
The Lanczos Algorithm and Hankel Matrix Factorization

Daniel L. Boley

Department of Computer Science
University of Minnesota
Minneapolis, Minnesota

Tong J. Lee and Franklin T. Luk

School of Electrical Engineering
Cornell University
Ithaca, New York

Abstract

We explore the connections between the Lanczos algorithm for matrix tridiagonalization and two fast
algorithms for Hankel matrix factorization. We show how the asymmetric Lanczos process is related to
the Berlekamp-Massey algorithm, and how the symmetrized Lanczos process is related to the Phillips
algorithm. We also discuss conditions under which the analysis of Phillips applies.

1 Introduction

In 1950 Lanczos [22] proposed a method for computing the eigenvalues of symmetric and nonsymmetric
matrices. The idea was to reduce the given matrix to a tridiagonal form, from which the eigenvalues
could be determined. A characterization of the breakdowns in the Lanczos algorithm in terms of algebraic
conditions of controllability and observability was addressed in [6] and [26]. Hankel matrices arise in various
settings, ranging from system identification [23] to algorithmic fault tolerance [4]. In his 1977 dissertation,
Kung [20] studied the Berlekamp-Massey (BM, 1967) algorithm [1], [24] for solving Hankel equations, and
remarked that their algorithm is related to the Lanczos process. There still exists strong interest in a
simple exposition of the BM algorithm; see, e.g., [19] in 1989. In 1971 Phillips [28] proposed a Hankel
triangularization scheme, and presented a derivation of his method using a special symmetrized Lanczos
process with a weighted and possibly indefinite inner product. In this paper, we present the first systematic
treatment of the connections between the Lanczos process and the two Hankel algorithms. We show how
the BM and Phillips algorithms are just special cases of the asymmetric Lanczos and symmetrized Lanczos
algorithms, respectively, using particular choices for the matrix and starting vectors. In addition, we point

– 1 –

out an additional assumption, not mentioned in [28], that is essential for the application of the symmetrized
Lanczos algorithm.

This paper is organized as follows. Section 2 presents the asymmetric and symmetrized versions of the
Lanczos algorithm. In Section 3, the problem of orthogonalizing a sequence of polynomials is discussed,
and it is shown how the Hankel matrix elements arise as moments. In Section 4, appropriate choices of
matrices and vectors are made so that the two Lanczos schemes will compute two different factorizations
of a Hankel matrix, just like the BM and Phillips algorithms. The paper concludes with a short numerical
illustration and some remarks on the breakdown problem of the asymmetric Lanczos scheme.

2 Description of the Lanczos Process

We give a brief description of the Lanczos process. Consider a real vector space V with an associated
weighted inner product 〈x,y〉 of vectors x and y defined by

〈x,y〉 ≡ xTWy, (2.1)

where W is some given real symmetric matrix. For x 6= y, we say that the vectors x and y are W -orthogonal

if their inner product equals zero. Suppose that there exists an orthonormal basis e1, e2, · · ·, so that all
the vectors in V can be expressed in terms of this basis:

x = x1e1 + x2e2 + · · · =







x1

x2
...






.

A linear operator will be denoted by a matrix A. We assume that the usual transpose AT satisfies

〈ATx,y〉 = 〈x, Ay〉,

thus requiring the condition that the matrices A and W commute. Note that in the usual asymmetric
Lanczos algorithm, we have W = I and so this commuting condition is satisfied automatically. In this
paper we use a more general W in order to create a setting that encompasses both the usual asymmetric
Lanczos algorithm and a modified symmetrized algorithm proposed by Phillips [28].

Although we may apply the Lanczos algorithm to possibly infinite vectors, we discuss the nonsingularity

and rank of a matrix only for finite dimensional ones, so that we retain the usual definitions of these concepts.
We represent vectors by the bold lowercase typeface b, matrices by italic uppercase B, and linear spaces
by bold uppercase B. If

vk = Avk−1 for all k,

the sequence of vectors {v1,v2, · · ·} is called a Krylov sequence, and the space spanned by these vectors is
called the right Krylov space G:

G ≡ span(b1, Ab1, A
2b1, · · ·).

We let Gk denote the truncated space generated by the matrix Gk:

Gk ≡ (b1, Ab1, · · · , A
k−1b1).

Likewise, we let F denote the left Krylov space :

F ≡ span(c1, A
Tc1, (A

T)2c1, · · ·),

– 2 –

and Fk the truncated space generated by the matrix Fk:

Fk ≡ (c1, A
Tc1, · · · , (A

T)k−1c1).

Note that F and G are used to distinguish between the leFt and riGht Krylov spaces.

