalue equal to 1, then the extra eigenvalue 1
may or may not add a corresponding eigenvector. The next lemma gives limits on the

properties of the eigenalue 1 for any augmented matrix of the general form of R
[k]
aug,

N
[k]
aug.

Lemma 4.1. Let Maug =

(
M p
0 1

)
be any block upper triangular matrix with a

1 × 1 lower right block. The matrix Maug has an eigenvalue α1 = 1 and suppose its
corresponding eigenvector has a non-zero last element. We scale that eigenvector to

take the form

(
w
1

)
= Maug

(
w
1

)
. If the upper left block M either has no eigenvalue

equal to 1 or the eigenvalue 1 of M has a complete set of eigenvectors, then α1 = 1

has no non-trivial Jordan block. Furthermore, if the given eigenvector

(
w
1

)
is unique,

then M has no eigenvalue equal to 1.
We refer readers to [3] for the proof of Lemma 4.1. Now we summarize spectral

properties of our specific operators R
[k]
aug and N

[k]
aug in terms of their possible Jordan

canonical forms as given in the following lemmas. Essentially these lemmas say that
all their eigenvalues must have absolute value strictly less than 1, except for the
eigenvalue equal to 1. And the eigenvalue 1’s geometric multiplicity either equal to
or one less than its algebraic multiplicity.

Lemma 4.2. Assuming D̂[k+1] = D̂[k], then R
[k]
aug in (3.5) is fixed and has a

spectral decomposition R
[k]
aug = PRJ

[k]
R P−1

R , where J
[k]
R is a block diagonal matrix

(4.1) J
[k]
R = Diag

{(
1 1
0 1

)
, I

[k]
R , Ĵ

[k]
R

}

where any of these blocks might be missing. Here I
[k]
R is an identity matrix and Ĵ

[k]
R

is a matrix with spectral radius strictly less than 1.

Proof. For R
[k]
aug, the upper left block of (3.5) (i.e. R[k]) satisfies Lemma 3.3 and hence

contributes blocks of the form I
[k]
R , Ĵ

[k]
R . No eigenvalue with absolute value 1 can have

a nondiagonal Jordan block, so the blocks corresponding to those eigenvalues must be
diagonal. Embedding that upper left block R[k] into the entire matrix yields a matrix

R
[k]
aug, with the exact same set of eigenvalues with the same algebraic and geometric

multiplicities, except for eigenvalue 1.

If the upper left block of R
[k]
aug has no eigenvalue equal to 1, then R

[k]
aug has a

simple eigenvalue 1. In general for eigenvalue 1, the algebraic multiplicity goes up
by one and the geometric multiplicity can either stay the same or increase by 1. In

other words, R
[k]
aug either satisfies the conditions of Lemma 4.1, or the algebraic and

geometric multiplicities of eigenvalue 1 for R
[k]
aug differ by 1, meaning we have a single

2× 2 Jordan block

(
1 1
0 1

)
. �

Lemma 4.3. Assuming D̃[k+1] = D̃[k], since N
[k]
aug in (3.11) is different at each

step, for each step k, there exists a P
[k]
N such that N

[k]
aug has a spectral decomposition

N
[k]
aug = P

[k]
N J

[k]
N (P

[k]
N )−1, where J

[k]
N is the block diagonal matrix:

(4.2) J
[k]
N = Diag

{(
1 1
0 1

)
, I

[k]
N , J̃

[k]
N

}
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where any of these blocks might be missing. Here I
[k]
N is an identity matrix, J̃

[k]
N is a

matrix with spectral radius strictly less than 1.

Proof. The proof is similar to R
[k]
aug. We only note here that the upper left block of

(3.11) (i.e. N [k]) satisfies Lemma 3.5 and hence contributes blocks of the form I
[k]
N ,

J̃
[k]
N . �

4.2. Four regimes. Lemmas 4.2 & 4.3 give rise to the four possible “regimes”
associated with the ISTA and FISTA iterations, depending on the flag matrix and the

eigenvalues of R
[k]
aug, N

[k]
aug. We treat separately the case where the flag matrix remains

the same at each iteration, in which there are three possible regimes, and treat all the
transitional cases together in their own fourth regime. For simplicity of the notation,
we let D denote the flag matrix instead of D̂ and D̃ unless specified.

When the flag matrix does not change, i.e. D[k+1] = D[k], the ISTA operator

R
[k]
aug remains invariant over those passes while the FISTA operator N

[k]
aug is slightly

different at each iteration due to the changing parameter τ [k]. In both cases, the
convergence behavior of the algorithm should depend on the eigenvalue of its corre-
sponding operator, which can be categorized into three situations. In the following,
we specifically describe these three possible regimes distinguished by the eigenstruc-

ture of the operators R
[k]
aug, N

[k]
aug. One of the these three regimes must occur when

the flag matrix is unchanged from one step to the next: D[k+1] = D[k].

[A]. The spectral radius of R[k] (or N [k]) is strictly less than 1. The block

(
1 1
0 1

)

is absent from (4.1) (or (4.2)), and the block I
[k]
R (or I

[k]
N ) is 1×1. In the case where the

optimal solution exists and is unique, the result is linear convergence to the solution

when close enough to that solution, as we will show in Theorem 5.3 & 5.5. For R
[k]
aug,

as long as the flags remain the same, the recurrence (3.5) hence will converge linearly
to a unique fixed point at a rate determined by the next largest eigenvalue in absolute

value (largest eigenvalue of the block Ĵ
[k]
R ), according to the theory of the power

method. If the flags D̂[k] are consistent with the eigenvector satisfying (3.2), then the
eigenvector must satisfy the KKT conditions (2.1) and (2.2) because of Lemma 3.1.

