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Abstract

The expected commute times for a strongly connected directed graph are related
to an asymmetric Laplacian matrix as a direct extension to similar well known
formulas for undirected graphs. We show the close relationships between the
asymmetric Laplacian and the so-called Fundamental matrix. We give bounds
for the commute times in terms of the stationary probabilities for a random walk
over the graph together with the asymmetric Laplacian and show how this can
be approximated by a symmetrized Laplacian derived from a related weighted
undirected graph.
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1. Introduction

The spectral analysis of undirected graphs has been studied extensively
[1, 8, 10, 12, 14, 17, 27, 28, 29, 30, 35, 39], but fewer papers exist discussing
directed graphs (digraphs) [4, 7, 9, 40]. In particular, the relationship between
expected first transit/hitting times and round-trip commute times in a random
walk, on the one hand, and spectral properties of the underlying graph on the
other, has been studied mainly for undirected graphs. In this paper, we show
that the round-trip commute times are closely related to certain asymmetric
“Laplacian” matrices for strongly connected directed graphs in ways analogous
to those known for undirected graphs. We show that one can approximate a
strongly connected digraph by a related weighted undirected graph which shares
some of the properties of the original digraph (e.g. connectivity, stationary prob-
abilities), while only approximately inheriting others (e.g. first transit/hitting
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times and node centrality). This has applications in domains with asymmetric
connections, such as wireless packet switching networks with low-powered units
where link asymmetry is a widely observed phenomenon.

A directed graph, or digraph, G = (V, E), is a collection of vertices (or nodes)
i ∈ V = {1, . . . , n} and directed edges (i → j) ∈ E . One can, optionally, assign
weights to each directed edge, thereby making it a so-called weighted digraph, or
else a common edge weight of 1 to obtain an unweighted digraph. Algebraically,
the digraph G can be represented by its n × n adjacency matrix A = [aij ],
where aij 6= 0 is the weight on edge (i → j) and aij = 0 if (i → j) 6∈ E . A
directed graph G is called strongly connected or a strong digraph if there
is a path i=ℓ0 → ℓ1 → · · · → ℓκ−1 → ℓκ=j for any pair of nodes i, j, where each
link ℓι−1 → ℓι, ι = 1, . . . , κ, is an edge in the graph. In this paper, we focus
entirely on strongly connected directed graphs.

A random walk over a graph can be modeled by a Markov chain with prob-
ability transition matrix P = D−1A, where D = Diag(d) = Diag(A · 1) is
the diagonal matrix of vertex out-degrees and 1 denotes the vector of all ones.
Here we assume every node has at least one out-going edge, which can include
self-loops. The associated vector of stationary probabilities is denoted by
π and satisfies π

TP = π
T and π

T1 = 1. We use the notation Π = Diag(π)
for the diagonal matrix of stationary probabilities, which is non-singular if the
graph is strongly connected.

If the graph is strongly connected, the associated Markov chain is irreducible,
and all the entries of π are strictly positive by Perron-Frobenius theory [15, 20].
If the graph were undirected, the associated Markov chain would be reversible,
and the vector of stationary probabilities would be a scalar multiple of the vector
of vertex degrees: π = d/(dT1), where the denominator would be called the
volume of the graph. Unfortunately, this relationship does not necessarily hold
for digraphs. These quantities have proven useful in the analysis of graphs and
form the basis much of this paper. For more details on Markov chains and their
close relationships with graphs, the reader is referred to [21, 22, 31].

In this work, we examine a scaled “Laplacian,” not necessarily symmetric
and denoted simply by L, which is defined for a strongly connected directed
graph or a strong digraph. In what follows, the words graphs and digraphs
will be used strictly to mean strong digraphs, unless otherwise stated. Even
though most of the derivations mimic known derivations for undirected graphs,
not everything carries over from the world of undirected graphs to that of their
directed counterparts. For example, the concept of “volume” of a graph and
the metaphor of resistances of an electrical network [5, 11, 23] do not play
the obvious central role in the derivations for directed graphs as they do for
undirected graphs.

Our focus is on the asymmetric Laplacian (L = Π(I − P )) and its related
matrices, which help illustrate parallels in the directed case to the well known
properties defined for undirected graphs. In particular, we show the following
for strongly connected directed graphs:
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a. The average hitting times and round-trip commute times can be expressed
in terms of the pseudo-inverse of this Laplacian.

b. The commute time is a distance measure for the vertices of a strongly
connected directed graph.

c. There is a close relationship between the so-called Fundamental Matrix
[19] and the pseudo-inverse of the asymmetric Laplacian (L).

d. The commute times for a directed graph can be bounded in terms of the
stationary probabilities and the eigenvalues of a diagonally scaled sym-
metrized graph Laplacian.

The rest of this paper is organized as follows. Section 2 gives some elemen-
tary necessary lemmas regarding the pseudo-inverse of matrices under rank-one
changes. Section 3 compares the different Laplacians for directed graphs. Sec-
tion 4 ties the the pseudo-inverse of the Laplacian to the expected hitting and
commute times for a strong directed graph through the Fundamental Matrix.
Section 5 derives upper and lower bounds for the commute times in terms of
the stationary probabilities together with the Fundamental Matrix and/or the
diagonally scaled Laplacian. Section 6 shows how the Laplacian yields an indi-
cator of node centrality based on average commute times for directed graphs in
much the same way as for undirected graphs. Section 7 uses a simple example
to show how treating a wireless network as a directed graph, which is more
accurate, can yield a different result compared to the traditional analysis as an
undirected graph.

2. The Pseudo-Inverse Under Small Rank Changes

The development in this paper makes use of several lemmas regarding general
square matrices with nullity equal to 1, and their pseudo-inverses under small
rank modifications. Here nullity is the dimension of the right null space.

Some notation warrant a mention here. We denote matrices with upper case
letters (non-bold, bold, or greek), vectors by lower case bold letters (latin or
greek), and scalars by non-bold lower case letters (latin or greek). To put the
following in context, the first two lemmas concern a general square irreducible
matrix L such that nullity(L) = 1, and its Moore-Penrose pseudo-inverse M =
L+. By a simple singular value decomposition, one can see that nullity(L) =
1 ⇔ nullity(M) = 1. Recall that the adjugate of a matrix A, adj(A) is the
transpose of the matrix of cofactors of A: [adj(A)]ij = det(A−j,−i), where
A−j,−i denotes the (n − 1) × (n − 1) matrix formed from A by deleting row j
and column i.

