Principal Direction Partitioning in Data Mining

Daniel Boley Computer Science and Engineering University of Minnesota

http://www.cs.umn.edu/~boley/PDDP.html
Supported in part by NSF

1

Outline

- Practice of Data Mining
- Divisive Partitioning for Unsupervised Clustering
- Related Methods
- Algorithmic Issues Fast Lanczos Solver
- Experimental Results
- Linear Algebra elsewhere in Data Exploration
- Conclusions and Future Work

Practice of Data Mining

- Data Explosion
 - Commercial & Gov't databases
 - Scientific data: Space, Satellite, Simulations.
 - WWW had 200 M web pages in 1997, 800 M in 1999.
- Search through commercial transactions:
 - Find patterns in buying habits
 - Predict where to focus marketing efforts
- Organize scientific data
 - Extract & Save only "interesting parts" of PDE simulations
 - Classify many individual data samples (stars, terrains, etc.)
- Aid in searching WWW & organizing what is found.

3

Divisive Partitioning for Unsupervised Clustering

- Unsupervised, as opposed to Supervised:
 - no predefined categories;
 - no previously classified training data;
 - no a-priori assumptions on the number of clusters.
- Top-down Hierarchical:
 - imposes a tree hierarchy on unstructured data;
 - tree is source for some taxomonic information for dataset;
 - tree is generated from the root down.
- Principal Direction Divisive Partitioning
 - operates on real-valued data, even with missing data;
 - embedded in high dimensional Euclidean space;
 - fast & scalable by using efficient Lanczos solver.

Principal Direction Divisive Partitioning

- Start with root cluster representing all the documents.
- Split the root cluster into two children clusters.
- Recursively split each leaf cluster into two children
- Stop when stopping test satisfied.

5

Data Representation for Linear Algebra Methods

- ullet Each document represented by n-vector ${f d}$ of word counts.
- Vectors assembled into Term Frequency Matrix $\mathbf{M} = (\mathbf{d}_1 \quad \cdots \quad \mathbf{d}_m)$.

				3041		
	\L	s 10:5	, or	\$° ,<), cho c	0
	System	(1)/1050	Si Jose	" (O')	cio Jos	⁷ 22,
	4.6	Fright Close	Sugar Sol		igious Honey	,
berkeley	1	0	0	0	2	
stanford	3	0	2	0	2	
minnesota	0	2	0	1	0	
wisconsin	0	2	2	1	0	
ucla	1	0	0	0	1	
caltech	1	0	1	0	1	

• Other attribute valuess can also be used.

Divisive Partitioning

- ullet Each document represented by n-vector \mathbf{d} of word counts.
- ullet Each ${f d}$ scaled to $\|{f d}\|=1$ to make independent of document length.
- Vectors assembled into Term Frequency Matrix $\mathbf{M} = (\mathbf{d}_1 \ \cdots \ \mathbf{d}_m)$.

Splitting Process:

- Get leading principal direction \mathbf{u} of $\mathbf{M} \mathbf{w} \mathbf{e}^T$ with SVD, where $\mathbf{w} \stackrel{\triangle}{=} \frac{1}{m} \mathbf{M} \mathbf{e} = \text{centroid}, \ \mathbf{e} \stackrel{\triangle}{=} (\mathbf{1} \cdots \mathbf{1})^T$.
- Split documents by value of projection $\mathbf{u}^T(\mathbf{d}_j \mathbf{w})$, $j = 1, 2, \cdots$
- Repeat recursively on each set of documents.

7

Divisive Partitioning - Splitting Step

Two Total Clusters

Three Total Clusters

Divisive Algorithm

- 0. **Start** with $n \times m$ matrix M of (scaled) document vectors.
- 1. Initialize Binary Tree with a single Root Node.
- 2. For c = 2, 3, ..., do

С

- 3. **Select** node K with largest *cluster scatter* value.
- 4. **Compute** principal direction **u**.
- 5. **Set** indices(L) := indices of the non-positive entries in <math>u.
- 6. **Set** $indices(\mathbb{R}) := indices of the positive entries in <math>\mathbf{u}$.
- 7. **Put** documents L into left child, R in to right child.
- 8. **Compute** centroid scatter of collected cluster centroids.
- 9. **until** centroid scatter exceeds largest cluster scatter.
- 10. **Result:** A binary tree with leaf nodes forming a partitioning of the entire data set.

8

Document Clusters

Related Methods – Principal Component Analysis

- PCA shifts the documents by their mean: $\mathbf{M} \to \mathbf{M} \mathbf{e}\mathbf{w}^T$ where $\mathbf{e} = (\mathbf{1} \cdots \mathbf{1})^T$, $\mathbf{w} = \text{centroid}$.
- Then select best rank k approximation to $\mathbf{M} \mathbf{e}\mathbf{w}^T$.
- Result: original data represented with fewer degrees of freedom.
- Like LSI, get vectors giving inter-word relationships.
- PDDP computes just first eigenvector.

