NetMine: Mining Tools for Large Graphs

Deepayan Chakrabarti
Yiping Zhan
Daniel Blandford
Christos Faloutsos
Guy Blelloch

Introduction

Internet Map [lumeta.com]

The Social Structure of "Countryside" School District

Friendship Network
[Moody '01]

Food Web
[Martinez '91]

Protein Interactions
[genomebiology.com]

- Graphs are ubiquitious

Graph "Patterns"

- Given a large graph dataset, what do we focus on?
- Patterns $\boldsymbol{\rightarrow}$ Aspects of graphs that show up frequently, in datasets from diverse domains.
- Degree distributions

Count vs Outdegree

Graph "Patterns"

- Given a large graph dataset, what do we focus on?
- Patterns $\boldsymbol{\rightarrow}$ Aspects of graphs that show up frequently, in datasets from diverse domains.
- Degree distributions
- Hop-plots
- "Scree" plots
- and others...

Hop-plot

Graph "Patterns"

- Why do we like them?
- They capture interesting properties of graphs.
- They provide "condensed information" about the graph.
- They are needed to build/test realistic graph generators (\rightarrow useful for simulation studies).
- They help detect abnormalities and outliers.

Our Work

The NetMine toolkit
\rightarrow contains all the patterns mentioned before, and adds:

- The "min-cut" plot
- a novel pattern which carries interesting information about the graph.
- A-plots
- a tool to quickly find suspicious subgraphs/nodes.

Outline

- Problem definition
"Min-cut" plots (+experiments)
- A-plots (+experiments)
- Conclusions

"Min-cut" plot

- What is a min-cut?

"Min-cut" plot

Do min-cuts recursively.

N nodes

＂Min－cut＂plot

Do min－cuts recursively．
New min－cut

ーーーーーーーーーーーーーーーーー

N nodes

"Min-cut" plot

Do min-cuts recursively.

N nodes

"Min-cut" plot

- Min-cut sizes have important effects on graph properties, such as
- efficiency of divide-and-conquer algorithms
- compact graph representation
- difference of the graph from well-known graph types
- for example, slope $=0$ for a random graph

Experiments

Datasets:

- Google Web Graph: 916,428 nodes and 5,105,039 edges
- Lucent Router Graph: Undirected graph of network routers from
www.isi.edu/scan/mercator/maps.html; 112,969 nodes and 181,639 edges
\square User \rightarrow Website Clickstream Graph: 222,704 nodes and 952,580 edges

Experiments

- Used the METIS algorithm [Karypis+, 1995]

- Google Web graph
- Values along the y axis are averaged
- We observe a "lip" for large edges
- Slope of -0.4, corresponds to a 2.5dimensional grid!

Experiments

- Same results for other graphs too...

Lucent Router graph

Clickstream graph

Observations

- Linear slope for some range of values
"Lip" for high \#edges
Far from random graphs (because slope $\neq 0$)

Outline

- Problem definition
- "Min-cut" plots (+experiments)
- A-plots (+experiments)
- Conclusions

A-plots

How can we find abnormal nodes or subgraphs?

- Visualization
- but most graph visualization techniques do not scale to large graphs!

A-plots

- However, humans are pretty good at "eyeballing" data ©
- Our idea:
- Sort the adjacency matrix in novel ways
\square and plot the matrix
a so that patterns become visible to the user
- We will demonstrate this on the Lucent Router graph (112,969 nodes and 181,639 edges)

A-plots

Three types of such plots for undirected graphs...

- RV-RV (RankValue vs RankValue) \rightarrow Sort nodes based on their "network value" (~first eigenvector)
\square RD-RD (RankDegree vs RankDegree) \rightarrow Sort nodes based on their degree
- D-RV (Degree vs RankValue) \rightarrow Sort nodes according to "network value", and show their corresponding degree

RV-RV plot (RankValue vs RankValue)

We can see a "teardrop" shape and also some blank "stripes" and a strong diagonal

- (even though there are no self-loops)!

RV-RV plot (RankValue vs RankValue)

The "teardrop" structure can be explained by degree-1 and degree-2 nodes

$N V_{1}=1 / \lambda * N V_{2}$

RV-RV plot (RankValue vs RankValue)

Strong diagonal
\rightarrow nodes are more likely to connect to "similar" nodes

RD-RD (RankDegree vs RankDegree)

- Isolated dots \rightarrow due to 2 -node isolated components

D-RV (Degree vs RankValue)

Explanation of "Spikes" and "Stripes"

- RV-RV plot had stripes; D-RV plot shows spikes. Why?
"Spike" nodes $\boldsymbol{\rightarrow}$ high degree, but all edges to "Stripe" nodes

"Stripe" nodes
 \rightarrow degree-2 nodes
 connecting only to the "Spike" nodes

External connections

A-plots

They helped us detect a buried abnormal subgraph

- in a large real-world dataset
- which can then be taken to the domain experts.

Outline

- Problem definition
- "Min-cut" plots (+experiments)
- A-plots (+experiments)
- Conclusions

Conclusions

- We presented
- "Min-cut" plot
- A novel graph pattern
- with relevance for many algorithms and applications
- A-plots
- which help us find interesting abnormalities
- All the methods are scalable
- Their usage was demonstrated on large real-world graph datasets

RV-RV plot (RankValue vs RankValue)

We can see a "teardrop" shape and also some blank "stripes"
- and a strong diagonal.

Rank of Network Value

RD-RD (RankDegree vs RankDegree)