2.1 Asymmetric Lanczos Method

Given a real matrix A and two real and non-null vectors b1 and c1 in V, the asymmetric Lanczos algorithm
generates two sequences of vectors:

B ≡ (b1,b2, · · ·) and C ≡ (c1, c2, · · ·),

such that
span(b1, · · · ,bk) = Gk and span(c1, · · · , ck) = Fk, for all k. (2.2)

Given the 2k vectors b1, · · · ,bk and c1, · · · , ck, the two vectors bk+1 and ck+1 are computed by the formulae:

bk+1 = Abk − (b1, · · · ,bk)δk

and
ck+1 = ATck − (c1, · · · , ck)γk,

for some coefficient vectors δk and γk. These vectors are chosen to enforce the W -biorthogonality conditions:

〈bk+1, ci〉 = 0 and 〈ck+1,bi〉 = 0 for i = 1, 2, · · · , k, (2.3)

for every k for which the k × k matrix

(c1, · · · , ck)TW (b1, · · · ,bk), or equivalently FT
k WGk, (2.4)

is nonsingular. In this section we make the assumption that FT
k WGk is nonsingular for all k (as long as

bk 6= 0 and ck 6= 0), in which case only the last two entries of both δk and γk are nonzero. When this
assumption is relaxed, we face a breakdown problem that will be discussed in Section 5. This algorithm
is the same as the nonsymmetric Lanczos algorithm found in [5], except that we are using a weighted
inner product to enforce W -orthogonality, as opposed to an unweighted inner product to enforce ordinary
orthogonality. We refer the reader to [5] for details of the algorithm, which we summarize as follows.

Algorithm AsymLanczos.

1. For k = 1, 2, · · · until stopped

2. Expand Krylov spaces: Set b
(0)
k+1 = Abk and c

(0)
k+1 = ATck.

3. Enforce the W -biorthogonality condition (2.3) by setting

bk+1 = b
(0)
k+1 − (b1, · · · ,bk)δk,

and
ck+1 = c

(0)
k+1 − (c1, · · · , ck)γk

via solving for the appropriate coefficients δk and γk.

The process continues until either br+1 = 0 for some r, or cs+1 = 0 for some s, whichever occurs first,
although one could continue by appending zero vectors until one reaches zero vectors in both sequences.
Hence the matrices B and C of generated vectors satisfy

AB = B∆ and ATC = CΓ,

– 3 –

where ∆ and Γ are tridiagonal matrices with unit subdiagonals, made up of the coefficient vectors δk and
γk, for k = 1, 2, · · ·. The W -biorthogonality conditions (2.3) become

CTWB = D,

where D is a diagonal matrix. Note that in the case where W = I, the algorithm reduces to that given in
Wilkinson [32, p. 388ff].

2.2 Symmetrized Lanczos Method

For the case of a real symmetric A, with the choice b1 = c1, one can show that

bi = ci for all i.

The W -biorthogonality conditions (2.3) reduce to W -orthogonality conditions:

〈bk+1,bi〉 = 0 for i = 1, 2, · · · , k, (2.5)

for every k for which the k × k matrix

(b1, · · · ,bk)
TW (b1, · · · ,bk) or equivalently GT

k WGk, (2.6)

is nonsingular. Under the assumption that (2.6) is nonsingular for all k (as long as bk 6= 0), we obtain a
simplified symmetrized Lanczos process.

Algorithm SymmLanczos.

1. For k = 1, 2, · · · until stopped

2. Expand Krylov spaces: Set b
(0)
k+1 = Abk.

3. Enforce the W -orthogonality condition (2.5) by setting

bk+1 = b
(0)
k+1 − (b1, · · · ,bj)δk

via solving for the appropriate coefficients δk.

The process continues until br+1 = 0 for some r. Thus the matrix B of generated vectors satisfies the
two conditions:

AB = B∆ and BTWB = D,

where ∆ is tridiagonal and D is diagonal. Note that, under our assumption that GT
k WGk is nonsingular

for all k, Algorithm SymmLanczos is same as the method given in Phillips [28]. If in addition W = I, the
algorithm reduces to the usual symmetric Lanczos algorithm [13, p. 485ff], [32, p. 394ff], in which case
the nonsingularity of (2.6) is guaranteed for all k as long as bk 6= 0.

– 4 –

3 Application to Sequences of Polynomials

Assume there exists a real-valued inner product 〈f, g〉 which satisfies the usual properties except for posi-
tivity:

〈f, αg + h〉 = 〈αg + h, f〉 = α〈g, f〉 + 〈h, f〉

and
〈xf, g〉 = 〈f, xg〉,

for any real-valued functions f , g, h of x. Given a sequence of polynomials p0, p1, · · ·, of exact degrees, and
the moments:

ηk = 〈pk, p0〉, for k = 0, 1, 2, · · · , (3.1)

where p0 is a constant polynomial, we wish to find another sequence of polynomials q0, q1, · · ·, of exact
degrees so that the q’s are orthogonal with respect to the given inner product. Note that the relation
defining the inner product may not be known. For the case of an ordinary inner product, viz., 〈f, f〉 > 0
for all nonzero f , the problem has been extensively studied in the literature; see, e.g., [11] and references
therein. However, only recently has this problem been addressed for more general inner products; see, e.g.,
the modified Chebyshev algorithm in [12]. This problem was addressed in [5] for the case where the inner
product is a discrete sum over a finite number of knots.

3.1 Asymmetric Orthogonalization

Since the polynomials are of exact degrees they obey the recurrence formulae:

xpT = pTZp and xqT = qTZq,

where

p =











p0(x)
p1(x)
p2(x)

...











, q =











q0(x)
q1(x)
q2(x)

...