Lemma 1. Let L =

(
L11 l12
lT21 lnn

)
be an n × n irreducible matrix such that

nullity(L) = 1. Let M = L+ be the pseudo-inverse of L partitioned similarly
and assume (uT, 1)L = 0, L(v; 1) = 0, where u,v are (n−1)-vectors. Here, the
operator ‘;′ denotes vertical concatenation à la Matlab. Then the inverse of the
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(n− 1)× (n− 1) matrix L11 exists and is given by

L−1
11 = X

def

= (In−1 + vvT)M11(In−1 + uuT)

= (In−1 , −v)

(
M11 m12

mT
21 mnn

)(
In−1

−uT

)
,

(1)

where In−1 denotes the (n− 1)× (n− 1) identity matrix.

Proof. Note that, L11v + l12 = 0 and uTL11 + lT21 = 0, and lnn = −uTl12 =
+uTL11v. Given M = L+, the right annihilating vector for L is the left anni-
hilating vector for M and viceversa, i.e. (vT, 1)M = 0 and M(u; 1) = 0.

Hence, M11u + m12 = 0 and vTM11 + mT
21 = 0, and mnn = −vTm12 =

+vTM11u. Therefore, for the (n− 1)× (n− 1) matrix X we have the following
form;

X
def

= In−1 + vvT)M11(In−1 + uuT)
= M11 +M11uu

T + vvTM11 + (vTM11u)vu
T

= M11 −m12u
T − vmT

21 +mnnvu
T

= (In−1 , −v)M

(
In−1

−uT

) (2)

We now show that L11 must have an inverse by contradiction. Suppose L11x = 0
such that x 6= 0. Then lT21x = −uTL11x = 0 which means that L(x, 0)T =
0. However, this would mean that we have a second right annihilating vector
which is not a multiple of (v, 1)T. This contradicts the initial assumption that
nullity(L) = 1.

Let X be as defined above in equation (2). Multiplying on the left and right
sides of X by L11 we get;

L11XL11 = L11(In−1 , −v)M

(
In−1

−uT

)
L11 = (L11 , l12)M

(
L11

lT21

)

=
(
In−1 , 0

)
LML

(
In−1

0T

)
=

(
In−1 , 0

)
L

(
In−1

0T

)
= L11.

Since L11 is invertible, we can multiply both sides of the equation above by L−1
11

on the right to obtain L11X = In−1.

When a non-singular matrix remains non-singular after a rank-one change,
its inverse is given by the well-known Sherman-Morrison formula [20, 18]. How-
ever, when either the starting matrix or the resulting matrix after a rank-one
change is singular, the pseudo-inverse is our only resort. We need the following
result for a rank-one change made to a singular matrix which makes it non-
singular.

Lemma 2. [26] Let A be a singular matrix, and assume C = A+ uvT is non-
singular. Let x,y be unit vectors (in the 2-norm) such that Ax = 0, ATy = 0.
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Then, vTx 6= 0, yTu 6= 0, and the inverse of C is

C−1 = A+ − 1

vTx
xvTA+ −A+ 1

yTu
uyT +

1 + vTA+u

vTx · yTu
xyT (3)

Proof. Since C is non-singular, Cx = uvTx 6= 0, hence vTx 6= 0. Suppose u
could be written as Az for some z, then Cz = Az + uvTz = u(1 + vTz) =

Cx 1+v
T
z

vTx
6= 0. Hence z must be a multiple of x and Az = 0, a contradiction.

So u cannot be written as Az for any z. Likewise yTu 6= 0 and vT cannot be
written as wTA for any wT. We thus have case (i) of [26]. Theorem 1 of [26]
then yields the required result in equation (3).

We also need a lemma in the opposite direction, in which we apply a rank-one
change to a non-singular matrix which makes it singular.

Lemma 3. Let C be an n× n non-singular matrix and suppose A = C − uvT

is singular. Then the Moore-Penrose pseudo-inverse of A is given as:

A+ = B
def

=

(
I − xxT

xTx

)
C−1

(
I − yyT

yTy

)
,

where x = C−1u, yT = vTC−1.

This lemma is most easily proven using the following general result.

Theorem 4. [13, Thm 3]. Let A,B be two matrices such that rank(A +
B) = rank(A) + rank(B). Let S = (PR(BT)PR(AT)⊥)

+, T = (PR(A)⊥PR(B))
+,

where PR(A) denotes the orthogonal projector onto the range (column space) of
a matrix A, and PR(A)⊥ denotes the orthogonal projector onto the orthogonal
complement of the column space of A (same as the left nullspace of A). Then
(A+B)+ = (I − S)A+(I − T ) + SB+T .

Proof of Lemma 3. To prove this result, we establish some facts in sequence:
1. Let z 6= 0 be such that Az = 0. Then Cz = uvTz. That means Cz must

be a non-zero multiple of u. Choose the scaling such that Cz = u. Then
z = C−1u = x, Ax = 0, and vTx = 1. Likewise, we have yTA = 0 and
yTu = 1.

2. We have the two orthogonal projectors in the notation of Theorem 4:(
I − xx

T

xTx

)
= PR(AT)⊥ ,

(
I − yy

T

yTy

)
= PR(A)⊥ . Defining S and T as in

Theorem 4, we then have
(
I − xx

T

xTx

)
S = 0 and T

(
I − yy

T

yTy

)
= 0.

3. Hence, using (3), we get
(
I − xx

T

xTx

)
C−1

(
I − yy

T

yTy

)
=

(
I − xx

T

xTx

)
A+

(
I − yy

T

yTy

)
− 0− 0 + 0 = A+,

where we have used the fact that the left nullspace of A+ equals the right
nullspace of A, namely span{x}, and likewise for the right nullspace of
A+.
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The following lemma is included only only to complete a historical perspec-
tive.

Lemma 5. [36]. If A is a square matrix such that nullity(A) = 1, and u,v are
non-zero vectors such that Au = ATv = 0, then the adjugate of A is a rank-one
matrix given as adj(A) = αuvT, for some scalar α.

Proof. By [36], nullity(A) = 1 ⇒ rank(adj(A)) = 1, hence adj(A) = αxyT for
some non-zero vectors x,y. Since A · adj(A) = Det(A) · I = 0, x must be in the
right nullspace of A and hence is a non-zero multiple of u. Likewise, y must be
a non-zero multiple of v.

Lemma 5 provides an easy way to compute the adjugate of a square matrix
L with nullity(L) = 1. Computing the left and right nullspaces yields u,v,
and computing one principal minor yields the scale-factor α. We remark that
if nullity(A) = 0, then adj(A) = det(A) · A−1, whereas if nullity(A) > 1, then
adj(A) = 0 [36].

