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Abstract

We study a class of algorithms that speed up the training
process of support vector machines (SVMs) by returning
an approximate SVM. We focus on algorithms that reduce
the size of the optimization problem by extracting from the
original training dataset a small number of representatives
and using these representatives to train an approximate
SVM. The main contribution of this paper is a PAC-style
generalization bound for the resulting approximate SVM,
which provides a learning theoretic justification for using
the approximate SVM in practice. The proved bound also
generalizes and includes as a special case the generalization
bound for the exact SVM, which denotes the SVM given by
the original training dataset in this paper.
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1 Introduction

One challenge in using support vector machines (SVM)
[8, 28] for problems with a large number of training
data, which are common in data mining applications, is
the prohibitive computational requirement for training,
which involves solving a convex optimization problem.
To address this issue, many efficient training algorithms
have been proposed.

The first class of algorithms attack the optimization
problem directly. A commonly used strategy is to
solve a series of small optimization problems, where
ideas like chunking and decomposition are used [4,
17,22], and one noteworthy example is the sequential
minimal optimization (SMO) algorithm [24]. Special
algorithms have also been developed for SVMs with
particular kernels, such the linear kernel [18] and the
Gaussian kernel [30]. We denote the SVM given by
these algorithms and other algorithms that use the
original training dataset directly as the exact SVM.
The performance of exact SVMs have been theoretically
justified in terms a generalization bound in many places,
such as [5,14, 16, 28].
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A second class of algorithms resorts to an approxi-
mate solution, and the resulting SVM is denoted as an
approrimate SVM. For example, it has been proposed to
construct an approximate SVM by approximating the
Gram matrix with a smaller matrix using either low
rank representation [12] or sampling [1,29]. Assuming
a linear kernel is used, Pavlov et al. [23] proposed to
squash the original training dataset into a limited num-
ber of representatives and construct an approximate
SVM using these representatives. Although these algo-
rithms, together with many other algorithms for approx-
imate SVMs, are well motivated and have been shown to
be very effective experimentally, there is no direct theo-
retical justification on the generalization performance of
the resulting approximate SVMs. The goal of this paper
is to provide such a justification by proving a PAC-style
generalization bound for the approximate SVM.

We will prove a generalization bound for the ap-
proximate SVMs given by a class of training algorithms,
which is denoted as Aapprox in this paper, by studying
the stability of Aapprox [0]. Starting with a training
dataset D of size n and a pre-specified value for k < n,
algorithm Aapprox first partitions the training dataset D
into k disjoint clusters and picks one representative for
each cluster, then returns the approximate SVM trained
using the k representatives, each of which is weighted by
the size of the cluster it represents. Here, the representa-
tive of a cluster is defined as the feature-space center of
the cluster. The algorithm A,pprox Subsumes a variety
of specific procedures, including those in which a specific
clustering algorithm is used to compute the partitions,
and those in which the partitions are performed com-
pletely at random, a choice akin to random sampling.
Thus, a direct consequence of the proved bound is that
it provides a theoretical foundation for SVM training
algorithms based on clustering, such as those studied
in [3,7,31], thus justifying the use of approximate SVMs
in practice.

In the rest of this paper, section 2 introduces
the algorithm Aapprox for training approximate SVMs,
section 3 proves a PAC-style generalization bound for
the approximate SVM given by Aapprox, section 4
discusses some consequences of the bound and compares
it with related work, and section 5 concludes the paper.
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2 Approximate Support Vector Machines

In a two-class classification problem, we are given a
training dataset D of size n

D={z;=(x;,y;) | x; € X,y; € {1, -1}, =1,...,n},

where the n data are assumed to be obtained by drawing
independently from Z according to a fixed but unknown
probability measure P defined over Z. A hyper-plane
classifier h classifies a test datum x € & by thresholding
a real-valued function f, i.e.