10

Related Methods - Spectral Graph Partitioning

- $\mathbf{A} \stackrel{\triangle}{=} \mathsf{Laplacian}$: diagonal entry $a_{ii} \stackrel{\triangle}{=} \mathsf{degree}$ of v_i , and $a_{ij} \stackrel{\triangle}{=} -1$ iff there is an edge between vertex $i \Longleftrightarrow \mathsf{vertex}\ j$.
- Smallest eigenvalue is zero; Fiedler vector is eigenvector corresponding to next smallest eigenvalue.
 Split vertices according to sign of Fiedler vector entry.
- Get same split applying PDDP to sI-A for $s>\lambda_{\text{max}}$. Same eigenvector algorithm, same convergence rate: eigenvalue distribution much less favorable than for text documents.

Spatial vs Spectral Graph Partitioning

Algorithmic Issues – Fast Lanczos Solver

- Total cost dominated by cost of finding principal direction.
- Use efficient sparse matrix eigensolver "Lanczos".
- Matrix used only to form matrix-vector products.
- Convergence depends on distribution of eigenvalues.
- On matrices of word counts from document sets, convergence appears to be fast (\sim 20 iterations).
- Cost to find first principal direction:

Lanczos iters] .	mat-vec	products	per	iter		cost of mat-vec product				
~ 20].		2				fill fraction $\cdot m \cdot n$.				

• Subsequent principal directions are cheaper [fewer documents].

Symmetric Lanczos Recursion

• $\mathbf{A}\mathbf{X}_p = \mathbf{X}_p\mathbf{T}_p + \mathbf{x}_{p+1}\mathbf{e}_p^Tt_{p+1,p}$ where $\mathbf{T}_p = (t_{ij})_{p \times p}$, symmetric & tridiagonal, and $\mathbf{X}_p = [\mathbf{x}_1, \dots, \mathbf{x}_p]$ is the $n \times p$ matrix of Lanczos vectors.

Traditional Termination Condition – use eigenvector:

• Let λ_p, \mathbf{v}_p be leading eigenpair of \mathbf{T}_p . Then

$$\mathbf{A}\mathbf{X}_{p}\mathbf{v}_{p} = (\mathbf{X}_{p}\mathbf{T}_{p} + \mathbf{x}_{p+1}\mathbf{e}_{p}^{T}t_{p+1,p})\mathbf{v}_{p} = \lambda_{p}\mathbf{X}_{p}\mathbf{v}_{p} + \boxed{t_{p+1,p}v_{pp}}\mathbf{x}_{p+1},$$

• Stop when $t_{p+1,p}v_{pp}$ is small.

Simplified Termination Condition – use eigenvalue:

- Interlacing property implies $\lambda_p \geq \lambda_{p-1}$ in exact arithmetic.
- Stop when $\lambda_p \leq \lambda_{p-1}$, or alternatively when $|\lambda_p \lambda_{p-1}|$ is small.

14

Lanczos Algorithm

- 0. **Start** with $m \times m$ symmetric matrix **A** and starting vector \mathbf{x}_1 .
- 1. For $p = 1, 2, 3, \dots$ do
- 2. **Set** $\hat{\mathbf{x}} = \mathbf{A}\mathbf{x}_p$ *mat-vec product: most costly step*
- 3. If p > 1, set $\hat{\mathbf{x}} = \hat{\mathbf{x}} t_{p-1,p} \mathbf{x}_{p-1}$
- 4. Set $t_{pp} = \mathbf{x}_p^T \hat{\mathbf{x}}$
- 5. **Set** $\lambda_p = \max\{\text{eig}(\mathbf{T})\}$ *no eigenvector needed here*
- 6. If $\lambda_p \leq \lambda_{p-1}$, set p = p-1; break
- 7. **Set** $\hat{\mathbf{x}} = \hat{\mathbf{x}} t_{pp}\mathbf{x}_p$
- 8. Set $t_{p+1,p} = t_{p,p+1} = \|\hat{\mathbf{x}}\|$
- 9. If $t_{p+1,p} \leq \text{tol}$, break
- 10. Set $x_{p+1} = \hat{x} / t_{p+1,p}$
- 11. Set $\mathbf{w} = [\mathbf{x}_1, \dots, \mathbf{x}_p] \times [\text{leading eigenvector of } \mathbf{T}]$
- 12. **Result:** eigenpair λ_p , w.