For N
[k]
aug, though it changes slightly at each step, we will show in the case of a

unique solution that the left and right eigenvectors for eigenvalue 1 do not depend
on τ (Lemma 5.4), and the remaining eigenvalues remain smaller and bounded away
from 1. The result is that we observe linear convergence to a unique fixed point
with a slightly changing convergence rate. If the flags D̃[k] are consistent with the
eigenvector satisfying (3.8), then that eigenvector must satisfy the KKT conditions
because of Lemma 3.4.

[B]. R[k] (or N [k]) has an eigenvalue equal to 1 which results in a 2 × 2 Jordan

block

(
1 1
0 1

)
for R

[k]
aug (or N

[k]
aug). Therefore, the iteration process tends to a constant

step.

ForR
[k]
aug, the theory of power method implies that the vector iterates will converge

to the invariant subspace corresponding to the largest eigenvalue 1. The presence of(
1 1
0 1

)
means that there is a Jordan chain: two non-zero vectors q, r such that

(Raug − I)q = r, (Raug − I)r = 0. Any vector which includes a component of the
form αq + βr will be transformed into Raug(αq + βr) = αq + (α + β)r, i.e. each
pass would add a constant vector αr, plus fading lower order terms from the other
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lesser eigenvalues. As long as the flags do not change, this will result in constant

steps: the difference between consecutive iterates,

(
ŵ[k+1]

1

)
−
(
ŵ[k]

1

)
, will converge

to a constant vector, asymptotically as the effects of the smaller eigenvalues fade.
That constant vector is an eigenvector for eigenvalue 1. The ISTA iteration will not
converge until a flag change in ŵ[k] forces a change in the flags D̂[k]. If we satisfy the
conditions for global convergence of ISTA, then such a flag change is guaranteed to
occur.

The same analysis applies to N
[k]
aug. The difference between two consecutive it-

erates,

(
w̃[k+1]

1

)
−

(
w̃[k]

1

)
, will asyptotically converge to a constant vector. The

FISTA iteration will not converge until a flag change in w̃[k] forces a change in the
flags D̃[k]. Such a flag change is guaranteed to occur due to the global convergence
of FISTA under the assumption of unique solution. In Section 6.1.1, we will show
that FISTA can jump out of such regime very fast, which is the main reason why it
is faster than ISTA. See Section 7 for more discussions on its numerical behavior.

[C]. R[k] (or N [k]) has an eigenvalue equal to 1, but the block

(
1 1
0 1

)
is absent.

For R
[k]
aug (or N

[k]
aug), the convergence rate of this regime will still depend on ρ(Ĵ

[k]
R ) and

ρ(J̃
[k]
N ). If we assume the solution to be unique, the eigenvalue 1 of R

[k]
aug (or N

[k]
aug)

must be simple by Lemma 4.1. So the iteration will eventually jump out of this type
of regime.

When the flag matrix does change, it means the set of active constraints at the
current pass in the process has changed, and the current pass is a transition to a
different operator with a different eigenstructure.

[D]. The operator R[k+1] (or N [k+1]) will be different from R[k] (or N [k]) due to
different flag matrix.

5. Unique Solution: Linear Convergence. In the case that (1.1) has a
unique solution with strict complementarity (§2.2), we can guarantee that eventu-
ally the flag matrix will not change. Once the flag matrix stays fixed, the ISTA (or
FISTA) iteration behaves just like the power method (or similar to power method) for
the matrix eigenvalue problem. In this case, the spectral theory developed here gives
a guarantee of linear convergence with the rate equal to the second largest eigenvalue
of the matrix operator. In this section, we denote the fixed point of the respective
matrix recursions (3.5) and (3.11) as

(5.1) ŵ∗
aug

=

(
ŵ∗

1

)
and w̃∗

aug
=



w̃∗

w̃∗

1


 ,

where in the final regime, ŵ∗ = w̃∗ = w∗ = x∗ + λ/Lν
∗, with x∗,ν∗ the unique

solution satisfying (2.1) (2.2).

5.1. Global Convergence Theory. We first invoke the global convergence
property of ISTA and FISTA.

Theorem 5.1. If problem (1.1) is solvable, let F ∗ = minx F (x), where F (x) =
1/2‖Ax − b‖22 + λ‖x‖1. Let x̂[0] be any starting point in R

n and x̂[k] be the sequence

generated by ISTA. Then for any k ≥ 1, F (x̂[k]) − F ∗ decreases to zero at a rate
bounded by O(1/k). On the other hand, if we let y[1] = x̃[0] be any starting point in
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R
n, t[0] = t[1] = 1 and {x̃[k]}, {y[k]}, {t[k]} be the sequence generated by FISTA, then

for any k ≥ 1, F (x̃[k])− F ∗ decreases to zero at a rate bounded by O(1/k2).
This is a restatement of the convergence theorem in [1]. It says little on the

local behavior of the algorithm. Under the assumption of unique solution with strict
complementarity, we can prove the specific result that ISTA and FISTA iterations
must eventually reach and remain in “linear convergence” regime [A] so that the
optimal flag matrix is identified.

Lemma 5.2. Suppose the LASSO problem (1.1) has a unique solution and this so-
lution has strict complementarity (§2.2). Then eventually the ISTA (FISTA) iteration
reaches and remains in the final regime where optimal flag matrix is identified.
Proof. For ISTA, by Lemma 3.1, the strict complementarity is equivalent to ŵ∗

i 6=
±λ/L. Note that ŵ

[k]
i (where k is the pass number) could only be in one of three cases:

ŵ
[k]
i > λ/L, ŵ

[k]
i < −λ/L or −λ/L ≤ ŵ

[k]
i ≤ λ/L. We can let C1 = min{|ŵ∗

i − λ/L| −
ǫ1, |ŵ∗

i + λ/L| − ǫ1} > 0 for a positive constant ǫ1 sufficiently small to make C1 > 0.
We define the following ball around eigenvector ŵ∗

aug
:

(5.2) B1 = {ŵaug : ‖ŵaug − ŵ∗
aug

‖∞ ≤ C1}.