(2.1)  h(x) =sign(f(x)), with f(x) = (W, $(x)),

where w is the weight vector of the hyper-plane, ¢ is
a mapping from the data space X to a reproducing
kernel Hilbert “feature” space H equipped with a dot
product (-, -). The space H is induced by a Mercer kernel
K, which satisfies K(x/',x") = (¢(x),p(x")) for all
x',x" € X. Given a function f, we define a regularized
functional R(f;D, \) parameterized by the training set
D and real regularization parameter A > 0 in a manner
similar to that in [5]

(2.2a) R(f;D,A) = Rewp(f; D) + A f)
1
(2:20) Runpl(£iD) = - Y6 (£.2): 1) = i
zeD
where || || is the norm induced by the inner product in

H, and ¢}, is the hinge loss
by (f,2) = ta (f, (x,9)) = max (0,1 — yf(x)),

measuring by how much a data sample lies on the wrong
side of the classification boundary. The function f*
corresponding to a SVM classifier h* is the minimizer
of R(f;D,\)

(2.3)

(2.4) fr=argmin R(f;D,\).

f
Compared with the familiar SVM formulation [6], there
is no bias term in the real-valued function f here.
This choice simplifies the presentation later on while
preserves the generality of the results developed.

We call the SVM h* defined in equation (2.4) the
exact SVM, since the original training dataset D is used
directly in finding f*. Usually, instead of minimizing
R(f; D, ), the corresponding dual problem is solved
and the time complexity is often O(nP), where 1.7 <
p < 3[6,24].

Algorithm 1 describes the algorithm A,pprox, which
speeds up the training process by returning an approx-
imate SVM trained using a small number (k) of repre-
sentatives of D. The choice of k in algorithm Aapprox
depends on the available computational resources, such
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as the amount of memory. The main result of this paper
is a PAC-style generalization bound for the approximate
SVM h returned by A.pprox, Which is proved in section 3.
The effectiveness of algorithm A.pprox has been demon-
strated experimentally over several real datasets in [7],
and will not be repeated here due to space limit.

Algorithm 1 Algorithm A,pprox

Require: A training dataset D of size n, number k <
n of the representatives, kernel K, regularization
coefficient A.

1: Extract k representatives from D satisfying the
following three assumptions:

e Assumption I: Each datum in D has one and
only one representative, i.e., the k representa-
tives correspond to a pairwise disjoint partition
Dy,...,Dy of D;

e Assumption II: For j = 1,... k, all data in
D; have the same label, which is either 1 or —1;

e Assumption III: For j = 1,...,k, the repre-
sentative z = (X§,y5) of D; satisfies

~c 1
oF)=— > x)
 (xw)eD;
1: Data in D; belong to class 1
—1: Data in D; belong to class -1

7={ ,
where n; is the number of data in D; and ¢ is

the mapping induced by the kernel K;

2: Construct a reduced training dataset D from D by
replacing every datum in D with its representative;

D={z; =(x;9;) |j=1,....,n},
3: return The approximate SVM h and correspond-
ing real-valued function f (related by (2.1)), where

f: arg}rcnin R (f;ﬁ,)\) .

REMARK 2.1. When using a non-linear kernel, the rep-
resentative ¢(X§) in “feature space” might not corre-
spond to any particular point in X. To train an ap-
proximate SVM, we need to compute the kernel value
K(x¢,x5) between two representatives x{ and x§. To
use the trained approximate SVM, we need to compute
the kernel value K(X§,X) between a representative X
and an arbitrary datum X € X'. Fortunately, these two
kernel values remain well-defined regardless of whether

)~<§ is a real or “virtual” point,
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1 /

K (5,%5) = (0(%), (%)) = —— K, x')
L) (x/,y/)GDi
(x// y”)GD]'
c c s 1 S
K(X],X) - <¢(X])v¢(x)> = ni K(X,X).
7 (x,y)€D;

In other words, there is no need to construct the feature
space explicitly. |

3 Generalization Performance of Approximate
SVM

3.1 Algorithmic Stability The approach of algo-
rithmic stability has been exploited in many places, in-
cluding [5,9,11,19-21,25,26]. For example, Bousquet et
al. [5] proved generalization bounds for the hypotheses
given by learning algorithms that are based on either
Hilbert space regularization or Kullback-Leibler regu-
larization, Poggio et al. [21,25] proved that certain type
of stability is sufficient for generalization and necessary
and sufficient for consistency of empirical risk minimiza-
tion. The basic idea of this approach is to study the
generalization performance of a hypothesis by exploit-
ing the robustness of the algorithm returning the hy-
pothesis under small perturbations of the training set.