3. The Laplacians

Several different Laplacians have been proposed in literature, each one helps
infer different properties for graphs. We provide a brief summary here for a
historical perspective. Recall the notation from sec. 1. A graph G can be
represented by its adjacency matrix A whose i, j-th entry is the weight of the
edge i → j, equal to one if there are no weights, or zero if there is no such
edge. If D = Diag(A · 1) is the diagonal matrix of row sums (out-degrees of the
vertices) of A, then P = D−1A is the probability transition matrix for a random
walk over this graph. Let π be the vector of stationary probabilities, such that
π

TP = π
T and π

T1 = 1, and let Π = Diag(π). The “ordinary” Laplacian

L = Π(I − P ) and the diagonally scaled Laplacian Ld = Π−
1/2LΠ−

1/2 are the
main focus of this paper. We put this Laplacian in perspective by comparing it
to other related Laplacians.

3.1. Unnormalized Laplacian

The unnormalized Laplacian La = D − A for an unweighted digraph
yields the number of spanning trees in the graph [4].

If the underlying graph is undirected, the matrix La is also symmetric, and
in fact identical (up to scaling) with L. This is because the vector of vertex
degrees A ·1 is a scalar multiple of π. However, when the underlying graph is a
digraph, the matrix La is not symmetric and differs from L. In [4] La is called
the Formal Laplacian. This Laplacian has been used extensively to compute the
average first hitting times and round-trip commute times in a random walk on
an undirected graph, identifying which are the most “central” vertices [14, 17],
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the related effective resistance when the graph is an electrical network [5, 11, 23],
including identifying minimal graph cuts in spectral graph partitioning [10, 12,
27, 28, 29, 35, 39], bounding the connectivity of the graph and related Cheeger or
isoperimetric and expander constants [1, 8, 30]. The connection with electrical
theory motivates the name ‘Kirchoff matrix’ or ‘admittance matrix’ for La.

The following is a classical theorem relating this Laplacian to a property
of the original graph, even directed graphs, apparently first proved in [3] and
later proved independently in [38], according to [4]. We present the simplest
case for unweighted directed graphs. To define the terms used here, a spanning
tree rooted at a vertex k is a subgraph of the original directed graph consisting
of all the vertices and just enough directed edges so that there is exactly one
path from k to any other vertex j. A spanning arborescence rooted at k is a
subgraph consisting of all the vertices and just enough directed edges so that
there is exactly one path from any vertex i back to the root k.

Theorem 6. (Matrix-Tree Theorem). Let La = D−A be the n×n Kirchoff
matrix for an unweighted directed graph with adjacency matrix A and with D =
Diag(A · 1). Let (La)−k be the (n − 1) × (n − 1) matrix obtained from La by
deleting row and column k. Then the number of spanning arborescences rooted
at vertex k is equal to the principal minor det[(La)−k].

Proof. See [4, sec. 9.6] and references therein. This is actually a special case of
a more general theorem for weighted directed graphs.

A simple consequence of the result above is the following theorem, which
holds not only when the directed graph is strongly connected but also when it
has exactly one strongly connected component in the sense that all the vertices
can be divided into two disjoint classes V1,V2 where V1 is strongly connected,
and from each vertex in V2 there is a path to a vertex in V1.

Corollary 7. Assume the directed graph is strongly connected, or has exactly
one strongly connected component. Given the notation of Theorem 6, let ri be
the number of spanning arborescences rooted at vertex i, for i = 1, . . . , n. Then
the vector r = (r1, . . . , rn) is the unique (up to scaling) left annihilating vector
for La.

Proof. If the graph is strongly connected, the induced Markov chain must be
irreducible, and hence eigenvalue 1 of the state transition matrix P must be
simple, and the stationary probabilities for the induced Markov chain must
be entirely strictly positive. This implies nullity(La) = 1. By Lemma 5, its
adjugate, adj(La), has rank 1. Since La · 1 = 0, adj(La) = 1vT for some vector
v unique up to scaling, which spans the left nullspace of La. By the Matrix-Tree
Theorem, the diagonal entries of adj(La) are exactly the ri’s, which therefore
satisfy ri = vi.

Directed graphs with more than one strongly connected component have no
spanning arborescences, but they still have spanning forests of arborescences,
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extensively studied by Cheboratev et al (see [7] and references therein). The
discussion of this topic is beyond the scope of this paper, but for completeness
we present the following result.

Corollary 8. [7]. Using the notation of Theorem 6, the number of spanning
forests of arborescences is equal to det(I + La).

Proof. For detailed proofs see [7]. However, a simple argument can be con-
structed by applying the Matrix Tree Theorem to an augmented graph obtained
by adding a single new vertex to the given graph and adding an edge from every
old vertex to this new vertex.

3.2. Other Scalings for the Laplacian

The normalized Laplacian Lp = I−P = D−1La has been used to analyze
connectivity in terms of the mixing times or diffusion rate for the random walk
as well as related expander constants, and in spectral graph partitioning. For
example, in graph partitioning, using the eigenvectors of La corresponds to
finding the minimal cut relative to the number of vertices in each graph partition,
while Lp corresponds to finding the minimal cut relative to the number of edges
in each partition. We refer the reader to [8, 37, 39] for a detailed discussion.

The diagonally scaled Laplacian Ld = Π−
1/2LpΠ−

1/2 = I − Π
1/2PΠ−

1/2 will
be studied in this paper. It is often used since in the case of undirected graphs
this scaling would have the effect of symmetrizing Lp, hence showing that Lp

would have all real eigenvalues.