By Theorem 5.1 and uniqueness of the solution, the iterates ŵ
[k]
aug converge to

the ŵ∗
aug

. Therefore, there exists a pass K1 such that ŵ
[k]
aug lies in B1 (i.e. ‖ŵ[k]

aug −
ŵ∗

aug
‖∞ ≤ C1) for all k > K1. This means that ŵ

[k]
i will remain in one of three

cases: ŵ
[k]
i > λ/L, ŵ

[k]
i < −λ/L or −λ/L ≤ ŵ

[k]
i ≤ λ/L and will never change to

another case for all k > K1. This, combined with the definition of flag matrix
D̂[k] = Diag (Sign (Shrλ/L

(ŵ[k]))), implies that the flag matrix remain unchanged for

all k > K.
Similarly, for FISTA, by Lemma 3.4, the strict complementarity is equivalent to

w̃∗
i 6= ±λ/L. We can let C2 = min{|w̃∗

i − λ/L| − ǫ2, |w̃∗
i + λ/L| − ǫ2} > 0 for a positive

constant ǫ2 sufficiently small to make C2 > 0. We then define the following ball
around the optimal eigenvector w̃∗

aug
:

(5.3) B2 = {ŵaug : ‖w̃aug − w̃∗
aug

‖∞ ≤ C2}.

By Theorem 5.1 and uniqueness of the solution, the iterates w̃
[k]
aug converge to

w̃∗
aug

. Therefore, there exists a pass K2 such that w̃
[k]
aug lies in B2 for all k > K2.

Combined with the definition of flag matrix D̃[k] = Diag (Sign (Shrλ/L
(w̃[k]))), this

implies that the flag matrix remain unchanged for all k > K2. �

5.2. Local Linear Convergence of ISTA. Once the optimal flag matrix is

identified at step K1, the iteration matrices R[k] and R
[k]
aug remain fixed for all k > K1.

We denote them as R∗ and R∗
aug

in this section.
Theorem 5.3. Suppose the LASSO problem (1.1) has a unique solution and

this solution satisfies the strict complementarity. Then eventually the ISTA iteration
reaches a stage where it converges linearly to that unique solution.
Proof. As shown in the proof of Lemma 5.2, there exists a pass number K1 such that

ŵ
[k]
aug lies in B1 and D[k] = D[k+1], for all k > K1. Hence for all k > K1, R

[k] = R∗

and h[k] = h∗ remain invariant. By Lemma 3.1, the unique solution, if it exists, must
correspond to a unique eigenvector of eigenvalue 1 for the matrix R∗

aug
. Additionally,

by Lemma 4.1, the matrix R∗ has no eigenvalue equal to 1, and by Lemma 3.3, all the
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eigenvalues must be strictly less than 1 in the absolute value. Hence, starting at the
K1-th pass, the ISTA iteration reduces to the power method on the constant matrix
R∗

aug
associated with the optimal flag matrix.

Let the error vector at the k-th pass of the power method be

ê[k]
aug

= ŵ[k]
aug

− ŵ∗
aug

=

(
ŵ[k]

1

)
−
(
ŵ∗

1

)
=

(
ê[k]

0

)
.

Then the power iteration on ŵ
[k]
aug yields

ŵ
[k+1]
aug = ŵ∗

aug
+ ê

[k+1]
aug =

(
R∗ŵ[k] + h∗

1

)
=

(
R∗(ŵ∗ + ê[k]) + h∗

1

)

=

(
ŵ∗ +R∗ê[k]

1

)
= ŵ∗

aug
+R∗

aug
ê
[k]
aug

with ê[k+1] = R∗ · ê[k]. According to Theorem 3.2, for any ǫ > 0, there exists a matrix

norm ‖ · ‖
Ĝ

such that ρ(R∗) < ‖R∗‖
Ĝ
≤ ρ(R∗) + ǫ < 1. Let Ĝaug =

(
Ĝ 0
0 1

)
, then

‖ê[k+1]
aug

‖
Ĝaug

= ‖ê[k+1]‖
Ĝ
≤ ‖R∗‖

Ĝ
‖ê[k+1]‖

Ĝ
= ‖R∗‖

Ĝ
‖ê[k]

aug
‖
Ĝaug

Hence starting from K1-th pass,

‖ê[k]
aug

‖
Ĝaug

≤ O(‖R∗‖k−K1

Ĝ
) < O((ρ(R∗) + ǫ)k−K1) −→ 0

as k −→ ∞. Therefore, ‖ŵ[k]
aug − ŵ∗

aug
‖
Ĝaug

converges at a linear rate bounded by

ρ(R∗) + ǫ < 1 for any ǫ > 0. �

Theorem 5.3 indicates that when the iterate of ISTA is close enough to the optimal
solution, then it converges linearly. We remark here that [4, 13] also present the same
asymptotic local linear convergence result for ISTA. [4] requires the condition called
strict sparsity pattern, which is identical to our strict complementarity condition while
[13] requires partial smoothness property in a more general setting.

Different from [4, 13], our analysis only focuses on finite Euclidean space so that
we can take advantage of well established matrix properties. Apart from the local
linear convergence results, our analysis can characterizes the convergence behavior in
terms of regimes. We show how ISTA stagnates before convergence with examples
in Section 7. Moreover, the spectral analysis we established can be applied to the
FISTA’s local linear convergence, which was not studied in [4, 13]. In Section 6, we
shall make comparison between ISTA and FISTA from the perspective of our spectral
analysis.