Given a training dataset D, one possible perturba-
tion is to replace a single datum in D with another da-
tum drawn from the same distribution as the data in D.
Without losing generality, we assume that the i-th da-
tum z; in D is replaced by z’ and denote the perturbed
training dataset as D' [5]

(3.5a)
(3.5b)

D:{Zl,...

Di:{Zl,...,

2 Zn}

azn}v

yZi—1524y Zj4- 1,5 - -

/
Zi—1,2,Zi41,---

where z’,z1,...,2, are independent and identically
distributed according to the probability distribution P
defined over Z. We use A to denote a learning algorithm
returning a binary classifier that performs classification
by thresholding a real-valued discriminant function, i.e.,
for all x € X,

h(x) = sign(f(x)) and h'(x) = sign(f'(x)),

where h and h' are classifiers given by A with D and
D' as training datasets, respectively, and f and f* are
corresponding real-valued functions. The stability of the
algorithm A is characterized by the following uniform
replacement classification stability' n,

(3.6)

TThere have been two definitions of “uniform stability” [5,26].
The definition here follows that in [26]. The definition in [5]
assumes that the perturbed training dataset is obtained by
deleting one datum from D. To differentiate these two cases,

we use the notion “uniform replacement classification stability”
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DEFINITION 3.1. A learning algorithm A yielding real-
valued classifiers (3.6) has uniform replacement classi-
fication stability n, if

|f(x) = f{(x)] < mm

holds for all training datasets D of size n, for all i =
1,...,n, for allz' € Z, and for all (x,y) € Z.

For an algorithm A with uniform replacement clas-
sification stability 7,,, the generalization performance of
the resulting classifier h = A(D) is characterized by the
following Lemma 3.1, whose proof is similar to that of
Theorem 17 in [5] and is omitted here.

LEMMA 3.1. Let A be a learning algorithm which out-
puts a real-valued classifier and has uniform replacement
classification stability n,. Then, for any n > 1 and
0 € (0,1), we have, with confidence at least 1 — & over a
random draw of a training dataset D of size n, (where
the elements of D are drawn i.i.d. from Z)

/In1/8§
Zéhhz +0n + 2nn, + 1) %,

where h = sign(f) is the classifier returned by A, I is
the indicator function, E []Ih(x#y] is the expected (with
respect to P) error rate of h, and £ 37 | t,(h,z;) is the
empirical hinge loss of h over D.

]E Hh X)#u

3.2 Analysis of Algorithm A,pprox Using algo-
rithm A.pprox, for a pre-specified number £ of represen-
tatives and a regularization coefficient \, we denote the
approximate SVM corresponding to the training dataset
D as h, which corresponds to the real-valued function f,
and denote the approximate SVM corresponding to the
perturbed training dataset pi as h*, which corresponds
to the real-valued function f i As shown in Algorithm 1,
the real-valued functions f and f* are

f: argjrcnin R (f;ﬁ,)\) , fl = arg]rcnin R (f;ﬁi,)\) ,

where D and D' are the reduced training datasets
corresponding to D and D*, respectively,

(3.7a) D={z =X,5) [j=1....n}
(3.7b) D'={z, = (x,7}) |j=1,....n}.

We also use w and w* to denote the weight vectors of
f and f?, respectively.

The following Lemma 3.2 shows the uniform re-
placement classification stability of algorithm A.pprox-

to denote the uniform stability defined in [26], and use the notion
“uniform deletion classification stability” to denote the uniform
stability defined in [5].
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LEMMA 3.2. The algorithm Agpproz has uniform re-

placement classification stability n,, = where x =

SUPyex VK (X,X%).

Proof. The following inequality holds for allz = (x,y) €
Z,

70— (x)| = | (8, 6(x)) (%", o (x

where x = supycr VK (X,X) According to Defini-
tion 3.1, it suffices to show that Hw w H <

We begln with the observation that the functlonals
R, Q, and Remp defined in equation (2.2) are convex in
f. Hence they induce Bregman divergences [27] whose
properties, which are summarized in the Appendix, will
be used below in some steps of the proof.