We summarize the quantities defined above as follows, where A is the adja-
cency matrix for a graph G:

D = Diag(A · 1) Diagonal matrix of out-degrees

P = D−1A Probability transition matrix

Π = Diag(π) Diagonal matrix of

(where π
TP = π

T and π
T1 = 1) stationary probabilities

L = Π−ΠP Ordinary Laplacian

La = D −A = D −DP Unnormalized Laplacian

Lp = I − P Normalized Laplacian

Ld = I −Π
1/2PΠ−

1/2 Diagonally scaled Laplacian

(4)

In addition, we use the letter M to denote the Moore-Penrose pseudo-inverses
of the above quantities:

M = L+, Md = (Ld)+, Mp = (Lp)+, etc. (5)

Once again, in the case of digraphs, Π is not a scalar multiple of D and Ld

is not necessarily symmetric, unlike the situation for undirected graphs. Hence
it has been found useful to study the following symmetrized Laplacians which
do satisfy all the useful properties for undirected graphs.
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3.3. Symmetrized Laplacians and Symmetrized Graph

The symmetrized Laplacians Ls = (L+LT)/2 and Lds = [(Ld)T+Ld]/2
correspond to those used in [9, 40], with various diagonal scalings. In terms of
the transition probability matrix (P ) and the diagonal matrix of stationary
probabilities (Π), we have

Ls = (L+ LT)/2 = Π− (ΠP + PTΠ)/2

Lds = (Ld + (Ld)T)/2 = I − (Π
1/2PΠ−

1/2 +Π−
1/2PTΠ

1/2)/2

= Π−
1/2LsΠ−

1/2

Lps = Π−
1/2LdsΠ

1/2 = I − (P +Π−1PTΠ)/2,

(6)

and their corresponding pseudo-inverses

M s = (Ls)+, Mds = (Lds)+, Mps = (Lps)+. (7)

These Laplacians can be thought of as the ordinary Laplacians for a weighted
undirected graph Gs derived from the original directed graph G. Assume G
is a directed graph without self-loops (edges starting and ending on the same
vertex), with adjacency matrix A. The derived weighted undirected graph Gs is
defined as in [16] to be the graph with adjacency matrix As = (ΠP + PTΠ)/2.
The new graph Gs has exactly the same vertices as G and has edges between
a pair of vertices exactly where there is an edge in either direction in G. The
weight on the edge in Gs connecting vertices i and j is

asij = asji =
πiaij
2di

+
πjaji
2dj

= 1/2(πipij + πjpji), (8)

where aij is the weight of the edge i → j in the original graph G, equal to one if
G was unweighted, and di is the [weighted] out-degree of node i in G. The new
matrix of transition probabilities is

P s = Π−1As = (P +Π−1PTΠ)/2 (9)

with individual entries

psij =
1

2
·
(
pij +

πjpji
πi

)
=

πipij + πjpji
2πi

. (10)

The stationary probabilities for Markov chain represented by P s match those
for P : π

TP s = π
T [16]. A simple calculation shows that the symmetrized

Laplacians, originally defined by symmetrizing the Laplacians of G, are also the
usual Laplacians corresponding to the weighted undirected graph Gs:

Ls = Π−ΠP s

Lds = Π−
1/2LsΠ−

1/2 = I −Π
1/2P sΠ−

1/2

Lps = Π−1Ls = I − P s

(11)

This construction shows that the bounds for G in [9, 40] can be treated as
bounds for the undirected graph Gs based on the classical theory for undirected
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graphs. In [9], they use both Lds and Ls, referring to Ls as the “combinatorial
Laplacian” and reserving the name of just “Laplacian” to our diagonally scaled
version Lds. In [40], they use only Lds. In Sec. 5 we derive bounds on the
commute times in terms of the stationary probabilities, which also apply to Gs,
limiting how much the commute times for Gs graph can differ from those of
the original G. We remark that an alternative way to symmetrize a directed
graph G, with an asymmetric adjacency matrix A, is to symmetrize the edges to
create Av = (A+AT)/2 [6]. We denote this naively symmetrized graph by Gv.
In latter sections we make empirical comparisons for random walk measures to
reveal the varying degrees of inaccuracy incurred upon approximating a directed
graph G by either Gs or Gv.

Henceforth, we concentrate on the asymmetric Laplacian L = Π(I − P ),
referring to this as simply the “Laplacian,” as well as the diagonally scaled
Laplacian Ld = Π

1/2(I − P )Π−
1/2 . We derive bounds applicable to the directed

graph itself based on these Laplacians, separate from bounds for the related
undirected graph.

4. Fundamental Matrix

Consider a Markov chain with state transition matrix P = D−1A, where
D = Diag(d) is a diagonal matrix, d = A · 1 is the vector of [weighted] out-
degrees for the vertices of the graph, and 1 = (1, . . . , 1)T. In the following, we
assume the graph is directed and strongly connected, or equivalently the Markov
chain is irreducible and has no transient states. Clearly, we do not assume either
reversibility or aperiodicity of the equivalent Markov chain.

Definition 9. Using the quantities defined in (4), we define the Fundamental
matrix for a digraph or its corresponding Markov chain, under various scalings:

(a) The Fundamental Matrix Zp [19] whose inverse is

(Zp)−1 def

= Y p def

= (Lp + 1πT) = (I − P + 1πT). (12)

(b) The scaled Fundamental Matrix, Z̃ = ZpΠ−1 whose inverse is

Z̃−1 def

= Ỹ
def

= ΠY p = L+ ππ
T = Π(I − P + 1πT). (13)

(c) The diagonally scaled Fundamental Matrix Zd = Π
1/2Z̃Π

1/2 = Π−
1/2ZpΠ

1/2

whose inverse is

(Zd)−1 def

= Y d def

= Π
1/2Y pΠ−

1/2 = Ld +
√
π

√
π

T
. (14)

Here we use the shorthand
√
π = (

√
π1, . . . ,

√
πn)

T for the vector obtained
by taking the square root of each element. We remark that this vector is
a unit vector in the 2-norm since ‖√π‖22 =

∑
i πi = 1.
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4.1. Properties of the Fundamental Matrix

Lemma 10. The following are some of the elementary properties of the Fun-
damental Matrices and their inverses, and related properties of the Laplacians
and their respective pseudo-inverses, under various scalings.

L · 1 = LT1 = 0 (15)

M · 1 = MT · 1 = 0 (16)

Ld ·
√
π = (Ld)T ·

√
π = 0 (17)

Md ·
√
π = (Md)T ·

√
π = 0 (18)

L, Ld, M , Md all have (left and right) nullity equal to 1 (19)

Ỹ · 1 = Ỹ T · 1 = π (20)

Y d ·
√
π = (Y d)T ·

√
π =

√
π (21)

Proof. To prove (15) and (19), observe 0 = Lx = Πx − ΠPx ⇐⇒ x = Px .
For a strongly connected Markov chain, the Perron-Frobenius theory [15, 20]
guarantees that the eigenvalue 1 of P is simple and hence x must be a multiple
of 1. (16) follows from the observation that the right annihilating vector for L is
the left annihilating vector for M and viceversa. The rest follows similarly.

Before we go any further, we must first establish that Z̃ indeed exists, or
equivalently Ỹ is invertible [19]. We can actually prove the following stronger
result.