5.3. Local Linear Convergence of FISTA. Once the optimal flag matrix is

identified, for all k > K2, R̃
[k], h̃[k] and h̃

[k]
aug remain fixed. We denote them as R̃∗, h̃∗

and h̃∗
aug

in this section. Though N
[k]
aug still changes at each step k, one can decompose

it as follows.

Lemma 5.4. Assume that the LASSO problem (1.1) has a unique solution and
this solution satisfies the strict complementarity. For all k > K2, with K2 defined in

Lemma 5.2, we denote matrix N
[∞]
aug as N

[k]
aug in which τ = 1. By (3.11) one can write
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N
[k]
aug = N

[∞]
aug + (1− τ [k])∆Naug, where

(5.4)

N
[∞]
aug =

(
N [∞] h̃∗

aug

0 1

)
=



2R̃∗ −R̃∗ h̃∗

I 0 0
0 0 1




and ∆Naug =

(
∆N 0
0 1

)
=



−R̃∗ R̃∗ 0
0 0 0
0 0 0


 .

Consequently, N [k] = N [∞] + (1 − τ [k])∆N . Also, N
[∞]
aug must also have a simple

eigenvalue equal to 1 and the spectral radius of N [∞] is strictly less than 1. In addition,

the left and right eigenvectors of N
[k]
aug corresponding to eigenvalue 1 are the same as

that of N
[∞]
aug .

Proof. By Lemma 3.5(b), eigenvalue of N
[∞]
aug must lie in the disk D(1/2,

1/2). Having

shown that N
[k]
aug has only a simple eigenvalue equal to 1, by Lemma 3.5(c), R̃∗

should have no eigenvalue equal to 1. This indicates matrix

(
2R̃∗ −R̃∗

I 0

)
has no

eigenvalue equal to 1. And hence N
[∞]
aug must also have a simple eigenvalue equal to 1.

Consequently, the absolute value of any eigenvalue of N [∞] is less than 1. A simple

calculation shows that the left and right eigenvectors of N
[k]
aug are exactly (0, . . . , 0, 1)

and w̃∗
aug

((5.1)), the same as that of N
[∞]
aug . �

Now we present one of the main results of our paper, the local linear convergence
of FISTA, as below.

Theorem 5.5. Suppose the LASSO problem (1.1) has a unique solution and this
solution has strict complementarity. Then eventually the FISTA iteration reaches a
stage where it converges linearly to that unique solution.
Proof. As shown in the proof of Lemma 5.2, there exists a pass number K2 such

that w̃
[k]
aug lies in B2 for all k > K2. Since the optimal flag matrix is identified, by

Lemma 3.4, the unique solution, if it exists, must correspond to a unique eigenvector

of eigenvalue 1 for the matrix N
[k]
aug. Starting from K2-th pass,

(5.5)

w̃[k+1]
aug

= N[k]
aug

N[k−1]
aug

· · ·N[K2]
aug

w̃[K2]
aug

=

(
N [k] h̃∗

aug

0 1

)(
N [k−1] h̃∗

aug

0 1

)
· · ·

(
N [K2] h̃∗

aug

0 1

)
w̃[K2]

aug

=

(
N [k]N [k−1] · · ·N [K2] ∗

0 1

)
w̃[K2]

aug
,

where ∗ denotes entries that do not need to be specified in detail. For each N [k], we

can write N [k] = N [∞] + (1− τ [k])∆N . Due to the fixed flag matrix after K2-th pass,
N [∞] and ∆N remain fixed. By Theorem 3.2, ∀ǫ > 0 with ǫ < 1 − ρ(N [∞]), ∃ ‖ · ‖

G̃

such that ‖N [∞]‖
G̃

< ρ(N [∞]) + 1/2ǫ < 1 − 1/2ǫ. Since τ [k] → 1, there must exist a

pass K3(> K2) such that (1− τ [k]) · ‖∆N‖
G̃
< 1/2ǫ for all k > K3. Therefore, starting

at K3-th pass, one has ‖N [k]‖
G̃
≤ ‖N∞‖

G̃
+ (1− τ [k])‖∆N‖

G̃
< ρ(N [∞]) + ǫ < 1. As

in the proof of Thm 5.3, let the error vector at the k-th pass for FISTA be

ẽ[k]
aug

= w̃[k]
aug

− w̃∗
aug

=




ẽ[k]

ẽ[k−1]

0


 where ẽ[k] =




w̃[k]

w̃[k−1]

1


−



w̃∗

w̃∗

1


 .
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Then

(5.6) w̃[k+1]
aug

= w̃∗
aug

+ ẽ[k+1]
aug

= N[k]
aug

(w̃∗
aug

+ ẽ[k]
aug

) = w̃∗
aug

+

(
N [k] 0
0 1

)
ẽ[k]
aug

with ẽ[k+1] = N [k]ẽ[k]. Let G̃aug =

(
G̃ 0
0 1

)
, then

‖ẽ[k+1]
aug

‖
G̃aug

= ‖ẽ[k+1]‖
G̃
≤ ‖N [k]‖

G̃
‖ẽ[k]‖

G̃
= ‖N [k]‖

G̃
‖ẽ[k]

aug
‖
G̃aug

Hence starting from K3-th pass,
(5.7)
‖ẽ[k]

aug
‖
G̃aug

≤ O(‖N [k−1]‖
G̃
‖N [k−2]‖

G̃
· · · ‖N [K3]‖

G̃
) ≤ O((ρ(N [∞]) + ǫ)k−K3) −→ 0

as k −→ ∞. Therefore, ‖w̃[k]
aug − w̃∗

aug
‖
G̃aug

converges at a linear rate bounded by

ρ(N [∞]) + ǫ < 1 for any ǫ > 0. From the proof, one can also observe that the linear
rate at step k depends on N [k]. �

5.4. Other Choices of L. The previous analysis is based on L ≥ ‖ATA‖2.
However, this assumption is not necessary to get our main results for ISTA. [4] proves
that the ISTA iterates can converge to the optimal point as long as L > 1/2‖ATA‖2.
It can be verified that our analysis allows the same L choice for ISTA.