,

and both Zp and Zq are unreduced infinite upper Hessenberg matrices. The polynomials are also related
by an infinite upper triangular matrix of coefficients B:

qT = pTB.

From the definitions, we have that
pTBZq = xpTB = pTZpB, (3.2)

and thus
BZq = ZpB. (3.3)

We are interested in further exploring the relations between the two sequences. We make the simplifying
assumption that the zero degree polynomials are scaled so that p0 = q0. The upper Hessenberg structure
of Zp implies, among other things, that for every k,

span(b1,b2, · · · ,bk) = span(b1, Zpb1, · · · , Z
k−1
p b1), (3.4)

where bi denotes the i-th column of B.

– 5 –

Define the matrix C of mixed moments:

cij = 〈pi−1, qj−1〉, for i, j = 1, 2, 3, · · · . (3.5)

Let ci denote the i-th column of C. Since q0 = p0, the first column c1 of C is given by

c1 =











η0

η1

η2
...











.

Following [12], we use the extended notation that

C ≡ 〈p,qT〉,

where the inner product applied to a vector of functions means that it is applied individually to each
element. By linearity we have that

ZT
p 〈p,qT〉 = 〈xp,qT〉 = 〈p, xqT〉 = 〈p,qT〉Zq (3.6)

Equation (3.6) reduces to
ZT

p C = CZq (3.7)

As with the B matrix, this implies that for all k

span(c1, · · · , ck) = span(c1, Z
T
p c1, · · · , (Z

T
p)k−1c1). (3.8)

Let us discuss some specific choices for the polynomials. There are two common choices for p’s. One,
they are chosen as the monomials, which is equivalent to Zp being a shift matrix. Two, the p’s are
generated via a three-term recurrence, equivalent to Zp being a tridiagonal matrix of recurrence coefficients.
Independently of the choice for the p’s, we can make arbitrary choices for the q’s. If in particular we choose
the q’s to be orthogonal with respect to 〈·, ·〉, then the corresponding matrix condition is that the matrix

D = 〈q,qT〉 = 〈q,pT〉B = CTB (3.9)

be diagonal. We then observe that the conditions (3.3), (3.7), (3.9) and the Krylov sequence conditions
(3.4) and (3.8) exactly match the properties of the vectors generated by the Lanczos process when started
with the matrix Zp and right vector b1 = e1 and left vector c1 composed of the moments. It follows that
if such a sequence of orthogonal q’s exist, then the vectors generated by the Lanczos process will satisfy
(3.9), and vice versa.

We now discuss the computation of the leading finite-dimensional part of the above infinite vectors.
Suppose we are given only the first 2n−1 moments η0, η1, · · · , η2n−2 as well as the leading (2n−1)×(2n−1)
part of Zp, which we henceforth call Z for simplicity. Because of the lower Hessenberg form of ZT, we
know the first 2n − 2 entries in ZTc1, the first 2n − 3 components of (ZT)2c1, and so on. Thus, we will
know the leading anti-triangle of the left Krylov matrix:

Fn = span(c1, Z
T
p c1, (Z

T
p)2c1, · · · , (Z

T
p)n−1c1), (3.10)

Note that the leading n × n principal submatrix of Fn is known. Recall also the right Krylov matrix:

Gn = span(b1, Zpb1, Z
2
pb1, · · · , Z

n−1
p b1).

– 6 –

The two sequences of vectors {bi} and {ci} satisfying (3.9) can be generated by applying an oblique Gram-
Schmidt process to Fn and Gn. Due to the upper triangular nature of the vectors bi, the conditions (3.9)
for the first n vectors involve only the first n entries of both the b and c vectors.

The Lanczos process will generate a sequence of vectors b1,b2, · · ·, and c1, c2, · · ·. With the first 2n− 1
entries of c1 known and b1 = e1, the Lanczos algorithm will generate at least the vectors b1, · · · ,bn and
leading n entries of c1, · · · , cn. Each polynomial qk will be defined in terms of the originally given set of p

polynomials by the relation:
qk(x) = pT(x)bk+1, for k = 0, 1, 2, · · · .

The moments involving qk are the entries of ck+1:

ck+1 =











〈p0, qk〉
〈p1, qk〉
〈p2, qk〉

...











(3.11)

If k is an index such that the matrix (c1, · · · , ck)T(b1, · · · ,bk) is nonsingular, then ck+1 will orthogonal to
bi, for i = 1, 2, · · · , k. Due to the upper triangularity of B, this means that the first k entries of (3.11)
will be zero, and so C will be lower triangular from the diagonality condition (3.9). Note that this is a
condition involving only finitely many leading entries of (3.11). So for such indices k, the polynomial qk

will be orthogonal to all polynomials p’s of degrees lower than k.

We also note that in general, it is well known that there is a loss of bi-orthogonality among the Lanczos
vectors generated. But in our situation, the bi-orthogonality conditions on the vectors c1, c2, · · · translate
directly into the condition that the generated matrix C be lower triangular, a condition that maintained
numerically almost automatically.