Theorem 11. Let P be the transition matrix for an irreducible Markov chain
with a vector of stationary probabilities π, and Π = Diag(π). Then Ỹ = Π(I −
P ) + ππ

T is non-singular and is also positive definite (in the sense that Y s =

(Ỹ + Ỹ T)/2 is symmetric positive definite in the usual sense). In addition L is
positive semi-definite in the sense that Ls = (L+LT)/2 is positive semi-definite.

The following lemma is useful in proving Theorem 11.

Lemma 12. For any given real matrix A, its “symmetric part”, (A + AT)/2,
is symmetric positive semi-definite if and only if xTAx ≥ 0 for any real vector
x. We say the real field of values for A is non-negative.

Proof of Lemma 12. The symmetry of A+AT is trivial. Within this proof, let
i =

√
−1 and let 2

H denote the conjugate transpose of 2. (“if”) Let z = x+ iy
for any real vectors x,y. Then zHAz = (xT− iyT)A(x+ iy) = xTAx+yTAy+
i(xTAy−yTAx) = α+ iβ, where α ≥ 0. Hence zH(A+AT)z = 2α ≥ 0. (“only
if”) Suppose A+AT is real symmetric positive semi-definite. Then for any real
vector x: xTAx = xH(A+AT)x/2 ≥ 0.

In light of Lemma 12, we say a general real matrix A is positive semi-definite
if and only if A+AT is symmetric semi-positive definite in the usual sense.
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Proof of Theorem 11. Let L = Ỹ − ππ
T, and A = I − (L + LT)/2

def

= I − Ls.
From (15) notice that A1 = AT1 = 1. A is symmetric and doubly stochastic
with non-negative entries. Actually, all the entries are in the interval [0, 1). It is
also irreducible, since the original P was, so 1 is a simple eigenvalue of A, and all
the other eigenvalues are in the interval [−1,+1). Therefore, Ls = (L + LT)/2
has a simple zero eigenvalue and all its other eigenvalues are in the interval
(0, 2]. Hence Ls is positive semi-definite and nullity(Ls) = 1. This implies that
the ‘real field of values’ for L is non-negative: xTLx ≥ 0 for any real x.

We further observe that xTLx = 0 only when x = α1 for some scalar
α. Observe that xTỸ x = xTLx + (xT

π)(πTx) ≥ 0, with xTLx ≥ 0 and
(xT

π)(πTx) ≥ 0. The only vector x for which both xTLx = 0 and (xT
π)(πTx) =

0 is x = 0. Hence xTỸ x > 0 for any real x 6= 0.

4.2. Hitting and Commute Times

As an application, the Fundamental Matrix can be used to compute the
“Hitting Time”, also known in the literature as the “First Transit Time” or
“First Passage Time” in a random walk over the underlying digraph. Let H(i, j)
be the average number of state transitions required to reach state j for the first
time starting from state i (hitting time). Similarly, let C(i, j) be the average
“Commute Time” defined as the average number of steps taken in a random
walk starting from state i, visit state j for the first time, and return back to
state i. Evidently, C(i, j) = H(i, j) + H(j, i).

Theorem 13. Define the Fundamental Matrices according to Def. 9. Then the
one-way expected hitting times are

H(i, j)=
zpjj − zpij

πj
= z̃jj − z̃ij =

zdjj
πj

−
zdij√
πiπj

(22)

The round-trip expected commute times are then

C(i, j)=
zpjj − zpij

πj
+

zpii − zpji
πi

= z̃ii + z̃jj − z̃ij − z̃ji =
zdjj
πj

+
zdii
πi

−
zdij + zdji√

πiπj

(23)
In matrix form,

H = 1 · [diag(Z̃)]T − Z̃

C = H+ H
T = 1 · [diag(Z̃)]T + [diag(Z̃)] · 1T − Z̃ − Z̃T

(24)

Proof. The first part of formula (22) is proved in [19] starting with the following
recursive formula for H(i, j) [22, 31, 14, 19]:

H(i, j) = 1 +

n∑

ℓ=1

piℓH(ℓ, j), for all i, j = 1, . . . , n, i 6= j, (25)
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where by convention, H(ℓ, ℓ) = 0, ∀ℓ. The last parts of (22) and (24) were

shown in [24, 25] and follow from the identity Z̃ = Π−
1/2ZdΠ−

1/2 . The rest
follows by direct calculation or by simply assembling the scalar formulas into
a matrix formulation. Notice that C(i, j) = H(i, j) + H(j, i) is a symmetric
quantity while H(i, j) is generally not, whether the underlying graph is directed
or undirected.

The following lemma relates the pseudo-inverse of the Laplacians to the
Fundamental Matrix.

Lemma 14. Using the notation of Def. 9, for a strongly connected directed
graph,

(a) M = L+ =
(
I− 11

T

n

)
Z̃
(
I− 11

T

n

)
.

(b) Z̃ = M −Mπ1T − 1πTM + (1 + π
TMπ)11T.

(c) z̃ij = mij −
∑

j mijπj −
∑

i mijπi + (1 +
∑

ij mijπiπj).

(d) L, M=L+, Ld, Md=(Ld)+ are all positive semi-definite.

(e) Zd = Md +
√
π

√
π

T
.

Proof. Noting that L · 1 = 0, LT · 1 = 0, Ỹ · 1 = π, Ỹ T · 1 = π (Lemma
10), formulas (a), (b) follow immediately from Lemmas 3 and 2, respectively.
Formula (c) is just the elementwise version of item (b). Formula (d) follows
from Theorem 11 and Lemma 3. Formula (e) follows similarly to item (b) by
recalling (18).

This yields the main theorem of this section, expressing the hitting and
commute times in terms of the pseudo-inverse of the Laplacian.

Theorem 15. If L is the Laplacian for a strongly connected unweighted directed
graph, and M = L+ is its Moore-Penrose pseudo-inverse, then the expected
hitting times and commute times, in terms of the Laplacian pseudo-inverse, are

H(i, j) = mjj −mij +
∑

ℓ

(miℓ −mjℓ)πℓ =
md

jj

πj
−

md
ij√

πiπj
(26)

C(i, j) = mjj +mii −mij −mji =
md

jj

πj
+

md
ii

πi
−

md
ij +md

ji√
πiπj

(27)

Furthermore, a set of points {si}n1 can be found in the Euclidean space R
n

corresponding to the n vertices of the graph such that C(i, j) = ‖si − sj‖22.