Theorem 5.6. Lemmas 3.1, 3.3, 4.2 and Theorem 5.3 hold for L > 1/2‖ATA‖2.
However, from our analysis, we can show that there is no guarantee that FISTA

would converge if L < ‖ATA‖2. In Lemma 3.5(b), (3.13) cannot hold if L < ‖ATA‖2,
indicating that some of the eigenvalues may be outside the disk D(1/2,

1/2). Hence
convergence is not guaranteed.

6. Acceleration.

6.1. Comparison between ISTA and FISTA. It is known that FISTA ex-
hibits a global convergence rate ofO(1/k2), which accelerates ISTA’s O(1/k) convergence
rate. Compared to this worst case convergence result, we analyze how FISTA and
ISTA behave through all iterations on the perspective of spectral analysis we establish
in this paper. First, we characterize one important property based on three possible
regimes.

Lemma 6.1. Suppose R and N have the same the flag matrix, ISTA and FISTA
have the following relations:

(a). If FISTA is in regime [A] or [C], then so is ISTA, and vice versa.

(b). If FISTA is in regime [B], then so is ISTA, and vice versa.

Proof. We note that if FISTA and ISTA start at the same iterate, we have D̂ = D̃,
hence R̃ defined in (3.9) is exactly operator R defined in (3.5).

(a). If FISTA is in regime [A] or [C], then N either has no eigenvalue equal to
1 or has a complete set of eigenvectors associated with eigenvalue 1. In other words,
the augmented matrix Naug must have a complete set of eigenvectors for eigenvalue
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1. Let



w1

w2

1


 be the eigenvector for eigenvalue 1, then

(6.1)

(N − I)



w1

w2

1


 =



(1 + τ)R −τR h

I −I 0
0 0 0






w1

w2

1


 = 0

⇐⇒ w1 = w2 (by second row)
⇐⇒ Rw1 −w1 + h = (R− I)w1 + h = 0

⇐⇒
(
R h
0 1

)(
w1

1

)
=

(
w1

1

)
.

Therefore,

(
w1

1

)
becomes the eigenvector for eigenvalue 1 of Raug. R must either

have no eigenvalue equal to 1 (in regime [A]) or have a complete set of eigenvectors
associated with eigenvalue 1 (in regime [C]). The opposite direction follows by similar
argument.

(b). Since one of the regimes [A], [B], [C] must occur, this statement can be
considered as the contraposition of (a). �

This lemma suggests that both ISTA and FISTA are in the same regime as long
as both operators have the same flag matrix. It motivates one to compare in each
regime between FISTA and ISTA when starting from the same starting point (which
results in the same flag matrix). By assuming the same starting point and a fixed

flag matrix, we have D̂[k] = D̃[k] = D̂[k+1] = D̃[k+1] and thus R̃ = R, h = h̃. We
will use these notations interchangeably and omit [k] for anything but iterates in the
following analysis. It turns out that FISTA is faster in regime [B], but not always
faster in regimes [A] and [C] depending on the parameter τ [k].

6.1.1. In Regime [B]. In regime [B], as mentioned in Section 4.2, there exist
Jordan chains such that the difference between consecutive iterates will converge to a

constant step. Let

(
ŵ[k+1]

1

)
,

(
ŵ[k]

1

)
and



w̃[k+1]

w̃[k]

1


,




w̃[k]

w̃[k−1]

1


 be two consecutive

iterates for ISTA and FISTA, respectively. In the following lemmas, we will show
that the constant step for FISTA is larger than ISTA when starting at the same
point, which yields a speedup.

Lemma 6.2. The constant step vector for ISTA is

(
v
0

)
, where v = Rv is an

eigenvector of R.

Proof. For ISTA, there must be a Jordan block J1
R for the augmented matrix Raug.

Then there exists a Jordan chain such that

(6.2)

(
R h
0 1

)(
ŵ
1

)
=

(
ŵ + v

1

)
and

(
R h
0 1

)(
v
0

)
=

(
v
0

)
.

In other words, each pass of ISTA will add a constant vector

(
v
0

)
in regime [B].

�
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Lemma 6.3. The constant step vector for FISTA has the form



cv
cv
0


, where v

is the same v in Lemma 6.2, c is a scalar to be determined.

Proof. Assume the constant vector is



v1

v2

0


. Then the basic iteration of FISTA is



w̃[k+1]

w̃[k]

1


 = N




w̃[k]

w̃[k−1]

1


 =



(1 + τ)R −τR h

I 0 0
0 0 1







w̃[k]

w̃[k−1]

1


 =




w̃[k]

w̃[k−1]

1


+



v1

v2

0


 .

Due to the presence of Jordan block

(
1 1
0 1

)
, there exists a Jordan chain

(6.3) (a)(N − I)




w̃[k]

w̃[k−1]

1


 =



v1

v2

0


 and (b)N



v1

v2

0


 =



v1

v2

0


 .