3.2 Symmetrized Orthogonalization

Assume that the moments matrix H has a triangular decomposition:

H = RTDR,

where R is unit upper triangular and D is diagonal. To run the Lanczos process, we choose some initial
matrix A that is symmetric, and choose the same initial vectors: b1 = c1. Hence the left and right Krylov
matrices will be identical. Assume that the Krylov matrix Gn is nonsingular, and define a matrix B by

B ≡ GnR−1. (3.12)

It can be shown that the columns of B are generated by the symmetrized Lanczos process, and that they
satisfy the relations:

〈bi,bj〉 = 0 for i 6= j,

and
〈bi,bi〉 = Di,i,

where bi denotes the i-th column of B, and Di,i denotes the (i, i) element of D. Most importantly, we can
now find the matrix R from (3.12):

R−1 = G−1
n B. (3.13)

– 7 –

Define new polynomials q’s from the p’s via the formula:

qT = pTR−1.

So we get
〈q,qT〉 = R−T〈p,pT〉R−1 = R−THR−1 = D,

verifying that the polynomials q’s are orthogonal with respect to the given inner product, just as we desire.

4 Factorization of a Hankel Matrix

Hankel solvers and the closely related Toeplitz solvers have been studied for a long time; see, e.g., [13].
Most Toeplitz solvers are based on the shift invariance of a Toeplitz matrix, for which a principal leading
submatrix is identical to the principal trailing submatrix of the same size. The resulting methods can
compute the LU factors of a Toeplitz matrix in O(n2) operations, but require that all leading principal
submatrices be nonsingular. We will refer to a matrix with all nonsingular leading principal submatrices
as strongly nonsingular. The Lanczos recursion leads to fast Hankel factorizers which are equivalent in
cost to the fast Toeplitz factorizers. The resulting recursion formulae to factorize a strongly nonsingular
Hankel matrix have appeared in several papers under different guises, going all the way back to Chebyshev
[8]. Early algorithms for factorizing a Hankel matrix appeared in [29], [30], [31], and the connection with
the Lanczos algorithm either on a nonsymmetric matrix or using an indefinite inner product appeared in
[14], [18], [20], [28]. When the permuted Yule-Walker equations (a Hankel system with a special right
hand side) are solved, the resulting method essentially computes the LU factors of the Hankel matrix [1],
[24], [25]. The same sets of equations arise in identification problems, where we would like to construct
the transfer function from the impulse response of a dynamical system [23]. The relation between the
asymmetric Lanczos process and fast Hankel factorization and/or inversion algorithms has been explored
more recently in [3], [4], [16], [17], [21].

In the next two subsections, we apply the Lanczos process to define two procedures for decomposing
an n × n strongly nonsingular Hankel matrix

H =















η0 η1 η2 · · · ηn−1

η1 η2 η3 · · · ηn

η2 η3 η4 · · · ηn+1
...

...
...

. . .
...

ηn−1 ηn ηn+1 · · · η2n−2















.

To be specific, the asymmetric Lanczos process computes the factorization:

HU = L, (4.1)

where the matrix U is unit upper triangular, and the matrix L is lower triangular, and the symmetrized
Lanczos process calculates the factorization:

H = RTDR, (4.2)

where the matrix R is unit upper triangular, and the matrix D is diagonal. From the uniqueness of the
triangular decomposition of H we conclude that LT = DR.

– 8 –

4.1 Asymmetric Lanczos Factorization

We define two (2n − 1)-element vectors b1 and c1. The former is the first coordinate unit vector, and the
latter contains the parameters generating the Hankel matrix H. That is,

b1 =











1
0
...
0











≡ e1 and c1 =











η0

η1
...

η2n−2











.

The weighting matrix W is chosen as the identity matrix of order 2n − 1:

W = I2n−1.

Define a (2n − 1) × (2n − 1) shift-down matrix:

Z =

























0 0 0 · · · 0 0 0
1 0 0 · · · 0 0 0
0 1 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 0 0
0 0 0 · · · 1 0 0
0 0 0 · · · 0 1 0

























,

and let
A = Z.

Then the left Krylov sequence generated by c1 has the form

Fn = (c1, ZTc1, · · · , (ZT)n−1c1) ≡

(

H

K

)

, (4.3)

where K is an (n − 1) × n upper anti-triangular matrix of the excess parameters, with Hankel structure.

The right Krylov space, for any k,

span(b1, Zb1, · · · , Z
k−1b1) = span(e1, · · · , ek)

spans the same space as the first k columns of the identity matrix. The condition that

(c1, Z
Tc1, · · · , (Z

T)k−1c1)
T(b1, Zb1, · · · , Z

k−1b1) ≡ FT
k Gk (4.4)

be nonsingular is equivalent to the condition that the leading k×k principal submatrix of H is nonsingular.
Let us first consider the case where this holds for every k. Then the vectors C = (c1, · · · , cn) will be lower
triangular, from the bi-orthogonality condition. Since the leading k columns of C span the same space as
Fk, for every k, it follows that

C = FnU (4.5)

for some upper triangular matrix U . If we denote by L the first n rows of C, then the first n rows of (4.5)
gives the desired factorization of H as in (4.1).

We note that this process is equivalent to generating the sequence of polynomials orthogonal with
respect to an ordinary inner product 〈·, ·〉 whose moments derived from some polynomials p’s are the given

– 9 –

Hankel parameters c1. The Krylov sequence (4.3) equals (3.10), and the lower triangular matrix C equals
the mixed moments matrix of (3.5), which is lower triangular when the polynomials being generated are
orthogonal with respect to the inner product.