Proof. Substitute Lemma 14(c), (e) into the formulas of Theorem 13. The
relations involving md

ij were shown in [24, 25]. The last statement follows by

13



observing that M +MT is positive semi-definite or equivalently that Z̃ + Z̃T is
positive definite, so that they can be considered as Gram matrices. It is then a
simple consequence of (23) and the following theorem of [33, 34, 2], reformulated
in terms of matrices.

Theorem 16. [33, 34, 2] Let Z be an n × n symmetric matrix. Define the
matrix C = [diag(Z) ·1T +1 ·diag(Z)T]/2−Z. Then there exists a set of points
{si}n1 ⊂ R

n such that Cij = ‖si−sj‖22 ∀i, j = 1, . . . , n if and only if Z is positive
semi-definite.

The formulas of Theorem 15 reduce to the usual known formulas for hitting
times and commute times when the underlying graph is undirected [5, 11, 14,
17, 23].

5. Bounds on Commute Times

In this section we give some upper and lower bounds on the commute times
in terms of the transition probabilities and the stationary probabilities. First
we recall the following fact:

1 +
∑

i

pkiH(i, k) =
1

πk
(28)

The left side of (28) is the expected return time between visits to node k in
the Markov chain modeled by transition matrix P , computed by taking the
weighted average of the hitting times from each of k’s neighbors back to k. It
is well known that this is equal to the inverse of the stationary probability. A
purely linear algebraic derivation of this fact is as follows. First observe

−PZ̃ = (I − P + 1πT)Z̃ − (I + 1πT)Z̃ = Y pZ̃ − (I + 1πT)Z̃

= Π−1 − Z̃ − 1πTZ̃ = Π−1 − Z̃ − 11T,

where the last equality uses (20). Next combine the above with (24) to obtain

P H = P (1 · [diag(Z̃)]T − Z̃)

= 1 · [diag(Z̃)]T +Π−1 − Z̃ − 11T = H+Π−1 − 11T.

Equating the diagonal entries and observing that H(k, k) = 0 for all k yields
formula (28).

Since the average round-trip commute time between node k and some other
specific node j must be at least equal to the average time from k to any other
node and back to node k, we immediately have a lower bound

C(i, j) = C(j, i) ≥ max

{
1

πi
,
1

πj

}
. (29)
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We also have the following identity that follows immediately from (22)

Hπ = 1 · diag(Z̃)Tπ − Z̃π = (tr(Zp)− 1)1 ⇐⇒
∑

k

H(i, k)πk = tr(Zp)− 1,

(30)
where tr(Z) denotes the trace of the matrix Z (the sum of the diagonal entries).
By observing that all the factors in (30) are non-negative, we also have the
following upper bounds.

H(i, j) ≤ (tr(Zp)− 1)/πj .

C(i, j) ≤ (tr(Zp)− 1) ·
(

1

πj
+

1

πi

)
. (31)

Observe that tr(Zp) = tr(Zd), and this last quantity can be written in terms
of π and the diagonally scaled Laplacian Ld as follows. Recalling (14), we

construct the symmetric unitary Householder transformation H = I − 2vv
T

vTv

such that H
√
π = e1, by setting v =

√
π − e1. By (18), (21), HLdH, HY dH

have the form:

Lh = HLdH =

(
0 0T

0 Lh
2

)
and Y h = HY dH =

(
1 0T

0 Lh
2

)
,

yielding the identity (Y h)−1 = (Lh)++e1e
T
1 , equivalent to (14). Hence Tr[(Y

d)−1]
= Tr[(Ld)+] + 1. This immediately yields the identity

tr(Zp) = tr(Zd) = tr[Md] + 1. (32)

For the corresponding weighted undirected graph Gs represented by (8) sharing
the same stationary probabilities as G, both the lower bound (29) and the upper
bound (31) apply unchanged, though the factor tr(Zp) − 1 = tr[Md] in the
upper bound will be replaced by tr(Zps) − 1 = tr[(Lds)+] = tr[Mds]. We now
show that the resulting upper bound applies not only to Gs, but also to the
original G, so that we have a set of upper and lower bounds common to both
graphs. These bounds will imply that there is a limit to how much difference
there can be between the commute times for a directed graph G and those for
its corresponding symmetrized graph Gs. To show this, we need the following
lemmas.

Lemma 17. If A is real symmetric positive definite and B is real skew-symmetric
(BT = −B), then C = A−1−(A+B)−1 exists and is real positive semi-definite
(in the sense that uTCu ≥ 0 for any real u). If B is also non-singular, then C
is positive definite.

Proof. 1. Recall skew-symmetry implies uTBu = 0 for any real vector u.

2. Check C exists: For any nonzero vector u, uT(A+B)u = uTAu > 0. So
(A+B) cannot be a singular matrix.
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3. For a non-zero vector u, set v = (A +B)−1u, and notice vT = uT(A −
B)−1 due to the skew-symmetry of B. Compute

uT(A+B)−1u = vT(A−B)v = vTAv.

4. Compute
uTA−1u = vT(A−B)A−1(A+B)v

= vT(A−B+B−BA−1B)v
= vTAv − vTBA−1Bv.

5. Now −BA−1B = BTA−1B is a symmetric positive semi-definite matrix
(strictly definite if B non-singular). Hence we have, for any non-zero
vector u,

uTCu = uTA−1u− uT(A+B)−1u
= −vTBA−1Bv
≥ 0 (strictly > 0 if B is non-singular).

Lemma 18. If Y is a real matrix and (Y + Y T) is positive definite, then
tr(Y −1) ≤ tr[((Y + Y T)/2)−1].

Proof. Let A = (Y + Y T)/2. This matrix is positive definite. Let B = (Y −
Y T)/2. This matrix is real skew-symmetric. Let C = A−1−Y −1 = A−1−(A+
B)−1. Then C is positive definite and tr(A−1)− tr(Y −1) = tr(C) ≥ 0.

Lemma 19. Let G be a directed graph with probability transition matrix P
and let Gs be the corresponding weighted undirected graph with the associated
matrices defined by (4), (6), and Def. 9. Then

tr(Zd) ≤ tr(Zps) = tr[Mds] + 1, and C(i, j) < C
s(i, j).

Proof. Since Y d = Π−
1/2 ỸΠ−

1/2 = Π−
1/2Z̃−1Π−

1/2 (a nonsingular congruence
transformation), it follows by Theorem 11 that its symmetric part, Y ds =
1/2(Y

d + (Y d)T), is positive definite. Hence Lemma 18 applies guaranteeing
that tr(Zd) ≤ tr(Zds). In addition, defining Y s = (Zs)−1 = Ls + ππ

T =

(L + LT)/2 + ππ
T, Lemma 18 guarantees that X = Zs − Z̃ is also positive

semi-definite. Combining (23) with Cs(i, j) = zsii + zsjj − zsij − zsji and Theorem
16 yields the fact that ∂C(i, j) = C

s(i, j)− C(i, j) = xii + xjj − xij − xji is also
a squared euclidean distance and hence non-negative.