In (6.3a), the second row implies v1 = v2. Then, the first row implies Rv1 = v1.
Since both v1 and v are eigenvectors for eigenvalue 1 of R, we can write v1 = cv where

c is a scalar to be determined. Hence the constant step should be



cv
cv
0


. �

Lemma 6.4. Suppose ISTA and FISTA start from the same point in the same
regime [B], i.e. ŵ[k] = w̃[k], then c in Lemma 6.3 equals 1

1−τ
, where τ is a scalar

close to 1. The constant step vector for FISTA is 1
1−τ



v
v
0


, which is larger than



v
v
0


, the ISTA constant step.

Proof. By Lemma 6.3, the equation (6.3) expands to

(6.4)

(N − I)




w̃[k]

w̃[k−1]

1


 =





(1 + τ)R −τR h

I 0 0
0 0 1


− I






w̃[k]

w̃[k−1]

1




=



((1 + τ)R − I)w̃[k] − τRw̃[k−1] + h

w̃[k] − w̃[k−1]

0




which is supposed to be equal to



cv
cv
0


. From the second row, w̃[k] − w̃[k−1] = cv

or w̃[k−1] = w̃[k] − cv. Hence, the first row should be cv = ((1 + τ)R − I)w̃[k] −
τRw̃[k−1] +h = ((1+ τ)R− I)w̃[k] − τR(w̃[k] − cv)+h = (R− I)w̃[k] +h+ cτv. The
last equality follows from Rv = v.

If FISTA and ISTA start from the same point ŵ[k] = w̃[k], then cv = (R −
I)w̃[k] + h+ cτv = (R− I)ŵ[k] + h+ cτv = v + cτv, leading to c(1− τ) = 1. Hence
c = 1

1−τ
. �
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Lemma 6.4 indicates that if FISTA and ISTA start from the same starting point
in one specific regime [B], then it will cost FISTA fewer iterations to leave this regime
with larger constant step. Hence FISTA represents an acceleration compared to ISTA
in regime [B].

6.1.2. In Regimes [A] and [C]. On the other hand, in regimes [A] and [C],
the convergence rate of the two algorithms are related to the spectral radius of R and
N . Particularly, the rate of FISTA depends on τ and the iteration number, since τ
is a determined sequence based on iteration numbers. Let β, γ denote an eigenvalue
of R, N , respectively, and βmax, γmax denote the corresponding eigenvalues of largest
absolute value. As stated in Section 4.2, we must have 1 > βmax, γmax ≥ 0 in regimes
[A] or [C]. In addition, by Lemma 3.5, β and γ satisfy the relation γ2−γ(1+τ)β+τβ =
0. Let γ1 and γ2 be two roots of γ. We conclude our result in the following proposition.

Proposition 6.5. Suppose ISTA and FISTA start from the same point in a
certain regime [A] or [C] and D[k] = D[k+1], FISTA is faster than ISTA if 0 < τ <
βmax < 1 but slower if 0 < βmax < τ < 1. Noting that βmax is a fixed value for
one specific regime, if it is well separated from 1, with the τ growing to 1 such that
βmax < τ , ISTA will be faster than FISTA toward the end.

Proof. The roots γ of (3.12) are real if 4τ
(1+τ)2 < β and are complex if β < 4τ

(1+τ)2 .

Noting that τ ≤ 4τ
(1+τ)2 ≤ 1 with equality only if τ = 1, we consider two cases.

(i). If 4τ
(1+τ)2 < β, then τ < β. Without loss of generality, γ1 = max{γ1, γ2} =

(1+τ)β
2 +

√
(1+τ)2β2−4τβ

4 < (1+τ)β
2 +

√
(1+τ)2β2−4β2

4 < β. The first inequality is due

to β > τ and the second one is due to τ < 1.

(ii). If β < 4τ
(1+τ)2 , then γ1 and γ2 are a conjugate complex pair such that

|γ1|2 = γ1γ2 = τβ. If τ < β < 4τ
(1+τ)2 , then |γ1| =

√
τβ < β. If β < τ < 4τ

(1+τ)2 , then

|γ1| =
√
τβ > β.

If FISTA were to continue long enough, eventually τ [k] will become larger than
βmax < 1 at some step K4, at which point the asymptotic convergence rate for FISTA
will be slower than that for ISTA. �

Proposition 6.5 concludes that if the starting points are the same in regimes [A]
or [C], then ISTA will first be slower but then be faster as the iteration progresses.

6.2. A Heuristic Algorithm. The above analysis would indicate that one
should try to take advantage of the generally faster O(1/k2) rate of convergence of
FISTA, but switch to ISTA when it becomes faster during the final regime. We test
this idea using a Hybrid F/ISTA method in which we run FISTA until reaching the
final linear regime and then switch to ISTA. The result is illustrated in the examples.
However, there is no way in practice to know when one reaches the final regime with-
out knowing the optimal solution. So we also propose a simple heuristic algorithm
in which both ISTA and FISTA iterates are computed at every iteration, choosing
whichever iterate shows greater progress measured in terms of the decrease in the ob-
jective function (1.1). This heuristic algorithm is given as Alg. 5, with initialization
y[1] = x̃[0] ∈ R

n and t[0] = t[1] = 1.
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Fig. 1. Left: Error of iterates of FISTA, Hybrid F/ISTA and Heuristic Algorithm. Right:
Difference of iterates of FISTA, Hybrid F/ISTA and Heuristic algorithms. The star * on the
Heuristic Alg. curve marks the iterations where the ISTA iterate was selected.

Algorithm 5: One pass of the heuristic algorithm

start with t[k], t[k−1], x[k−1] and x[k−2].

1. Set y[k] = x[k−1] + t[k−1]−1
t[k] (x[k−1] − x[k−2]).

2. Set x̃[k] = Shrλ/L
((I − 1/LA

TA)y[k] + 1/LA
Tb).

and x̂[k] = Shrλ/L
((I − 1/LA

TA)x[k−1] + 1/LA
Tb).