Unfortunately, the matrix U is not generated by the Lanczos method. However, we may generate it
by recording the operations that go into generating C. With this particular choice of starting information,
the Lanczos process amounts to just reducing the left Krylov sequence Fn to lower triangular form C by
means of column operations. In other words, each column of C is obtained by applying ZT (i.e., shifting
up) and then subtracting multiples of previous columns to reduce it to lower triangular form. That is,

θjcj+1 = ZTcj − (c1, · · · , cj)γj (4.6)

for some vector γj and some scalar θj. From (4.6) we have that

cj = Kuj,

where uj is the j-th column of U . Then we have the following identity from the Hankel structure of K:

ZTcj = ZTKuj = KZuj.

Thus, we may express cj+1 = Kuj+1, where

θjuj+1 = Zuj − (u1, · · · ,uj)γj (4.7)

and the coefficients γj and θj are those defined in (4.6). Thus, as we perform the up-shifting and column
operations to generate the c vectors, we perform down-shifting and the same column operations on the u

vectors to generate the U matrix. Under the usual situation where (4.4) is nonsingular, the vector γj have
only two nonzero entries, and hence each uj can be generated with only O(j) operations.

We summarize the process with the following procedure.

Algorithm AsymHankel

1. For j = 1, 2, · · · , n − 1

2. c
(0)
j+1 = ZTcj .

3. u
(0)
j+1 = Zuj.

4. θjcj+1 = c
(0)
j+1 − (cj−1, cj)

(

γj−1,j

γjj

)

, where the coefficients γj−1,j and γjj

are computed to annihilate the entries (c
(0)
j+1)j−1 and (c

(0)
j+1)j .

5. θjuj+1 = u
(0)
j+1 − (uj−1,uj)

(

γj−1,j

γjj

)

.

Thus, at the j-th stage, we augment the matrix (c1, · · · , cj) to obtain

(c1, · · · , cj , c
(0)
j+1) =





























c11

c21 c22
...

...
. . .

cj−1,1 cj−1,2 · · · cj−1,j−1 c
(0)
j−1,j+1

cj1 cj2 · · · cj,j−1 cjj c
(0)
j,j+1

cj+1,1 cj+1,2 · · · cj+1,j−1 cj+1,j c
(0)
j+1,j+1

...
... · · ·

...
...

...





























– 10 –

and then the two entries c
(0)
j−1,j+1 and c

(0)
j,j+1 are annihilated. In detail, steps 4 and 5 above can be written

out as

4.1 γj−1,j =
c
(0)
j−1,j+1

cj−1,j−1
=

cjj

cj−1,j−1
.

4.2 c
(1)
j+1 = c

(0)
j+1 − γj−1,jcj−1.

5.2 u
(1)
j+1 = u

(0)
j+1 − γj−1,juj−1.

4.3 γjj =
c
(1)
j,j+1

cjj
=

cj+1,j

cjj
−

cj,j−1

cj−1,j−1
.

4.4 cj+1 = c
(1)
j+1 − γjjcj .

5.4 uj+1 = u
(1)
j+1 − γjjuj.

The reader will recognize from the formulae in steps 4.1 and 4.3 that this is the same as the Chebyshev
algorithm [8, Oeuvres, p. 482], [11] in the theory of moments and orthogonal polynomials, as well as the
Berlekamp-Massey algorithm in coding [1], [19], [24].

4.2 Symmetrized Lanczos Factorization

In this section we consider the factorization of a strongly nonsingular Hankel matrix H. Such a matrix has
the decomposition as given by (4.2), and in this section we derive the algorithm of Phillips [28] to generate
this decomposition. Phillips [28] showed how H can be viewed as a moments matrix. Consider the right
Krylov matrix Gn:

Gn = (b1, Ab1, · · · , A
n−1b1),

where A is some symmetric matrix and b1 is some vector such that Gn is nonsingular. Define the inner
product (2.1) with a symmetric weighting matrix W defined by

W = G−T
n HG−1

n . (4.8)

Then the (i, j) element of H satisfies

(H)i,j = ηi+j−2 = 〈Ai−1b1, A
j−1b1〉,

as long as A and W commute. The following development depends on finding matrices A and W which
commute, but as will be seen in Section 4.3, a W defined by (4.8) may not always commute with A. So, in
general, can we always find two symmetric matrices A and W that commute for any given H? The answer
is yes. At the end of this section, we give one example of such A and W for any given strongly nonsingular
H. Hence the following development is not vacuous.

We can modify the symmetric Lanczos tridiagonalization process (cf. [13, p. 476ff]) to generate a
matrix B with W -orthogonal columns that satisfies

AB = BT, (4.9)

where T is tridiagonal. Let
B = (b1,b2, · · · ,bn) .

The columns of B are determined by using the formula:

bi+1 = (A − αiI)bi − βibi−1, for i = 1, · · · , n − 1, (4.10)

– 11 –

where αi and βi are chosen so bi+1 is W -orthogonal to bi and bi−1, and hence also to bi−2, · · · ,b1. The
tridiagonal matrix T is defined by

T ≡ (1, αi, βi+1).