Adapt Lanczos Algorithm – Choices

- Low accuracy needed: use $\mathbf{A} \stackrel{\triangle}{=} \mathbf{M} \mathbf{M}^T$ or $\mathbf{M}^T \mathbf{M}$ for simplicity.
- No reorthogonalization to get speed.
- Spurious eigenvalues always in interior can ignore.
- Simple "eigenvalue only" stopping test.
- Could use Sturm sequences to get leading eigenvalue fast (or other recent fast solver)
- Save computation of eigenvectors until end.
- Lanczos vectors used only at end for eigenvectors.

16

Computed Eigenvalues vs Iteration Number

SVplot.eps

Experimental Results: Document Test Sets

Ехр	Term Fro	equency Matri	x Size	Selection				
#	F-series	J-series	K-series	Criteria				
1 2	98 × 5623 98 × 619	185 × 10536 185 × 946	2340 × 21839 2340 × 7358	all words quantile filtering				
3	98 × 1239	185×1763	2340 × 8104	top 20+ words				
4	98 × 1432	185 × 2951		top 5+ words plus emphasized words				
5	98×399	185×449	2340×1458	frequent item sets				
6	98×2641	185×5106		all with $TF>1$				
7	98×1004	185×1328		top 20 $+$ & TF $>$ 1				
8	98×827	185×1105		top 15 $+$ & TF $>$ 1				
9	98×622	185×805		top 10 $+$ & TF $>$ 1				
10	98 × 332	185×474		top 5+ & TF > 1				
	ters-21578 ters-21578		21577 × 32513 10794 × 21190	all documents docs w/topic labels				

18

Speed on Text Documents

Quality on Text Documents

20

Cluster Contents

cluster:	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
business	90	0	0	0	7	0	5	12	0	6	0	1	18	3	0	0
health	0	150	166	171	3	0	1	1	0	0	0	0	0	2	0	0
politics	2	0	0	0	100	1	2	0	0	1	0	2	1	5	0	0
sports	0	0	0	0	1	62	35	0	0	1	0	0	0	42	0	0
techno.	8	0	0	0	0	1	14	24	0	8	0	1	4	0	0	0
entertain.	24	0	0	4	11	4	22	61	135	131	148	159	143	137	204	206

topic

number of documents of each topic in each cluster

c 22

Experiment: Search for MBTE on Altavista

Found 222 documents, clustered as follows:

CENTROID WORDS

62:found.serv.request.url.alt.html.fram.pleas.http.fil.de.ww 44:inc.servi.corp.ttm.compan.com.sit.stock.fre.pri.mrq.syste 38:fuel.car.gasolin.vehic.rav.re.com.gas.engin.pri.messag.su 78:wat.mtb.environmental.air.health.gasolin.program.sit.cali PRINCIPAL DIRECTION WORDS

62:found.serv.url.request.html.pleas.apach.fil.port.htm.http 44:inc.corp.ttm.ltd.servi.corpor.international.mrq.stock.fir 38:rav.car.fuel.tir.subject.toyota.vehic.driv.wd.engin.com.h 78:wat.mtb.environmental.health.california.air.gasolin.clear

Linear Algebra elsewhere in Data Exploration

- Latent Semantic Indexing (Anderson, Berry, Dumais, ...).
 - Find documents best matching a query, by e.g. angle.
 - Replace M with low rank version to reduce noise.
- Linear Least Squares Fit (Yang, Chute MEDLINE).
 - ullet Have 2nd matrix ${f N}$ of predefined categories for each document.
 - Train by finding best fit: minimize $\mathbf{W} \| \mathbf{W} \mathbf{M} \mathbf{N} \|_F$.
- Hub & Authority of Web Pages from Link Structure (Kleinberg).
 - Authority/hubness weighted by incoming/outgoing links.
 - Propagate weights, much like simulating a Markov chain.
- Surface matching from images (*Tomasi, Kriegman, ...*).
 - Get leading singular vectors from many images of same surface.
 - Use to match queries (e.g. recognize building, face, etc.).

24

Conclusions

- Unsupervised Clustering: get structure on large unstructured datasets.
- PDDP exhibits good scalability properties.
- PDDP generates clusters of high quality, comparable to other methods.
- PDDP identifies the distinctive features of the individual clusters.
- PDDP can be applied to non-text data.
- PDDP needs a self-contained, portable implementation.

Future Work

- Applications:
 - Organize Alcohol Laws for Minn. Health Dept. study
 - Classify speech recognition errors left over after all other processing.
 - Image data: classification or anomaly detection
 - Minnesota Sky Survey.
- Method Development
 - Two principal directions at a time (4-way split?).
 - Re-agglomerate clusters wrongly chopped by hyperplane.
 - Adjust hyperplanes during course of partitioning.
 - Study statistical significance of separation based on direction of maximal variance.
 - Handle datasets too big to fit in memory.

26