Theorem 20. Let G, Gs, P , P s, Ld, Lds be defined as in Lemma 19. Then the
respective expected hitting H,Hs and commute times C,Cs satisfy the following
bounds

(a) H(i, j) ≤ tr[Md]/πj ≤ tr[Mds]/πj ;
(b) Hs(i, j) ≤ tr[Mds]/πj ;

(33)
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(a) max
{

1
πi
, 1

πj

}
≤ C(i, j) ≤ tr[Md] ·

(
1
πj

+ 1
πi

)
≤ tr[Mds] ·

(
1
πj

+ 1
πi

)

(b) max
{

1
πi
, 1

πj

}
≤ C(i, j) ≤ C

s(i, j) ≤ tr[Mds] ·
(

1
πj

+ 1
πi

)
;

(34)

Proof. Follows from the above discussion.

We remark that all the eigenvalues of Lds are real and positive (except for
one zero eigenvalue) and are identical to the eigenvalues of Lps, since these are
the appropriately scaled Laplacians for an undirected graph. If we enumerate
these eigenvalues in non-decreasing order, 0 < λ2 ≤ · · · ≤ λn, then an upper
bound for the factor tr[Mds] is tr[Mds] ≤ (n − 1)/λ2. This theorem is one
example in which quantities derived from an undirected graph, for which much
theory is known, can be applied to bound a property for a strongly connected
directed graph.

6. Estimating Centrality of Individual Nodes

As a possible application, we can get a measure of the centrality of a given
vertex by adding the average lengths of all walks between any pair of vertices
when those walks are restricted to passing through the given vertex, following
similar analysis for undirected graphs [32]. If we compare this sum to the sum
over all possible paths, we get an estimate on how much the restriction of passing
through a given vertex q represents a detour in going from an arbitrary vertex
i to another arbitrary vertex j. Since

∑
i mij =

∑
j mij = 0 (16), equation (26)

yields (for all paths)

∑

ij

H(i, j) = n
∑

j

mjj = n · Trace(M). (35)

The expected length of a walk from i to j forced through node q is:

Hq(i, j) = H(i, q) + H(q, j)

= mqq −miq +
∑

ℓ

(miℓ −mqℓ)πℓ

+mjj −mqj +
∑

ℓ

(mqℓ −mjℓ)πℓ

= mqq +mjj −miq −mqj +
∑

ℓ

(miℓ −mjℓ)πℓ

= H(i, j) +mqq −miq −mqj

(36)

Summing this up for all pairs of sources i and destinations j yields

∑

ij

Hq(i, j) = n · Trace(M) + n2mqq (37)
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Figure 1: Simple unweighted directed graph G corresponding to (39) and its corresponding
symmetrized weighted undirected graph Gs derived using (8), (9).

Hence the difference between (37) and (35), namely n2mqq, represents the extra
distance traveled between two vertices when forced to pass through vertex q,
summed over all n2 pairs of source/destination vertices.

Similarly, one can compute the detour overhead through a node q using the
commute time distances, yielding

∑

ij

Cq(i, j) = 2n · Trace(M) + 2n2mqq (38)

Hence diagonal entries of M = L+ are a relative measure of centrality for the
individual nodes, in much the same way as for undirected graphs, as reported
in e.g. [32].

7. Examples and Application Scenarios

7.1. An Example

We illustrate some of the results in this work with the help of a simple
example. The state transition matrices for the the simple network G (shown
in Fig. 1(a)) and for the corresponding weighted undirected graph Gs (derived
using (8) and shown in Fig. 1(b)) are

P = P (G) = P s = P (Gs) =



0 1 0 0 0 0
0 0 1/2 0 1/2 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0




,




0 1/2 0 0 0 1/2
1/2 0 1/4 0 1/4 0
0 1/2 0 1/2 0 0
0 0 1/2 0 1/2 0
0 1/4 0 1/4 0 1/2
1/2 0 0 0 1/2 0




.
(39)

The vector of stationary probabilities shared by both G and Gs is

π =
(
0.2, 0.2, 0.1, 0.1, 0.2, 0.2

)T
.
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The pseudo-inverses of the Laplacians for these graphs are

M = L+ for G (Fig. 1a) M s = (Ls)+ for Gs (Fig. 1b)

5

18




9 6 0 −6 −3 −6
−6 9 3 −3 0 −3
−9 −12 18 12 −3 −6
−3 −6 −12 18 3 0
3 0 −6 −12 9 6
6 3 −3 −9 −6 9




5

18




19 3 −11 −13 −3 5
3 15 −3 −9 −3 −3

−11 −3 31 5 −9 −13
−13 −9 5 31 −3 −11
−3 −3 −9 −3 15 3
5 −3 −13 −11 3 19




Following (37), we use the diagonal entry mqq of the pseudo-inverse of the
Laplacian as a measure of centrality. Recall, the lower the value of mqq, the
more central is the node q. For the original graph, nodes 1, 2, 5, 6 are tied as
winners in their centrality scores, while in the symmetrized graph, nodes 2, 5
are considered more central compared to nodes 1, 6. We, therefore, see that the
centrality ranks are not invariant under the symmetrization process even when
the page rank, determined by the vector of stationary probabilities, is the same
for both G and Gs.

The matrices of commute times for the two graphs are (rounded to the digits
shown)

C for G (Fig. 1a) C for Gs (Fig. 1b)



0 5 10 10 5 5
5 0 10 10 5 5

10 10 0 10 10 10
10 10 10 0 10 10
5 5 10 10 0 5
5 5 10 10 5 0







0 7.8 20.0 21.1 11.1 7.8
7.8 0 14.4 17.8 10.0 11.1
20.0 14.4 0 14.4 17.8 21.1
21.1 17.8 14.4 0 14.4 20.0
11.1 10.0 17.8 14.4 0 7.8
7.8 11.1 21.1 20.0 7.8 0




The lower bounds (29) are the same for both these graphs since they depend
only on the stationary probabilities, which they share. In this particular case,
the lower bounds happen to exactly match the commute times C for G. Hence
this example shows the lower bounds can be tight. The upper bounds (31) for
G are 



0 29.0 43.5 43.5 29.0 29.0
29.0 0 43.5 43.5 29.0 29.0
43.5 43.5 0 58.0 43.5 43.5
43.5 43.5 58.0 0 43.5 43.5
29.0 29.0 43.5 43.5 0 29.0
29.0 29.0 43.5 43.5 29.0 0




,

and for Gs are



0 53.0 79.5 79.5 53.0 53.0
53.0 0 79.5 79.5 53.0 53.0
79.5 79.5 0 106.0 79.5 79.5
79.5 79.5 106.0 0 79.5 79.5
53.0 53.0 79.5 79.5 0 53.0
53.0 53.0 79.5 79.5 53.0 0




.
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Figure 2: A high power broadcaster on a ring of low power stations with one high powered
base station.