By analogy with the symmetric Lanczos process, the matrix B forms a part of the W -orthogonal QR

decomposition of the Krylov matrix Gn:
Gn = BR,

where B has W -orthogonal columns which are scaled so that R is unit upper triangular. Hence B satisfies

BT WB = D. (4.11)

Now, consider the Krylov matrix G2n, given by

G2n = (b1, Ab1, · · · , A
2n−1b1) ≡ (Gn, Ĝ).

i.e.,
Ĝ ≡ (Anb1, A

n+1b1, · · · , A
2n−1b1) = AnGn.

Let ZL denote a 2n × 2n left-shift matrix:

ZL ≡

























0 0 0 · · · 0 0 0
1 0 0 · · · 0 0 0
0 1 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 0 0
0 0 0 · · · 1 0 0
0 0 0 · · · 0 1 0

























.

Note that ZL has the same structure as the order 2n − 1 down-shift matrix Z of Section 4.1. We have

(AG2n)j = (G2nZL)j , for j = 1, · · · , 2n − 1,

where Mj denotes the j-th column of a matrix M . Since

AG2n = AB(R,B−1Ĝ) = BT (R,B−1Ĝ)

and
G2nZL = B(R,B−1Ĝ)ZL,

we get
(

T (R,B−1Ĝ)
)

j
=

(

(R,B−1Ĝ)ZL

)

j
, for j = 1, · · · , 2n − 1,

i.e., a shift-to-left operation on G2n is equivalent to a three-term recurrence on R. However, it is expensive
to compute T , and a better way is to express T in terms of R. Define the tridiagonal matrix

P ≡ DTD−1

and
C ≡ (DR,DB−1Ĝ). (4.12)

The first n columns of C give us the two desired matrices D and R. Then

PC = DT (R,B−1Ĝ)

– 12 –

and so
(PC)j = (CZL)j, for j = 1, · · · , 2n − 1.

Since P is tridiagonal, the above formula shows that the rows of C obey a recurrence, which with some
algebraic manipulation can be written as [28]:

ci+1,j = ci,j+1 − αici,j − βici−1,j ,

where
αi =

ci,i+1

ci,i

−
ci−1,i

ci−1,i−1
and βi =

ci,i

ci−1,i−1
.

To find the initial conditions, consider

eT
1 C = eT

1 R∗C = eT
1 (RTDR,RTDB−1Ĝ) = eT

1 (H,GT
n WAnGn),

since
RTDB−1 = HR−1B−1 = HG−1

n = GT
nW.

So the first row of C is given by

c1,j = ηj−1, for j = 1, · · · , 2n − 1. (4.13)

Phillips [28] has thus developed an ingenious row recurrence scheme that does not require any explicit
knowledge of A and W . His procedure is summarized as follows.

Algorithm SymmHankel

1. For i = 1, 2, · · · , n − 1

2. αi =
ci,i+1

ci,i
−

ci−1,i

ci−1,i−1
; α1 =

c1,2

c1,1
.

3. βi =
ci,i

ci−1,i−1
; β1 = 0.

4. For j = i + 1, i + 2, · · · , 2n − 1 − i

5. ci+1,j = ci,j+1 − αici,j − βici−1,j .

We note that this process is equivalent to generating the sequence of polynomials q’s orthogonal with
respect to an indefinite inner product whose moments derived from the polynomials p’s are the given Hankel
parameters c1. Not surprisingly, this algorithm computes parameters αi and βi that are same as the γi,i

and γi−1,i of Algorithm AsymHankel. The explanation is that while the latter algorithm computes the
factor L column-wise, Algorithm SymmHankel computes the product DR row-wise, and that LT = DR.

Even though the specific A and W are not needed to carry out Algorithm SymmHankel, the derivation
of the algorithm depends on the existence of symmetric A and W related by (4.8) which commute. To
construct one such example, suppose that the entries of H are moments with respect to some set of weights
{ζi} and knots {xi}, for i = 0, · · · , n − 1, in the inner product defined by

〈p, q〉 =
n−1
∑

0

p(xi)q(xi)ζi.

For example, in checksum-based error correction schemes, the entries of H are the moments of an indefinite
inner product of known knots and unknown weights that play the role of errors [4]. This corresponds to the

– 13 –

Reed-Solomon code [2] and the Berlekamp-Massey Algorithm. If the knots are unknown, they may often
be computed as the roots of the n-th degree orthogonal polynomial generated by Algorithm AsymLanczos,
as described in [5]. Once the knots are known, the weights {ζi} are the solution to a square nonsingular
Vandermonde system [4,5].

Given this set of knots and weights, the entries of the Hankel matrix H can be written as

hij = ηi+j−2 =
n−1
∑

k=0

xi−1
k ζkx

j−1
k ,

yielding the matrix relation
H = V Y V T, (4.14)

where the matrix V is Vandermonde and matrix Y is diagonal:

V T =











1 x0 · · · xn−1
0

1 x1 · · · xn−1
1

...
...

. . .
...

1 xn−1 · · · xn−1
n−1











and Y =











ζ0 0 · · · 0
0 ζ1 · · · 0
...