Since Q(f) = ||w]||?, we observe that VQ = 2w,
and the corresponding induced Bregman divergence is
dog) (F1, J) = [ = [W]]2 = 2w — W) - . Hence a
simple calculation shows

(3.8)  day(f1, ) +dagy(F, 1) = 2||w — ||
In the remainder of the proof, we will show
(3:9) A (dogy (' 1) + doy (1)) <

which will imply

X
An’?

N <x||w-w'

)

X ~ =i
o v =%,

¥ =) < 5=
An’
thus completing the proof. o
We now prove (3.9). Let dR(.'ﬁ )\)(fi,f) and

R( B ( f fl) be the Bregman divergences induced
by the convex functions R(f; D, ) and R(f; D', \), re-
spectively. Since f and f' minimize R(f;D,)\) and
R(f; D¢ \) respectively, using Property II of the Breg-
man divergence (in the Appendix), we have

dppon (I 1) = R(J5DN) = R(;D,0)
dR(7§L,)\)(J’F7 f:VZ) = R(fa 51’ )‘) - R(flvﬁzv >‘)

By the definition of R in equation (2.2a) and Property
III of the Bregman divergence, we can relate dp and
dr

(3.10a)
(3.10b)

(3.11a) dp 5., (F'. )=
(B11D)d g5 (2 ') =

Combining equations (3.10) and (3.11) and using the
non-negativity of dg (Property I of the Bregman
divergence), we have

A (oo () + day (T 1)

emp(‘;ﬁ)(f’}J?)Jr)\dﬂ(.)(ﬁ,f)

emp
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Remp(.;ﬁi)(fa JE)‘MdQ(-)(J?v JE)-

< R(fyD,\) = R(f; D, \) + R(f; D', A) — R(f'; D', \)
SEOMAGEIRED N (EY
j=1 j=1
i (7E) - 1 (7E)

af 3]

where the third line follows from equations (2.2).
To bound , we use the following property of the
hinge loss that holds for all z = (x,y) € Z

{eh (f1.2) = b (f2.2) < fo(x) — fi(x)
by (f1,2) = (f2,2) < fr(x) = fa(x)

We separate the terms in by the labels ¥ = 1 and

y = —1 to get:
[a]<[8}

ify=1,
if y=—1.

where
B]= % (F&) = Fixy) + F(&) — J))
j=1,5;=1
+%_ > (P - Ty + 7)) - F&)
! <v~v_<rv > 6) - 6(%)
U5
- Z (¢(ij>—¢>(i3)>>
Je

(3.12)

< L% — ) 195 — vl

We now show that ||¢5 — J|| < 2x. Recall that the
perturbed training dataset D is obtained by replacing
z; = (x;,y;) in D with 2z’ = (x/,3’). Both the outgoing
label y; and the incoming label y’ can take on either
value £1, giving rise to 4 possible cases. The inequality
|95 — g || < 2x must be verified for each case. We show

the calculation for the case y; = 1 and ¢y = —1. We
have
n n
Is= D> o(F)— Y, ¢(X)
= Z (X]) - Z (Xj) - ¢(Xl) = ¢(Xz)
J=Lly;=1 J=ly;=1
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oot — | D o)+ o) | = —o(x),
yj=—1 y::
which imply that

195 — Js|
(3.13) = [lo(x:) + (x| < llp(x)ll + 6 < 2x

The other three combinations can be verified similarly.
We now use (3.13) to complete our sequence of
inequalities, picking up from (3.12):

A (dogy (F5 1) + dag) (F, 1)
1~
<[Al<[B]< —|w-

proving (3.9) and completing the proof. |

W[ 195 — Dol <X

I

Putting together Lemma 3.1 and Lemma 3.2, we
arrive at our main result, namely the following Theo-
rem 3.1 for the generalization performance of the ap-
proximate SVM h given by algorithm Aapprox-

THEOREM 3.1. For anyn > 1 and § € (0,1), we have,
with confidence at least 1 — § over a random draw of a
training dataset D of size n,

22 Inl/d
Zﬁhhz +A+< | +1> o

where h is the approzimate SVM returned by algorithm
Aapproz and, as shown step 3 of Algorithm 1, it min-
imizes the functional R(f;D,)\) (c.f. equation (2.2)),
and D is the reduced training dataset given by step 2 of
Algorithm 1. Furthermore, E {HE

7 1
error rate of h, and -, p,

hinge loss 0fi~z over the original training dataset D. All
other quantities are defined as in Lemma 3.2.