3. If F (x̂[k]) > F (x̃[k]), then x[k] = x̃[k]. Else, x[k] = x̂[k]

4. Set t[k+1] = 1+
√

1+4t[k]2

2 .

Result is t[k+1], t[k], x̃[k], x̃[k−1] for next pass.

Though this updating rule is simple and lacks the theoretical O(1/k2) global con-
vergence rate, the experimental results show that it can converge very fast, sometimes
faster than we expect. The computational cost of one iteration of the heuristic algo-
rithm is the same as for FISTA plus one extra shrinkage operation and two evaluations
of the objective function. However, in our following examples, we observe that the
proposed algorithm can sometimes be so much faster than ISTA or FISTA alone that
the overall cost can be much less. An alternative acceleration heuristic (with similar
behavior) was discussed in [15].

7. Examples. Example 1. We illustrate the eigen-analysis of the behavior of
ISTA and FISTA on a uniform randomly generated LASSO problem. Specifically, in
problem (1.1), A and b are generated independently by a uniform distribution over
[−1, 1], A being 20 × 40, λ = 0.1. Since A is drawn by a continuous distribution, as
noted in Lemma 4 of [23], problem (1.1) must have a unique solution. Figures 1 &
2 show the ISTA and FISTA convergence behavior. The figures show the error of x,
‖x[k] − x∗‖ (A: top curve) and the difference between two consecutive iterates of x:
‖x[k] − x[k−1]‖ (B: bottom curve).

Figure 2 (left) shows the behavior of ISTA. ISTA takes 5324 iterations to converge
and the flag matrix D changes 25 times in total. During the first 174 iterations, the
iteration passes through a few transitional phases and the flag matrix D changes 20
times. After that, from iteration 175 to 483, it stays in regime [B] with an invariant
D. Then from iteration 484 to 530, from 531 to 756, from 767 to 4722 and from 4723
to 4972, it passes through four different regimes [B]. Within each regime [B], the flag
matrix D is invariant. According to our analysis in Section 4.2, there exists a Jordan

21



0 1000 2000 3000 4000 5000 6000
10

−15

10
−10

10
−5

10
0

ISTA on Example 1

 

 

A

B

A=||error of x ||2

B=||diff of x ||2

0 500 1000 1500 2000 2500 3000 3500 4000
10

−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

ISTA on Example 2, A: 128 x 1024, σ = 1e−3, λ = 1

 

 

A

B

A=||error of x ||2

B=||diff of x ||2

Fig. 2. ISTA on Example 1 (left) and Example 2 (right): Curves A: ‖x[k] − x
∗‖2. B: ‖x[k] −

x
[k−1]‖2.

chain in each of these regimes [B], indicating that we are indeed in a “constant step”
regime. In other words, the difference between two consecutive iterates ‖x[k]−x[k−1]‖
quickly converges to Raug’s eigenvector for eigenvalue 1 in each of these regimes [B].
Taking iterations from 767 to 4972 for example, one could notice curve B in Figure
2 (left) that ‖x[k] − x[k−1]‖ is a constant from iteration 767 to 4722. Finally, at
iteration 4973, it reaches and stays in the final regime [A], converging linearly in 351
steps. Indeed, the iterates are close enough to the final optimum so that the flags
never change again. The linear convergence rate depends on the spectral radius of R,
i.e. upper left part of Raug, which is ρ(R) = 0.9817, separated from the Raug’s largest
eigenvalue 1, consistent with Theorem 5.3.

Figure 1 (FISTA) shows the behavior of FISTA. FISTA takes 622 iterations to
converge and the flag matrix D changes 42 times in total. After flag matrix D changes
42 times in initial 258 iterations, it reaches the final regime [A] at iteration 259 and
converges linearly in 363 steps. Since Naug varies at each iteration due to varying τ ,
the convergence rate changes very slightly step by step. The spectral radius of N ,
i.e. upper left part of the operator Naug in the last step is ρ(N) = 0.9914. Actually,
the largest eigenvalues of N are a complex conjugate pair, 0.9843 ± 0.1185i. They
are complex numbers because of the increasing τ , as stated in Proposition 6.5 in
Section 6. Hence based on the power method, in the final regime, the convergence
to eigenvector for eigenvalue 1 of Naug will oscillate between the conjugate complex
pair. This explains why curves in Figure 1 (FISTA) oscillate in the latter part of the
FISTA convergence.

We made three more remarks with our analysis in Section 6 on this example.

1. It costs FISTA many fewer steps (259 iterations) than ISTA (4973 iterations)
to get to the final regime. The main reason is that FISTA has much larger constant
steps in regime [B] so that it can jump out of that regime more quickly. Though
this will lead to more changes of regimes (flag matrix D changes 42 times, 17 more
times than ISTA), the overall iteration numbers have been cut down, consistent with
Lemma 6.4. One can also notice this in Figure 1 (FISTA) that difference between
iterates do not remain constant for many iterations, with the process transitioning
into the final regime.

2. Figure 1 (Hybrid F/ISTA) shows the behavior of hybrid F/ISTA idea illus-
trated in Section 6.2. Particularly for this example, it runs FISTA until it reaches final
regime and then switches to ISTA at iteration 260. At step 260, τ = 0.9886, larger
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Fig. 3. ISTA (left) and FISTA (right) on Example 1: Eigenvalues of ISTA operator Raug and
FISTA operator Naug on the complex plane during the last regime of the iteration process. The unit
circle and D(1/2, 1/2) are shown for reference.

than ISTA rate 0.9817, predicting that ISTA should converge faster than FISTA.
Though Hybrid F/ISTA converges in 661 iterations, more than 622 of FISTA itera-
tions, it doesn’t contradict with our analysis. In Figure 1, from the gradient of FISTA
and Hybrid F/ISTA curve, one could observe that Hybrid F/ISTA converges faster
than the upper bound of FISTA.