...
. . .

...
0 0 · · · ζn−1











.

We emphasize here that neither the sequence {xi} nor the {ζi} are required for the actual computation,
they are useful only for our theoretical discussion.

Finally we choose

A =











x0 0 · · · 0
0 x1 · · · 0
...

...
. . .

...
0 0 · · · xn−1











and b1 =











1
1
...
1











,

so that
Gn = V T

and
W = V −1HV −T = Y.

Since both matrices A and W are diagonal, they commute.

4.3 Work of Phillips

Phillips’ elegant analysis [28] works only if A and W commute. For example, to ensure that bi+1 is
W -orthogonal to bi−1, he used

βi =
〈bi,bi〉

〈bi−1,bi−1〉
, for i = 2, · · · , n, (4.15)

which should be replaced by

βi =
〈bi−1, Abi〉

〈bi−1,bi−1〉
, for i = 2, · · · , n. (4.16)

Nonetheless, (4.15) and (4.16) are equivalent under the assumption of commutativity, in which case (4.15)
is actually a better numerical formula. Now, let

H =





1 2 3
2 3 2
3 2 1



 , b1 =





1
1
1



 and A =





1 0 0
0 2 0
0 0 4



 . (4.17)

– 14 –

Following [28] we calculate

Gn =





1 1 1
1 2 4
1 4 16



 and W =





0.5556 −1.5000 0.6111
−1.5000 4.0000 −1.0000

0.6111 −1.0000 0.2222





Note that

AW − WA =





0 1.5000 −1.8333
−1.5000 0 2.0000

1.8333 −2.0000 0



 6= 0.

Via (4.15) we get

B =





1 −1 2
1 0 1
1 2 5



 and T =





2 −1 0
1 2 −8
0 1 3



 .

Finally,

AB − BT =





0 0 −12.0000
0 0 −1.0000
0 0 21.0000



 ,

and the key equation (4.9) fails to hold. Using (4.16) instead of (4.15) would also give us bad answers in
that

AB − BT =





0 0 −1.0000
0 0 −1.0000
0 0 −1.0000



 .

5 Numerical Illustration

We use the numerical example in the previous section to illustrate the algorithms. Let H be defined by
(4.17). Then the left Krylov sequence (4.3) is

F3 = (c1, ZTc1 (ZT)2c1) ≡

(

H

K

)

=















1 2 3
2 3 2
3 2 1
2 1 0
1 0 0















.

The algorithm AsymHankel will generate the factorization C = F3U (4.5) where

C =















1 0 0
2 −1 0
3 −4 8
2 −3 6
1 −2 5















and U =





1 −2 5
0 1 −4
0 0 1



 ,

yielding the final factorization of the original matrix H as

C ≡





1 0 0
2 −1 0
3 −4 8



 =





1 2 3
2 3 2
3 2 1









1 −2 5
0 1 −4
0 0 1



 ≡ HU

– 15 –

The algorithm SymHankel will generate the rows

{ci,j} =





1 2 3 2 1
0 −1 −4 −3 ×
0 0 8 × ×



 ,

where the subdiagonal zero entries and the entries marked “×” are not computed. From (4.12) we obtain
DR and then D and R by scaling the rows of DR to have unit diagonal entries:

DR =





1 2 3
0 −1 −4
0 0 8



 =





1 0 0
0 −1 0
0 0 8









1 2 3
0 1 4
0 0 1



 .

The decomposition of H is then H = RTDR. Note that we do not need to know explicitly the commuting
matrices A and W .

6 Final Remarks

In this paper, we have shown how two well known fast Hankel factorization methods can be viewed as
special cases of the Lanczos algorithm. For simplicity in presentation, we have avoided the breakdown

problem for the asymmetric Lanczos algorithm. The problem has been considered in [5], [7], [15], [27],
with an approach that is similar to that proposed by Berlekamp [1] to factorize a Hankel matrix which is
not strongly nonsingular. Also, there is much recent interest, e.g., [3], [5], [9], [10], [12], in exploring the
connections between a modified asymmetric Lanczos algorithm and orthogonal polynomials with respect
to an indefinite inner product.

7 Acknowledgements

The authors acknowledge their research sponsors: D. L. Boley was supported in part by the National
Science Foundation under grant CCR-8813493 and by the Minnesota Supercomputer Institute, T. J. Lee
by an Intel Foundation Graduate Fellowship, and F. T. Luk by the Army Research Office under contract
DAAL03-90-G-0104. The authors also thank Adam Bojanczyk and Douglas Sweet for valuable discussions.

8 References

[1] E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York, NY, 1968.

[2] R. E. Blahut, Theory and Practice of Error Control Codes, Addison-Welsey, Reading, Mass., 1983.

[3] D. L. Boley, “Error correction, orthogonal polynomials, Hankel matrices and the Lanczos algorithm,”
Report TR 91-8, Computer Science Dept., Univ. of Minnesota, Twin Cities, Minnesota, April 1991.

[4] D. L. Boley, R. P. Brent, G. H. Golub and F. T. Luk, “Algorithmic fault tolerance using the Lanczos
method,” SIAM J. Matrix Anal., vol. 13 (1992), to appear.