E [ h(x)?fu}

(%) #y} 18 the expected

tw(h,z) is the empirical

4 Discussions

Except requiring the data of the same cluster belong
to the same class, the assumptions in Algorithm 1
put no restrictions on how the training dataset D is
partitioned. Thus, Theorem 3.1 applies regardless of
the way D is partitioned, as long as the representatives
satisfy the three assumptions in Algorithm 1. In other
words, one can use any clustering algorithm preferred,
such as kernel k-means or even random partitioning, to
partition D in Algorithm 1 and, like other generalization
bounds, Theorem 3.1 guarantees that the resulting
approximate SVM will very likely to have a small
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expected error rate if its empirical performance over D
is good.

Theorem 3.1 thus provides a theoretical justification
for using approximate SVMs in practice. Cao et al. [7]
showed that, in order for the approximate SVM to
agree fairly closely with the exact SVM, kernel k-means
[10, 13] should be used to partition D. However, kernel
k-means often suffers from the problem of multiple
local minima, and may yield different partitions for
different initializations. Theorem 3.1 suggests that all
these adverse phenomena can be safely ignored and the
resulting approximate SVM h will very likely have a
small expected error rate if it has a small empirical loss
over the dataset D. Furthermore, since kernel k-means
is an expensive procedure, to speed up the training
process further, Cao et al. [7] proposed to partition D in
the space X using a more efficient clustering algorithm
called Principal Direction Divisive Partition [2], which
was found experimentally to be effective. Theorem 3.1
provides a theoretical justification for this strategy.

Theorem 3.1 includes as a special case the general-
ization bound for the exact SVM proved in [5], which
was also proved by using the approach of algorithmic
stability. The reason is that the approximate SVM h
given by algorithm A,pprox Will be the same as the ex-
act SVM if £ = n and each cluster contains exactly
one training datum. However, the proof in [5] can not
be directly used to prove Theorem 3.1 because D and
D! corresponding to approximate SVMs could be com-
pletely different, while D and D? corresponding to exact
SVMs only differs by a single datum according to [5].

Finally, the bound in Theorem 3.1 is different from
and generally tighter than the bound that would be
obtained based on VC dimension (see e.g. [15]).

5 Conclusion

We proved in this paper a PAC-style generalization
bound for approximate SVMs, which have been pro-
posed to speed up the training process of SVM. The
bound provides a theoretical justification for using ap-
proximate SVMs in practice, and generalizes the gen-
eralization bound for exact SVMs. One future direc-
tion is to develop a generalization bound that explicitly
takes into the account the fact that some specific al-
gorithm, such as kernel k-means, is used to partition
D. The resulting bound is expected to be tighter than
Theorem 3.1, although its applicability may be less gen-
eral. The intuition here is that, taking kernel k-means
as an example, the set of representatives would change
a rather small amount when the training dataset is per-
turbed in the way described in equation (3.5), i.e., the
corresponding stability 7, is expected to be less than
x2/(An) (c.f. Lemma 3.2).
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Appendix: Bregman Divergence

DEFINITION 5.1. (BREGMAN DIVERGENCE [27]) Let
J(f) be a strictly convex, differentiable real-valued

function of f.

The Bregman divergence dj(f1, f2)

induced by J is

dy(f1, f2) = J(f1) = J(f2) = (f1 = f2, VI (f2)) -

The Bregman divergence has following properties.

e Property I: d;(f1, f2) > 0 for all fi, fo;
e Property II: If f* is the minimizer of J(f), then

ds(f', f*) =

J(f") = J(f*) for all f;

e Property III: If J,,J, are two strictly con-

vex,
so is

differentiable
Ja+Jp, and

real-valued functions, then
its Bregman divergence is

di,+0,(f1, fo) = dg, (f1, f2) + dg, (f1, f2)-
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