Considering that the upper bounds were derived from the summation in (30),
it is clear that at least one term in that summation must satisfy H(i, j)πj ≤
(tr(Zd)− 1)/n, and hence the upper bounds cannot be tight.

7.2. Asymmetric Nature of Wireless Networks

We now use an example motivated by the domain of wireless networks to
illustrate how certain graph quantities for the directed graph can be markedly
different in the corresponding symmetrized graphs. Wireless networks is one
domain where link asymmetry naturally demands modeling of networks as di-
rected graphs. Traditionally, these have been modeled as undirected graphs [6]
using various methods of symmetrization for the sake of simplicity. Recently
Li & Zhang [24, 25] proposed to treat wireless networks with their asymmetric
links as is while analyzing the average transmission delays and costs between
pairs of nodes in the network. For simplicity, we assign an equal cost to every
link in the topology while preserving the link asymmetry. We also confine our-
selves to the case of stateless routing [6], akin to a random walk over the state
space of the wireless devices in the topology, which is relevant to the current
work and is applicable to wireless networks due to ease of implementation and
maintenance.

Consider the topologies in figure 2 with a high power base station, node 1,
that can transmit to all the other nodes in the topology through a broadcast.
The other low power stations, nodes 2 through n, form a chain-like topology
with links to their immediate neighbors. Only node n, henceforth called the
terminal node, has a link to the broadcasting base station. It is therefore the
egress point of the chain topology. In figure 2 (a), the links connecting the nodes
2 through n to their respective neighbors are symmetric/bi-directional while in
2 (b), each of the low power nodes has an asymmetric link to its neighbor in
the clockwise direction. Of course, the connection between nodes 1 and n is
bi-directional in both topologies.
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Figure 3: Ratio of Hitting times between nodes 2 and 3 for G, Gs and Gv for figure 2(a).
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Figure 4: Ratio of Hitting times between nodes n− 1 and n for G, Gs and Gv for figure 2(b).

We study the hitting times between a pair of nodes in each of the two
topologies to observe the effect of approximating a directed graph G by its
symmetrized counterparts Gs or Gv. The control parameter for the experiment
is the number of nodes in the topology which we vary from n = 100 to n = 1000
in steps of 100.

For the topology in figure 2 (a), we analyze the hitting times between nodes
2 and 3. The numerical values of H(2, 3) and H(3, 2) have been provided in Table
1 for n = {100, 500, 1000}. While H(2, 3) is constant (≈ 1), H(3, 2) increases con-
sistently with increasing values of n for the original digraph G. This illustrates
that the expected cost of communication from node 3 to node 2 rises linearly
with the size of the ring. In figure 3, we plot the ratios H(3, 2)/H(2, 3) for the di-
rected graph G, Hs(3, 2)/Hs(2, 3) the symmetrized graph Gs and Hv(3, 2)/Hv(2, 3)
the naively symmetrized graph Gv. Notice that while the curve monotonically
increases with the value of n for G and Gs, for Gv it is almost a constant (≈ 2).

Similarly, for the topology in figure 2 (b), we analyze the hitting times
between nodes n − 1 and n, instead. The numerical values of H(n − 1, n) and
H(n, n − 1) have been provided in Table 2 for n = {100, 500, 1000}. Again,
H(n − 1, n) is constant (≈ 1) whereas H(n, n − 1) increases consistently with
increasing values of n. In figure 4, we plot the ratios H(n, n− 1)/H(n− 1, n) in
the directed graph G, Hs(n, n − 1)/Hs(n − 1, n) the symmetrized graph Gs and
H
v(n, n − 1)/Hv(n − 1, n) the naively symmetrized graph Gv. This time, the
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Table 1: H(2, 3) and H(3, 2) for the directed graph G in figure 2 (a) and its symmetrized
variants.

Directed graph G Symmetrized graph G
s Naively symmetrized G

v

n H(2,3) H(3,2) H
s
(2,3) H

s
(3,2) H

v
(2,3) H

v
(3,2)

100 1 130.6867 1.3868 130.3000 73.5000 148.5000

500 1 664.0004 1.3963 663.6077 373.5000 748.5000

1000 1 1330.6686 1.3964 1330.2722 748.5000 1498.5000

Table 2: H(n−1, n) and H(n, n−1) for the directed graph G in figure 2 (b) and its symmetrized
variants.

Directed graph G Symmetrized graph G
s Naively symmetrized G

v

n H(n−1,n) H(n,n−1) H
s
(n−1,n) H

s
(n,n−1) H

v
(n−1,n) H

v
(n,n−1)

100 1 50.5204 23.8302 70.3670 94.1911 114.8430

500 1 250.5040 60.3551 421.7567 471.8999 581.7167

1000 1 500.5020 87.9956 884.9298 944.0358 1165.30

curve for G grows at a much faster rate with growing values of n than for either
Gs or Gv.

From these observations, we see that the hitting times for a digraph and for
any of its symmetrizations may differ markedly, apparently without bound.

8. Conclusion

In this work we studied an asymmetric Laplacian under two different scalings
for strongly connected digraphs, the pseudo-inverse of which helps compute
important graph properties much the same way as is done in the undirected
case. In particular, we developed formulas for the average hitting and commute
times which mimic the undirected case, and derived some upper and lower points
for these quantities. We derived a specific symmetrization of the digraph which
preserves the vertices, edge sets, and stationary probabilities, albeit with altered
edge weights, allowing one to exploit the wealth of existing knowledge base for
undirected graphs. Finally, we motivated the necessity for computing random
walk based quantities directly on the asymmetric structure represented by a
directed graph through a case study for a wireless network setup. Through it,
we demonstrated how approximating a directed graph by a symmetrized version
can lead to large discrepancies even when the resulting undirected graph shares
the steady state stationary probabilities with the original directed graph.
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