[5] D. L. Boley, S. Elhay, G. H. Golub and M. H. Gutknecht, “Nonsymmetric Lanczos and finding or-
thogonal polynomials associated with indefinite weights,” Numerical Algorithms, vol. 1 (1991), pp.
21-44.

– 16 –

[6] D. L. Boley and G. H. Golub, “The Lanczos algorithm and controllability,” Systems and Control

Letters, vol. 4 no. 6 (1984), pp. 317-324.

[7] D. L. Boley and G. H. Golub, “The nonsymmetric Lanczos algorithm and controllability,” Systems

and Control Letters, vol. 16 (1991) p 97-105.

[8] P. L. Chebyshev, “Sur l’interpolation par la méthode des moindres carrés,” Mém. Acad. Impér. Sci.,

St. Pétersbourg (7) 1 #15 (1859), pp. 1-24 [Oeuvres I, pp. 473-498].

[9] R. W. Freund, M. H. Gutknecht and N. M. Nachtigal, “An implementation of the look-ahead Lanczos
Algorithm for non-Hermitian matrices, part I,” Numerical Analysis Report TR 90-10, Mathematics
Dept., MIT, Cambridge, Mass., 1990.

[10] R. W. Freund and N. M. Nachtigal, “An implementation of the look-ahead Lanczos Algorithm for
non-Hermitian matrices, part II,” Numerical Analysis Report TR 90-11, Mathematics Dept., MIT,
Cambridge, Mass., 1990.

[11] W. Gautschi, “On generating orthogonal polynomials,” SIAM J. Sci. Statist. Comput., vol. 3 (1982),
pp. 289-317.

[12] G. H. Golub and M. H. Gutknecht, “Modified moments for indefinite weight functions,” Numer.

Math., vol. 57 (1990), pp. 607-624.

[13] G. H. Golub and C. F. Van Loan, Matrix Computations, 2nd Ed., The Johns Hopkins University
Press, Baltimore, Maryland, 1989.

[14] W. B. Gragg and A. Lindquist, “On the partial realization problem,” Linear Alg. Applics., vol. 50
(1973), pp. 277-319.

[15] M. H. Gutknecht, “A completed theory for the Lanczos algorithm,” Preprint, 1989.

[16] M. H. Gutknecht, “The unsymmetric Lanczos algorithms and their relations to Padé approximation,
continued fractions, the QD algorithm, biconjugate gradient squared algorithms, and fast Hankel
solvers,” preprint, 1990.

[17] G. Heinig and P. Jankowski, “Parallel and Superfast algorithms for Hankel systems of equations,”
Numerische Mathematik, vol. 58 (1990), pp. 109-127.

[18] A. S. Householder, The Theory of Matrices in Numerical Analysis, Dover, New York, New York,
1975.

[19] E. Jonckheere and C. Ma, “A simple Hankel interpretation of the Berlekamp-Massey algorithm,”
Linear Alg. Applics., vol. 125 (1989), pp. 65-76.

[20] S. Y. Kung, “Multivariable and Multidimensional Systems: Analysis and Design,” Ph.D. Dissertation,
Dept. of Electrical Engineering, Stanford Univ., CA, 1977.

[21] G. Labahn, D. K. Choi and S. Cabay, “The inverses of block Hankel and block Toeplitz matrices,”
SIAM J. Comput., vol. 19 (1990), pp. 99-123.

[22] C. Lanczos, “An iteration method for the solution of the eigenvalue problem linear differential and
integral operators,” J. Res. Natl. Bur. Stand., vol. 45 (1950), pp. 255-282.

– 17 –

[23] L. Ljung, System Identification: Theory for the User, Prentice Hall, Englewood Cliffs, New Jersey,
1987.

[24] J. L. Massey, “Shift register synthesis and BCH decoding,” IEEE Trans. Inform. Theory, vol. IT-15
(1967), pp. 122-127.

[25] D. Pal, “Fast triangular factorization of matrices with arbitrary rank profile,” Ph.D. Dissertation,
Dept. of Electrical Engineering, Stanford Univ., CA, 1990.

[26] B. N. Parlett, “Reduction to tridiagonal form and minimal realizations,” Preprint, 1990.

[27] B. N. Parlett, D. R. Taylor and Z. A. Liu, “A look-ahead Lanczos algorithm for unsymmetric matri-
ces,” Math. Comp., vol. 44 (1985), pp. 105-124.

[28] J. L. Phillips, “The triangular decomposition of Hankel matrices,” Math. Comp., vol. 25, No. 115
(1971), pp. 599-602.

[29] J. Rissanen, “Algorithms for triangular decomposition of block Hankel and Toeplitz matrices with
application to factoring positive matrix polynomials,” Math. Comp., vol. 27, No. 121 (1973), pp.
147-154.

[30] J. Rissanen, “Solution of linear equation with Hankel and Toeplitz matrices,” Numer. Math., vol. 22
(1974), pp. 361-366.

[31] W. F. Trench, “An algorithm for the inversion of finite Hankel matrices,” J. Soc. Indust. Appl.

Math., vol. 13 (1965), pp. 1102-1107.

[32] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965.

– 18 –