3. Figure 1 (Heuristic Algm) shows the behavior of heuristic algorithm established
in Section 6.2. It converges in only 212 iterations with the same accuracy. Though it
costs extra shrinkage operations and objective value evaluations, the overall cost can
still be much less.

Figure 3 shows the eigenvalues of the operators Raug and Naug during the final
regime. One notices that the eigenvalues for the Raug from (3.5) lie strictly on the
interval (0, 1) and eigenvalues for Naug lie close to the boundary but strictly inside
the circle D(1/2,

1/2) (except for 0 and 1), consistent with Lemmas 3.3 & 3.5.
Example 2 We consider an example of compressive sensing. The purpose of

this example is to show and compare the convergence behavior of different algorithms
mentioned in previous sections to support our analysis. Suppose there exists a true
sparse signal represented by a n-th dimension vector x with k non-zero elements. We
observe the image of xs under the linear transformation Axs, where A is the so-called
measurement matrix. Our observation thus should be

(7.1) b = Axs + ǫ

where ǫ is the observation noise. The goal is to recover the sparse vector xs from
the measurement matrix A and observation b. For this example, we let A ∈ R

m×n

be Gaussian matrix whose elements are i.i.d. distributed as N (0, 1) with m = 128
and n = 1024, ǫ be a vector whose elements are i.i.d. distributed as N (0, σ2) with
σ = 10−3. The original true signal for the problem is generated by choosing the
locations of x’s k(= 10) nonzeros uniformly at random, then setting those locations
to values drawn from N (0, 22). We solve this compressive sensing problem by model
(1.1) with λ = 1 and illustrate the convergence behavior of four methods: ISTA,
FISTA, Hybrid F/ISTA and the heuristic algorithm. Figure 2 (right) shows ISTA’s
convergence behavior. Figures 4 respectively show the error and difference of the
iterates of other three methods.
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Fig. 4. Left: Error of iterates of FISTA, Hybrid F/ISTA and Heuristic Algorithm. Right:
Difference of iterates of FISTA, Hybrid F/ISTA and Heuristic algorithms. The star * on the
Heuristic Alg. curve marks the iterations where the ISTA iterate was selected.

ISTA: It costs 3763 iterations to reach the final regime, finally converging in
altogether 3882 iterations. The linear convergence rate is the second largest eigenvalue
of Raug, which equals to 0.9584, well separated from 1.

FISTA: It costs 333 iterations to reach the final regime and converges in totally
515 iterations. The linear convergence rate at pass k, as shown in Theorem 5.5,

depends on the second largest eigenvalue of N
[k]
aug. The linear rate is 0.9746 with

τ = 0.9911 at step 333 and the rate is 0.9761 with τ = 0.9942 at step 515.
The iteration number for FISTA obviously is shorter than ISTA. It can be seen

that in Figure 2 (right, curve B) that the difference of ISTA iterates remain at a
constant number for many iterations. This is because they are in the constant regimes
such that the difference between consecutive iterates are converging to a constant
vector. From Figure 4 (Right), one can observe that the difference of FISTA iterates
doesn’t stagnate for as many iterations as ISTA because it has a larger constant step
size, as predicted in Section 6.1.

Hybrid F/ISTA: By the time FISTA reaches the final regime, τ = 0.9911
which is already greater than ISTA rate 0.9584, predicting that switching to ISTA at
this point would be advantageous by Proposition 6.5. Particularly, one runs FISTA
iterates until the arrival of the final regime at step 334. Then one switches to ISTA
until convergence so that a faster linear rate is obtained. The algorithm of this idea
converges only in 437 iterations with the same accuracy compared to 515 iterations
of FISTA. One can observe the acceleration in Figure 4 (Left).

Heuristic Algorithm: Finally, we test our heuristic algorithm developed in
Section 6.2 on this example. Basically, at each iteration, the algorithm compares the
objective value by running ISTA and FISTA, and update the iterate with the lower
value. From our analysis in Section 6, the heuristic algorithm should mostly run
FISTA before final linear regime and switch to ISTA very often toward the end. We
indeed observe this phenomenon in Figure 4. The heuristic algorithm converges only
in 218 iterations. Though it loses the theoretical global O(1/k2) rate, it has a better
practical performance. This, combined with the Hybrid F/ISTA idea, is consistent
with our analysis of switching iterations to ISTA towards the end.

8. Conclusion. In this paper, we show the local linear convergence of ISTA and
FISTA, applied to the model LASSO problem. Extending the same techniques as in
[3], both algorithms can be modeled as a matrix recurrence and thus the associated
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spectra can be used to analyze their convergence behaviors. It is shown that the
method normally passes through several regimes of four types and eventually settles
on a “linear regime” in which the iterates converge linearly with the rate depending
on the absolute value of the second largest eigenvalue of the matrix recurrence.

In addition, we provide a way to analyze every type of the regime. Such analysis
in terms of regimes allows one to study the aspect of acceleration of FISTA. It is well
known that FISTA is faster than ISTA according the worst case complexity bound.
Our analysis gives another way to show how both methods behave during the whole
iterations. It turns out that FISTA is not always faster than ISTA in regime [A] and
[C], depending on the continually growing stepsize. But in general FISTA is faster
because of its acceleration in regime [B]. A heuristic algorithm is developed based
on this observation and exhibits very good numerical performance. Inspired by the
theory developed in this paper, the behavior of the heuristic algorithm needs a more
complete analysis beyond the scope of the present paper.
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